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Abstract. This paper presents a conceptual adaptive tunable vibration absorber (ATVA) 
with soft magnetorheological elastomers (MREs) for vibration reduction of vehicle 
powertrain systems. The MRE material used in this application has a rubbery silicone 
polymer matrix and ferrous fillers in fraction of 27.6% by volume. For such a soft MRE 
the elastic modulus significantly increases due to the MR effect. Thus, the ATVA can 
work effectively in a wide frequency range (the increase in frequency more than 10 
times) instead of a narrow bandwidth as a conventional dynamic absorber does. 
Numerical simulations of a powertrain fitted with the ATVA are used to validate its 
effectiveness. The obtained results show that the powertrain vibration can be 
significantly suppressed. This novel ATVA will be applicable to the vibration reduction 
of powertrains. 

Keywords: Adaptive tunable dynamic absorber, vibration reduction, powertrain 

vibration, soft magnetorheological elastomer. 

 

1 Introduction 

Magnetorheological elastomers (MREs) are a smart material in the MR family including MR fluids, 

foams and elastomers. Typically, MREs are composed of a host gel material and micro-size iron 

additives. One vital MRE feature of MREs called MR effect is that their mechanical properties such as 

elastic moduli (including Young’s modulus E as well as shear modulus G) can be properly controlled 

by a magnetic field [1, 2]. Thus, MREs have been a promising material for constructing adaptive tuned 

vibration absorbers (ATVAs), which are effective devices to absorb the undesirable vibration of 

mechanical systems whose natural frequencies coincide with or are close to the forcing frequency. 

Generally, the increment in elastic modulus in regular MREs under MR effect is about 50-60 % [1, 2, 

3]. However, the increment may seem to be insufficient for the purpose of constructing ATVAs for 

systems having a wide range of natural frequency such as vehicle powertrain systems. 
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In recent years, there have been an increasing number of studies about how to broaden MRE’s 

stiffness range. Farshad and Benine [4] developed a magnetoactive elastomer and they pointed out that 

the maximum increase in tensile modulus and compression modulus is 200% for the former and more 

than 300% for the latter. Zhang et al [5] proposed a theoretical model for a new MRE, which is 

enhanced by magnetizable soft material in nano size so that its shear modulus could be significantly 

increased. Stepanov et al [6] introduced the tangential Young’s modulus for describing the non-linear 

behaviour of a new soft MRE. Their experimental results showed that for the MRE sample, with the 

magnetic filler content by volume 37%, the maximum increase in the modulus, when strain is small 

(less than 4%), is up to 100 times. In line with the result, Abramchuk et al [7] measured the shear 

modulus for a soft MRE in small strain regime. This MRE material is based on a silicone polymer 

matrix and the ferrous filler content by volume 27.6%. It seemed the first time the relationship 

between elastic modulus and magnetic field with the increase in shear modulus is about 10000% (100 

times) is presented. The MRE sample will be used in this study to develop the ATVA.  

A great number of studies have used MREs for constructing ATVAs. Deng et al [8] developed an 

ATVA for a beam with two ends supported. This ATVA could work effectively in a frequency range 

from 55 to 82 Hz with relative frequency change of 49%. Albanese and Cunefare [9] presented a state-

switched absorber (SSA) using a MRE material and found that with iron particles by volume 35% the 

MRE material has the largest MR effect and the natural frequency of the SSA could be tuned from 

45Hz to 183 Hz (360% increase in frequency shift). Lerner and Cunefare [10] tested the SSA operated 

in different working modes and the result showed that the increase in SSA’s natural frequency range 

are 183% (26-74Hz), 473% (78-449Hz) and 510% (57-347Hz) in shear, longitudinal and squeeze 

mode respectively. However, a shortcoming is that so far the MRE has been used for developing 

ATVAs for single degree-of-freedom (SDOF) applications only. Actually, most real world structures 

and mechanisms have multi degrees of freedom (MDOF). This shortcoming limits the application of 

the unique MRE material to many engineering problems. 

