
IEEE TRANSACTIONS ON ROBOTICS, VOL. ??, NO. ??, ?? 2008 1
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Abstract—This paper presents a novel local submap joining
algorithm for building large-scale feature based maps: Sparse
Local Submap Joining Filter (SLSJF). The input to the filter is
a sequence of local submaps. Each local submap is represented
in a coordinate frame defined by the robot pose at which the
map is initiated. The local submap state vector consists of the
positions of all the local features and the final robot pose within
the submap. The output of the filter is a global map containing
the global positions of all the features as well as all the robot
start/end poses of the local submaps.

Use of an Extended Information Filter (EIF) for fusing
submaps makes the information matrix associated with SLSJF
exactly sparse. The sparse structure together with a novel state
vector and covariance submatrix recovery technique make the
SLSJF computationally very efficient. The SLSJF is a canonical
and efficient submap joining solution for large-scale Simultaneous
Localization and Mapping (SLAM) problems that makes use
of consistent local submaps generated by any reliable SLAM
algorithm. The effectiveness and efficiency of the new algorithm
is verified through computer simulations and experiments.

Index Terms—Simultaneous localization and mapping
(SLAM), Extended Kalman Filter, Extended Information Filter,
Map joining, Sparse matrix.

I. I NTRODUCTION

In the recent years, it has become evident that the Simul-
taneous Localization and Mapping (SLAM) problem can be
efficiently solved by exploiting the sparseness of the informa-
tion matrix or techniques from sparse graph and sparse linear
algebra (see e.g. [1]-[5]). However, most of the methods based
on sparse representation have focused on building a single
large-scale map, resulting in the need to update a large map
whenever a new observation is made.

Alternatively, local submap joining [6][7] provides an effi-
cient way to build large-scale maps. In local submap joining,
a sequence of small sized local submaps are built (e.g. using
conventional Extended Kalman Filter (EKF) SLAM [8]) and
then combined into a large-scale global map. During map
joining [6], the state vector of the local submap is first
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transferred into the global coordinate frame. Common features
present in both the local and global maps are identified and
an EKF is used to enforce identity constraints to obtain the
global map. The resulting map covariance matrix is fully
correlated and thus the map fusion process is computationally
demanding. Overall computational savings are achieved due to
the fact that the frequency of global map updates is reduced.

This paper demonstrates that local submap joining can be
achieved through the use of a sparse information filter. The
proposed map joining filter, Sparse Local Submap Joining
Filter (SLSJF), combines the advantages of the local submap
joining algorithms and the sparse representation of SLAM to
substantially reduce the computational cost of the global map
construction.

The paper is organized as follows. Section II presents the
overall structure of the SLSJF and demonstrates that the
associated information matrix is exactly sparse. The SLSJF
algorithm is described in detail in Section III. Section IV pro-
vides simulation and experiment results. Section V discusses
some properties of the SLSJF and some related work. Section
VI concludes the paper.

II. T HE OVERALL STRUCTURE OFSLSJF

This section presents the overall structure of the SLSJF and
explains why it results in a sparse representation.

A. The input and output of SLSJF

The input to the SLSJF is a sequence of local submaps
constructed by some SLAM algorithm. Local maps1 are
denoted by

(X̂L, PL) (1)

whereX̂L (the superscript ‘L’ stands for the local map) is an
estimate of the state vector

XL = (XL
r , XL

1 , · · · , XL
n )

= (xL
r , yL

r , φL
r , xL

1 , yL
1 , · · · , xL

n , yL
n ) (2)

andPL is the associated covariance matrix. The state vector
XL contains the robot final poseXL

r (the subscript ‘r’ stands
for the robot) and all the local feature positionsXL

1 , · · · , XL
n ,

as typically generated by conventional EKF SLAM. The
coordinate system of a local map is defined by the robot pose
when the building of the local map is started, i.e. the robot
starts at the coordinate origin of the local map.

It is assumed that the robot starts to build local mapk+1 as
soon as it finishes local mapk. Therefore the robot end pose

1In this paper, “local submap” is sometimes simply called “local map”.