Ram and Elhay [11] showed the mathematic background of a MDOF dynamic absorber for MDOF 

systems. They also pointed out that the SDOF dynamic absorbers, which have been being used so far, 

are a particular instant of MDOF dynamic absorber. Hadi et al [12] used the genetic algorithm to 

optimize a dynamic absorber design for a MDOF system structure. Ozer and Royston [13] extended 

Den Hartog’s method to find optimal parameters of dynamic absorber added to an undamped MDOF 

system. Ozer and Royston [14] applied Sherman-Morrison matrix inversion formula for optimisation 

parameters of a dynamic absorber attached to a damped MDOF system. Kitis et al [15] found optimal 

design of a damped absorber, which is added to a damped MDOF system. This finding bases on the 

numerical method and is demonstrated for a 22 DOF system in the case study. In contrast to studies in 

the paragraph above, there may have not been any work using the MRE for constructing ATVAs for 

MDOF applications. 
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A power transmission system (powertrain) is a crucial component in automobiles. It consists of an 

engine, a torque converter (TC) or a clutch for automatic or manual transmission, a transmission gear 

box and a drive line component including the differential, wheel tyres and vehicle body. In a vehicle 

powertrain there are a number of gear ratios, which are used to set the optimal engine speed according 

to vehicle speed. Due to gear shift of transmission, the stiffness coefficients depend on the output 

speed ratio of gear set. Thus, for each speed, the powertrain has a different set of natural frequency. 

Hwang et al [16] investigated a Ford rear-wheel automatic powertrain and these results indicate that 

the fundamental frequency versus axle stiffness is about 5.5Hz to 7.0 Hz for the third gear and 6.75 Hz 

to 8.0 Hz for the fourth gear. Zhang et al [17] and Crowther [18] studied transient and free vibration of 

an automatic powertrain BTR four-speed 93 LE. Their results pointed out the first powertrain 

fundamental frequency for the second gear is 7.0 Hz and for the third gear is 8.8 Hz. The second 

powertrain fundamental ones are 28.6Hz and 28.0Hz for the second and third gear respectively. 

Couderc et al [19] simulated and tested a manual powertrain and showed that the gear rattle vibration 

mode with frequency 68.3 Hz is potential vibration source. Obviously, there are many natural 

frequencies in a wide range of frequency in the system. In addition, the torque fluctuation is periodic 

due to the internal combustion engine dynamic characteristics so that the powertrain is subjected to 

multi-frequency excitations. Because the engine speed range is large the resonance phenomena may 

not be avoided. Especially, when the engine speed accelerates from 600-900 rpm (idle speed) to 5000-

6000 rpm (top working speed) it will pass through several natural frequencies. Consequently, the 

vibration of the system could increase significantly if the acceleration time is not rapid enough and this 

vibration reduces the comfort performance of vehicle.  

The objective of this study is to use the soft MRE material presented by Abramchuk et al [7] to 

develop a novel torsional ATVA for a simplified MDOF power transmission system. Based on the 

new MRE material, this device can be actively tuned according to the engine speed and the powertrain 

resonant frequency can be shifted away so that the powertrain vibration is significantly reduced. This 

novel ATVA will be an innovation in vibration reduction for powertrain systems. Numerical 

simulations of powertrain fitted with the proposed ATVA are conducted to validate its effectiveness. 

This paper consists of three main sections. The first section presents an introduction of the new MRE 

material and its characteristics. The second section proposes a conceptual design of the torsional 

ATVA. Finally, the third section presents numerical simulations to validate the ATVA effectiveness 

for powertrain vibration suppression.  

 

2 A soft MRE and its characteristics 

Abramchuk et al [7] presented a new soft MRE. The composition of the MRE is a highly elastic 

polymer and magnetic particles, which are filled to the polymer matrix. The magnetic fillers are 

ferrous powders whose sizes range from 2-3 mμ . 
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The polymer matrix of the host material is a liquid silicone rubber, which is produced by 

GNIIKhTEOS (Institute of Chemistry and Technology of Organoelement Compounds, Russia) 

The polymer matrix consists of two components. The first component is silicone oligomer with vinyl 

groups and the second one is silicone oligomer with hydride groups. The polymer matrix of the MRE 

is created by following chemical reaction with the presence of platinum as a catalyst. 

~Si-H-CHCH-Si~  ~Si-H  CHCH-Si~ 22
catalystPt 

2 =⎯⎯⎯ →⎯+=  

The fabrication process of the MRE consists of three main steps. Firstly, the mixture of the silicone 

rubber and magnetic particles are pestled by a mechanical mortar. Secondly, the ferrous powder 

homogeneously dispersed in to the polymer matrix and the air bubbles are removed from the volume 

of sample. Finally, the mixture material was injected into moulds and is polymerised for two hours at 

temperature 100 to 1500C for two hours.  

It is assumed that the material is operated in the small strain regime and the relationship between 

Young’s modulus and shear modulus in this regime is linear so that the tensile test is conducted and 

the shear modulus G can be calculated from following equation, [7]: 

)1( 2λ
λσ −= G       (1) 

Where σ is the nominal stress; λ  is the relative compression length 0/ ll=λ ; l  is length of the 

deformed sample and 0l  is the initial length of undeformed length. 

For a soft MRE sample that ferrous powders with volume concentration is 27.6%, σ  and λ  were 

measured under various magnetic fields and the shear modulus was calculated by equation (1). Figure 

1 shows the relative changes in shear modulus (G/G0), which depends on the magnetic field strength. 

It was obtained by mapping point-to-point and interpolated by Matlab software. In which G0=3.5kPa 

is the initial shear modulus without magnetic field. It is noted that the relationship between G-H is 

displayed in the formation of logarithm (base 10), Abramchuk et al [7]. 
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Figure 1. Relative shear modulus of soft MRE depending on magnetic field. 

It is assumed that the field intensity strength H(the maximum value is 100kA/m) is produced by a 

magnetic field of coil with current I. Obviously, H depends on a number of factors such as turns of 
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wire, the type of material in the coil and the ratio of the coil length to the coil width. For convenience 

H is expressed in the form 

IH α=        (2) 

Where α  is the propositional coefficient. For instant, the magnetic field is assumed similar as one 

presented by Park et al, [20], α =12500/m was chosen, the relationship between the shear modulus G 

and input current I is shown in figure 2. 
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Figure 2. Shear modulus of soft MRE depending on input current I. 

It is noted that that the increase in shear modulus is significant (more than 100 times). 

3 A novel ATVA for powertrain vibration control 

 

3.1 A simplified powertrain model and its vibration characteristics 

A simplified torsional vibration model, which consists of inertias, stiffnesses and dampings as shown 

in figure 3, is used to validate the ATVA effectiveness. In which, the vehicle engine is modelled by 

the first inertia. The second and third inertias represent the torque converter (TC) and the gear box of 

transmission. The drive line components are modelled by the fourth inertia. This model is condensed 

from a powertrain test rig, which was reported by Zhang et al [17] and Crowther [18].  

  
Figure 3. A simplified vehicle powertrain model. 

By using Lagrange’s equation it is straightforward to obtain equation of motion of the system as: 

TKθθCθJ =++ &&&       (3) 

Where [ ]T
4321 θθθθ=θ , [ ]TT 000=T  are vectors of generalized coordinates and external 

torque; the inertial matrix J is diagonal, J=diag(J1, J2, J3, J4); stiffness and damping matrices, K and C, 

have following forms: 

k1, c1 
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driveline TC(clutch) engine gear box 
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When an ATVA or ATVAs are attached, the equation of motion of powertrain including ATVA keeps 

the same form as equation (3) butθ , T, J, K and C will be changed. 

In this case study, the free and steady vibration of the system before and after adding the ATVA are 

investigated for the first, second, third and fourth gears associated with different speed ratios. These 

gears are characterized by varying the stiffness coefficient k2. When the powertrain is in a resonant 

range, the ATVA is considered to work effectively if the powertrain natural frequencies could be 

shifted away from the resonant peaks so that powertrain steady responses is reduced significantly.  

Let J1=0.82, J2=0.22, J3=0.4, J4=8kgm2; c1=1.0, c2=2.0, c3=5.0Nms/rad; k1=15000, k3=3350Nm/rad. 

Where k2=13000, 15000, 16000 and 18000 Nm/rad for the first, second, third and fourth gear of gear 

box are used, respectively. Table 1 shows the powertrain natural frequencies and damping ratiosζ for 

the first, second, third and fourth gear of gear box. 