IEEE TRANSACTIONS ON ROBOTICS, VOL. ??, NO. ??, ?? 2008 2

of local mapk (defined as the global position of the last robot
pose when building local mapk) is the same as the robot start
pose of local mapk + 1 (Fig. 1).

The output of SLSJF is a global map. The global map state
vector contains all the feature positions and all the robot end
poses of the local maps (see Fig. 1).

B. Why can local map joining have sparse representation?

The reason why SLSJF can be developed is that the infor-
mation contained in each local map is the relative position
information about some “nearby objects” — the features and
the robot start/end poses involved in the local map.

By including all the objects (all the features and all the robot
start/end poses) in the global map state vector, the local map
joining problem becomes a large-scale estimation problem
with only “local” information (similar to Smooth and Mapping
(SAM) [2] and full SLAM [5]). When Extended Information
Filter (EIF) is used to solve the estimation problem, a non-
zero off-diagonal element of the information matrix (a “link”
between the two related objects) occurs only when the two
objects are within the same local map2. Since the size of
each local map is limited, any object will only have link with
its “nearby objects” no matter how many (overlapping) local
maps are fused (Fig. 1). This results in an exactly sparse
information matrix.

Since all the objects involved in the local maps are included
in the global state vector, no marginalization is required in the
map joining process and thus the information matrix will stay
exactly sparse all the time. Because most of the robot poses
are marginalized out during the local map building process,
the dimension of the global state vector is much less than that
of SAM [2] and full SLAM [5].

C. The overall structure of SLSJF

SLSJF fuses the local maps sequentially to build a global
map, in a manner similar to [6][7], using the structure pre-
sented in Algorithm 1.

Algorithm 1 Overall structure of SLSJF
Require: A sequence oflocal maps: each local map contains

a state vector estimate and a covariance matrix
1: Set local map1 as theglobal map
2: For k = 2 : p (p is the total number of local maps),

fuse local map k into theglobal map
3: End

III. T HE SLSJFALGORITHM

This section describes the various steps of SLSJF algorithm,
including global map initialization and update, reordering of
the global state vector, state vector and covariance submatrix
recovery, and data association.

2An off-diagonal element of the information matrix is exactly zero if the two
related variables are conditionally independent given all the other variables
(see e.g. [9] for a proof). In local map joining, two objects are conditionally
independent unless they are involved in the same local map.

Fig. 1. Structure of SLSJF: Small ellipses indicate the objects involved in
the local maps. Each object (e.g. the feature?) is only linked to its “nearby
objects” (features and robot poses that share the same local map with it). The
final global map state vector contains the locations of all the shaded objects.

A. State vector of the global map

The state vector of the global map contains the global
positions of all features and all the robot end poses of the
local maps. For convenience, the origin of the global map is
chosen to be the same as the origin of local map1 (Fig. 1).

After local maps1 to k are fused into the global map, the
global state vector is denoted asXG(k) (the superscript ‘G’
stands for the global map) and is given by

XG(k)
= (XG

1 , · · · , XG
n1

, XG
1e,
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n1+1, · · · , XG
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whereXG
1 , · · · , XG

n1
are the global positions of the features

in local map1; XG
n1+1, · · · , XG

n1+n2
are the global positions

of those features in local map2 but not in local map1;
XG

n1+···+nk−1+1, · · · , XG
n1+···+nk−1+nk

are the global posi-
tions of the features in local mapk but not in local maps
1 to k − 1. XG

ie = (xG
ie, y

G
ie, φ

G
ie) (1 ≤ i ≤ k) is the global

position of the robot end pose of local mapi, which is also
the robot start pose of local mapi+1 . Here the subscript ‘e’
stands for robot ‘end pose’.

In the information filter framework, an information vector
i(k) and an information matrixI(k) is used for map fusion.
The relationship between state vector estimateX̂G(k) and the
corresponding covariance matrixP (k) and i(k), I(k) is ([5])

I(k)X̂G(k) = i(k), P (k) = I(k)−1. (4)

As I(k) is an exactly sparse matrix, it can be stored
and computed efficiently. The state vector estimateX̂G(k) is
recovered after fusing each local map by solving the sparse
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linear equation (the first equation in (4)). The whole dense
matrix P (k) is neither computed nor stored in SLSJF. Small
parts ofP (k) required for data association are computed by
solving a set of sparse linear equations, as outlined in Section
III-C3.