Table 1. Natural frequencies of a simplified powertrain model for different gear shifts. 
 first gear second gear third gear fourth gear 
index f (Hz) ζ (%) f (Hz) ζ (%) f (Hz) ζ (%) f (Hz) ζ (%) 

f1 0a  0a  0a  0a  
f2 7.5299b 2.89 7.5937 2.96 7.6199 2.99 7.6640 3.04 
f3 28.0366 3.27 28.7146b 3.05 29.0034 2.97 29.5017 2.82 
f4 62.3363 2.39 64.8331 2.35 66.0662 2.32 68.4972b 2.27 

a the first natural frequency is zero due to the rigid body rotation of whole system (without vibration) 
b powertrain natural frequencies are used to validate the ATVA effectiveness. 

Although the powertrain natural frequencies vary for each gear shift, their vibration mode shapes have 

similar forms. For instant, figure 4 shows the powertrain vibration mode shapes of the first gear of 

gear box. It can be seen that the second mode is sensitive to either the first, second or third inertia. In 

other words, the second frequency powertrain can be shifted away if an ATVA is added to these 

inertias. Meanwhile, the third and fourth modes seem to be only sensitive to the third and second 

inertia, respectively. This will be discussed more details in section 4.2. 
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Figure 4. The second, third and fourth mode shapes of the first gear of gear box. 
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3.2  Structure of the proposed ATVA 

 The ATVA schematic diagram is shown in figure 5, in which the inner cylinder with lugs is fixed on 

the rotating shaft. The MRE material operates as a torsional spring and it is put into the gap between 

the inner and outer cylinder. Like the inner cylinder, there are lugs on the outer cylinder. These lugs 

cause tangent elastic forces as well as elastic torque between these cylinders. Therefore, the outer 

cylinder can vibrate to the inner cylinder. There are three electromagnetic coils, which are supplied by 

a DC current to make a magnetic field through the MRE layer. 

 
Figure 5. A schematic diagram of the ATVA.1: inner cylinder; 2: rotating shaft; 3: lug; 

4: electromagnetic coils; 5: outer cylinder; 6: MRE material. 

If the MRE plays a role as a torsional spring and is modeled as a rubber cylinder with inner, outer 

radius and length as a, b and L, respectively as shown in figure 5, the torsional stiffness coefficient of 

MRE can be calculated as, [21]: 

22

224
ab

GbLak A
−

= π        (5) 

Let JA be ATVA’s effective inertia moment and it can be calculated by: 

∫= dmrJ A
2 =∑ 2mr        (6) 

Where r and dm  are the moment arm and element of mass. 

It is noted that the mass of MRE material can be neglected due to it is very small versus that of outer 

ring and wire coils. The ATVA’s effective inertia moment could be calculated: 

2
0

2222 )
3

(33 mRd
m

m
bmdmmbJJJ Wire

WireWireringoutterA =+=+=+≈   (7) 

Where m, mWire are masses of the outer ring and one wire coil, respectively; d is the distance from the 

mass centre of coil to the rotating shaft centre; R0 is the radius of gyration and it can be calculated by: 

222
0

3
d

m
m

bR Wire+=       (8) 

Because parameters m, mWire, b, d, R0 is relatively independent, each of them can be obtained easily 

from the others. For example with m=1kg, b=0.1m, mWire/m=0.3086, d=0.18m are given, R0=0.2m, 

AJ =0.04kgm2 and Aμ =0.1 will be calculated. For more convenience, the inertia ratio 3/ JJ AA =μ  is 

varied to investigate the ATVA effectiveness in the design stage. 
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ATVA natural frequency and damped frequency are calculated by: 

A

A
J
k

Af
π2
1=       (9) 

21 AAd ff ς−=      (10) 

Aς  is the damping ratio of the MRE material. 

In general, the damping property of MREs depends on several factors, [1, 3, 23]. Chen et al, [23], 

tested MRE samples under various magnetic fields, polymer matrices, and dynamic strain regimes and 

reported that when magnetic field increases, the damping ratio slightly increases until reaching a 

maximum value at first and then it decreases slightly. In addition, the damping ratio is always less than 

0.35. This study seems the most comprehensive study about the MRE damping property so far. 

However, there has not been any MRE sample that is similar to the soft MRE used for our work. Zhou, 

[3] tested a MRE with 27% ferrous powders by volume embedded in a silicone rubber matrix and 

showed that the damping ratio is a slightly decreasing line (about 10%) when the magnetic field 

increases. The zero-field damping ratio 0Aς =0.24 was measured. Due to the MRE damping property 

used in this work has not given yet, the damping model reported by Zhou, [3], will be used. That 

means the damping ratio can be expressed as II AAA ηςςς −== 0)( , η  is the coefficient. If a decline 

of the damping ratio 10%, i.e., 10/9
max

min =
A

A

ς
ς

 was set, 
max

0

10I
Aςη =  will be calculated and the damping 

ratio can be expressed as: 

)
10

1(
10 max

0
max

0
0 I

II
I A
A

AA −=−= ςςςς     (11) 

In this study, four zero-field damping ratio 0Aς =0.05, 0.10, 0.25 and 0.35 were used to investigate the 

ATVA effectiveness. The characteristics of the four kinds of damping ratio are shown in figure 6.  
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Figure 6. ATVA damping ratios for 0Aς =0.05, 0.10, 0.25 and 0.35. 

If a damping ratio Aς  is selected, the ATVA damping coefficient can be calculated: 

cAA Cc ς=        (12) 

AAc JfC π4=  is the critical damping coefficient. 
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When the ATVA is added to the powertrain, JA is fixed and current I is tuned for controlling ATVA 

damped frequency fd (both kA, cA are tuned by I at the same time). The conversion among ATVA main 

parameters such as kA, G, fA, fd, I, Aς , cA is through equations (5), (9), (10), (11) and (12). 

It is noted that the powertrain frequency range is from fmin=7.5299Hz to fmax=68.4972Hz as Table 1. In 

this study ATVA main parameters are shown in Table 2. 

Table 2. ATVA’s parameters. 
Inertial moment and geometry MRE material Magnetic field 

Aμ =JA/J3=1/4, 1/5, 1/10, 1/20 G0=3.50kPa α =12500/m 

a=0.085m Gmax=350kPa Imax=8A 
b=0.100m 0Aς =0.05, 0.10, 0.25, 0.35 Hmax=100kA/m 
L=0.075m   

Figure 7 shows the ATVA’s frequencies which depend on the input current I for the four damping 

ratio characteristics and the inertia ratio Aμ =1/10 was set.  
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Figure 7. ATVA’s frequency range for four damping ratio characteristics for Aμ =1/10. 

It is noted that the ranges of fA and fd for 0Aς =0.05, 0.10 are [7.3756 73.7475], [7.3664 73.6728] and 

[7.3387 73.4482] (Hz), respectively. For such zero-field damping ratios the difference between fA and 

fd is very slight while the frequency ranges for 0Aς =0.25 and 0.35 are [7.1415 71.8565], [6.9094 

69.9931] (Hz) and the difference is significant. Obviously, with the parameters as designed, the ATVA 

frequency ranges covered that of powertrain ( with [fmin fmax]=[7.5299 68.4972] (Hz)). 

4 Numerical simulations 

 

4.1 Parameter influence on ATVA effectiveness, a case study for the first gear of gear box 

According to Wang et al [22], engine torque could be given as 

)sin(0 tTTT m Ω+=       (13) 

Where Tm is the constant mean torque. T0 and Ω  are the amplitude and frequency of fluctuation 

torque. In this study, only fluctuation torque is considered and Tm is neglected. The forcing frequency 

Ω  depends on number of cylinders and engine speed. It is assumed that Ω  is a half of engine 

frequency. If the engine is at idle speed (about 900rpm) it gives 5.72 ×=Ω π (rad/s). When the first 
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gear of gearbox is operated, the resonance may occur to the second frequency f2=7.5299Hz of the first 

gear as noted in Table 1. Thus, an ATVA is attached to powertrain as in figure 8. With the ATVA, the 

system has five degrees of freedom and the equation of motion has the same form as equation (3). 

Where [ ] ,4321
T

Aθθθθθ=θ J=diag(J1, J2, J3, J4, JA) and the stiffness matrix has form as: 
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The damping matrix C has the same form as the stiffness matrix K. 