When fusing local mapk + 1 into the global map,
the features that are present in local mapk + 1
but have not yet been included in the global map,
XG

n1+···+nk+1, · · · , XG
n1+···+nk+nk+1

, together with the robot
end pose of local mapk + 1, XG

(k+1)e, are added into the
global state vectorXG(k) in (3) to form the new state vector
XG(k + 1).

B. Steps of local map fusion

The steps used in fusing local mapk + 1 into the global
map are listed in Algorithm 2.

Algorithm 2 Fuse local mapk + 1 into global map
Require: global map and local map k + 1

1: Data association
2: Initialize the new features andXG

(k+1)e in the global map
3: Update the global map
4: Reorder the global map state vector when necessary
5: Compute the Cholesky Factorization ofI(k + 1)
6: Recover the global map state estimateX̂G(k + 1)

C. Data Association

Data association refers to finding the features in local map
k + 1 that are already included in the global map and their
corresponding indices in the global state vector. This is an
essential step in any practically deployable SLAM algorithm,
yet is often neglected in many of the sparse information filter
based SLAM algorithms published in the literature.

Data association is a challenge problem in EIF SLAM, if
only the geometric relationships among features present in the
global and local maps are available. How this can be efficiently
achieved in SLSJF is described in the following.

Algorithm 3 Data association between local mapk + 1 and
the global map
Require: global map and local map k + 1

1: Determine the set of potentially overlapping local maps
2: Find the set of potentially matched features
3: Recover the covariance submatrix associated withXG

ke and
the potentially matched features

4: Use a statistical data association method to find the match

1) The set of potentially overlapping local maps:Local
map i cannot overlap with local mapk + 1 if the distance
between the origins of the two maps in the global coordinate
frame, is larger than the sum of the two local map radii plus
the possible estimation error. The radius of a local map is
defined as the maximal distance from the local map features
to its origin. Fig. 2 illustrates the idea. Note that the location
estimate of the origin of local mapi is X̂G

(i−1)e (for 2 ≤ i ≤ k),
while that of local map 1 is(0, 0, 0).

Fig. 2. Finding the potentially overlapping local maps: If the distance
between the global position of robot start pose in local mapi and the global
position of robot start pose in local mapk + 1 is larger than the sum of the
two local map radii, then the two local maps cannot overlap.

2) The set of potentially matched features:A feature from
potentially overlapping local maps is added to a potentially
matched feature list, if the distance from it tôXG

ke is smaller
than the radius of local mapk + 1 plus the maximal possible
estimation error. This list is further simplified by removing any
member that is located further than a predetermined threshold
distance from all features in local mapk + 1.

3) Covariance submatrix associated withXG
ke and all po-

tentially matched features:The covariance submatrix can be
obtained by first computing the corresponding columns of the
covariance matrixP (k) and then extracting the desired rows.

Using (4), thel-th column of the covariance matrixP (k),
Pl, can be obtained by solving the sparse linear equation [10]

I(k)Pl = el (5)

where

el = [

l−1︷ ︸︸ ︷
0, · · · , 0, 1, , 0 · · · , 0]T . (6)

Since the Cholesky factorization ofI(k), Lk, is a triangular
matrix satisfyingLkLT

k = I(k), the sparse linear equations (5)
can be solved efficiently by first solvingLkq = el and then
solvingLT

k Pl = q [2][11]. Note that the Cholesky factorization
Lk is already available from Step 5 of Algorithm 2 when
fusing local mapk into the global map, as described in Section
III-G.