 

 

 

 

Figure 8. A powertrain model with an ATVA. 

For the powertrain frequency f2=7.5299Hz, let 0Aς =0.1, Aμ =1/4 so that the current is converted as 

I=0.072A. In practise, I=0.05A or I= 0.1A is chosen, and fd=7.433Hz or fd=7.7139Hz is obtained. For 

instant, I=0.05A (fd=7.433Hz) is tuned and the vector of powertrain natural frequencies f = [0.0 6.8639 

8.1554 28.2069 62.3467]T are re-calculated. Comparing to those in Table 1, the powertrain frequencies 

have been shifted away from the resonant peak f=7.5299 Hz by introducing two new frequencies 

6.8639 and 8.1554(Hz). Let T0=3Nm, the powertrain steady responses before and after adding the 

ATVA are shown in figure 9.  
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Figure 9. Steady state responses at current I =0.05A, 0Aς =0.1, Aμ =1/4. 

Obviously, the vibration of the four inertias, 321 ,, θθθ  and 4θ  are reduced significantly after adding 

ATVA. This confirms that the ATVA works as designed. 
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To illustrate the effectiveness of ATVA over a forcing frequency range, the powertrain vibration 

frequency response was shown in figure 10. The forcing frequency ratio dω/Ω is from 0.6 to 1.4. That 

means the forcing frequency range is [0.6 1.4]fd= [4.4598 10.4062] (Hz). 
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Figure 10. Frequency responses when 0Aς =0.1, Aμ =1/4. 

It is oblivious that vibration frequency responses are reduced significantly at and around the resonant 

frequency fd (at the forcing frequency ratio, dω/Ω , is close to 1) when ATVA is added to powertrain.  

To show how the inertial moment JA affects to the effectives of ATVA, the inertia ratios Aμ =1/4, 1/5, 

1/10, 1/20 was varied. For the zero-field damping ratio 0Aς =0.1 was chosen, the responses of second 

inertia are shown in figure 11. 
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Figure 11. Frequency responses of the second inertia 2θ for several values of inertia ratios Aμ . 

It can be seen that the larger inertia ratio, the better vibration reduction effect the ATVA can be. For 

large inertia ratios large such as Aμ =1/4, Aμ =1/5 the resonant peak is shifted far away by introducing 

two new invariant peaks. Thus, the responses are suppressed significantly while for low inertia ratios 

Aμ =1/10 or 1/20 it is not so that the vibration at the resonant frequency are reduced not much as can 

be seen in figure 11. 
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To show how the input current, I, affects the powertrain responses, the responses with several input 

current values are calculated and compared. It is noted that if input current I varies, both stiffness and 

damping coefficients will be changed. Figure 12 shows responses of second inertia ( 2θ ) for I=0.05, 

0.10, 0.20 and 0.30A ( fd=7.4331, 7.7725, 8.97 and 10.6178 Hz), respectively and Aμ =1/4 was set.  
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Figure 12. Steady responses of the second inertia 2θ  for several values of current I for Aμ =1/4. 

It can be seen that for I=0.05A and I=0.1A, the vibrations are small ones compared to the others due to 

the current was tuned accurately (the exactly current I=0.072A) while for I=0.2A and 0.3A the 

vibrations are large. It means the input current is sensitive to the ATVA effectiveness. 

Figure 13 shows the effect of damping ratio to the effectiveness of ATVA and Aμ =1/4 was set. 
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Figure 13. Responses of the second inertia for four damping ratios 0Aς =0.05, 0.10, 0.25 and 0.35. 

Obviously, the less damping ratio is, the lower response at the resonant frequency can be. It is in 

agreement with the study reported by Sun et al, [24]. These authors used the theoretical approach to 

study a dynamic absorber and showed that the lower damping ratio is the better absorber effectiveness 

can be. However, a low damping ratio may results in a high vibration response at the two new 

invariant frequencies. For instant, for 0Aς =0.05 the frequency response is the smallest at ratio 

dω/Ω =1. However, at two invariant peaks the responses are higher than those when 0Aς =0.1. Thus, 

there is a demand for optimisation of the damping ratio when the ATVA work over a frequency range. 
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4.2 The influence of ATVA location on its effectiveness 

In this section, the ATVA will be used when resonances happen to the third frequency of the second 

gear (f3=28.7146Hz) and the fourth frequency of the fourth gear (f4=68.4972Hz) as shown and noted 

in Table 1. At these frequencies the ATVA location is very important and it is the most essential 

difference between applications of ATVA for SDOF and MDOF systems. To show this more clearly, 

the ATVA effectiveness is compared when the ATVA location is either location A or B, where the 

ATVA is added to the third inertia ( 3θ ) as in figure 8 or to the second inertia ( 2θ ), respectively. 

If ATVA is attached to the location B, the equation of motion keeps the same form as equation (3) 

with [ ] T
Aθθθθθ 4321=θ and J=diag(J1, J2, J3, J4, JA) and  
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The damping matrix C has the same form as the stiffness matrix K. 

For both flowing cases the inertia ratio Aμ =1/5 were set. 

4.2.1 A case study for the second gear of gear box. In this case the engine speed is assumed to 

operate at 3420 rpm. The forcing frequency of fluctuation torque )sin(0 tTT Ω=  is a half of frequency 

of engine, i.e., 5.282 ×=Ω π (rad/s) such that the resonance happens with f3=28.7146 Hz. The current 

I=0.75A (fd=28.6847Hz) is tuned. Figure 14 shows the frequency responses for 0Aς =0.1, 0T =30Nm. 

It is noted that the ratio range is [0.6 1.4] (forcing frequency range is [17.2108 40.1586](Hz)). 
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Figure 14. The responses of the second gear around a frequency range. 

It can be seen that the response 2θ  when ATVA is at location A is much smaller than the others. Mean 

while, the response, when ATVA is located to location B, is reduced not much around the resonant 

frequency because the resonant frequency is not shifted away. It is confirmed that in spite of the same 

parameters the ATVA works effectively when it is located at location A only in this case. 
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4.2.2 A case study for the fourth gear of gear box. In this case, Ω  is assumed to be 68Hz as a half of 

the frequency of engine speed 8160 rpm. For this speed, the fourth gear of gear box is operated. 

Obviously, the resonance happens to the fourth frequency f4=68.4972Hz of the fourth gear as shown in 

Table 1. For this frequency the ATVA current I=2.4A (fd=68.5337Hz) is tuned. The frequency 

response, when the ATVA is located to either location A or B, is shown in figure 15 for 

0Aς =0.25, 0T =30Nm. the ratio range is [0.6 1.4] (forcing frequency range is [41.1202 95.9472](Hz)). 
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Figure 15. The powertrain frequency responses for the fourth gear around a frequency range. 

In contrast to the result in section 4.2.1, the ATVA has worked effectively when it is attached to the 

location B only because the powertrain natural frequencies are shifted away from the resonant peaks 

68.4972 Hz by introducing two new invariant frequencies. Meanwhile when ATVA is added to the 

location A it does not work due to the powertrain natural frequencies are not shifted and the 

powertrain response are reduced insignificantly at the resonant frequency. 

 

5  Conclusion 

A soft MRE is used for constructing a novel conceptual ATVA for vibration suppression of a 

powertrain, which is a MDOF system. Numerical results show that with the MRE material the ATVA 

can effectively work in a wide frequency range from around 7 to 70Hz (ten times increase in relative 

frequency change). In addition, this device can be properly tuned to shift powertrain natural 

frequencies when the gear box is set to the first, second, third and fourth gear. It is found that the MR 

effect in this MRE is significant so that the ATVA effectiveness is very sensitive to the input current, 

which is used to control the magnetic field intensity. In addition, the ATVA effectiveness is affected 

by not only the shear modulus (stiffness coefficient) but also by the inertia and damping ratios. When 

ATVA works effectively, natural frequencies of powertrain are shifted away from the forcing 

frequency so that powertrain steady vibration is reduced significantly. The results also show that the 

presented application is different from that of a SDOF, although the damping and stiffness of ATVA 

may be correctly tuned, the ATVA could not work well if it is not attached in a suitable location of the 

powertrain. The ATVA parameter optimisation and ATVA effectiveness for powertrain transient 

vibration reduction, when the forcing frequency varies with the time, will be our further work. 
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