4) Feature matching:Since both the state estimates and
the covariance matrices of the potentially matched features are
available, any statistical data association algorithm (such as the
simple Nearest Neighbor method [8] or the more robust Joint
Compatibility Test with branch and bound technique [12]) can
be used to find the matching features.
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D. Initialize the new features andXG
(k+1)e in the global map

The initial values of the global positions of all unmatched
features and the robot end pose of local mapk + 1 are
computed (usingX̂G

ke and the local map state estimate) and
inserted toX̂G(k) to form a new state vector estimatêXG(k).
The dimensions ofi(k), I(k) andLk are increased by adding
zeros to form a new information vectori(k), a new information
matrix I(k), and the corresponding Cholesky factorizationLk.

E. Update the global map

Suppose local mapk+1 is given by (1). Since the local map
provides a consistent estimate of the relative positions from
robot start pose to the local features and the robot end pose,
this map can be treated as an observation of the true relative
positions with a zero-mean Gaussian observation noise whose
covariance matrix isPL.

To state it clearly, suppose the data association result is
XL

1 ↔ XG
i1, · · · , XL

n ↔ XG
in (including both old and new

features). Then the local map state estimateX̂L can be
regarded as an observation of the true relative positions from
XG

ke to XG
i1, · · · , XG

in, XG
(k+1)e. That is,

zmap = X̂L = Hmap(XG) + wmap (7)

whereHmap(XG) is the vector of relative positions given by
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and wmap is the zero-mean Gaussian “observation noise”
whose covariance matrix isPL.

The “observation”zmap can now be used to update the
information vector and the information matrix as follows:

I(k + 1) = I(k) +∇HT
map(P

L)−1∇Hmap

i(k + 1) = i(k) +∇HT
map(P

L)−1[zmap

−Hmap(X̂G(k)) +∇HmapX̂
G(k)]

(8)

where∇Hmap is the Jacobian of the functionHmap with
respect toXG(k) evaluated atX̂G(k).

Since zmap = X̂L only involves two robot poses
XG

ke, X
G
(k+1)e and some local features (a small fraction

of the total features in the global map), the matrix
∇HT

map(P
L)−1∇Hmap in (8) and the information matrix

I(k + 1) are both exactly sparse.

F. Reorder the global map state vector when necessary

The purpose of reordering the global state vector is to make
the computation of Cholesky factorization (Section III-G),
the state vector recovery (Section III-H), and the covariance
submatrix recovery (Section III-C3) more efficient. Many
different strategies for reordering are available. The strategy
proposed here is a combination of the Approximately Minimal

Degree (AMD) reordering [2][13] and the reordering based on
distances [4].

Whether to reorder the global map state vector or not
depends on where the features in local mapk + 1 are located
within the global state vector. If all of the features in local map
k+1 are present within then0 elements from the bottom of the
global state vector3, then the state vector is left unchanged. If
this condition is violated, which happens only when closing a
large loop, then the state vector is reordered.

The state vector is reordered using the following process.
The robot poseXG

(k+1)e and the features that are within

distanced0
4 to X̂G

(k+1)e are placed at the bottom part of the
state vector. Their order is determined based on the distances
from them toX̂G

(k+1)e. The smaller the distance, the closer
the position to the bottom. All the other robot poses and
features are placed in the upper part of the state vector, they
are reordered based on AMD.

The major advantage of reordering by AMD is that the
number of fill-ins in Cholesky factorization will be reduced.
The major advantage of reordering the nearby features based
on distances is that once the reordering is performed, another
reordering will not be required for the next few local map
fusion. This is because the robot cannot observe features that
are not located in the bottom part of the state vector until it
travels a certain distance.

Once the state vector is reordered, the corresponding infor-
mation matrixI(k + 1) and information vectori(k + 1) are
reordered accordingly. For notational simplicity, they are still
denoted asI(k + 1) and i(k + 1). Note that the Cholesky
factorization of the reorderedI(k + 1) cannot be easily
obtained fromLk.

G. Compute the Cholesky factorization ofI(k + 1)

The method used to compute the Cholesky factorization
of I(k + 1) depends on whether the global state vector was
reordered in Section III-F or not.

Case (i). If the global state vector was not reordered in Sec-
tion III-F, then the Cholesky factorization ofI(k) (available
from Step 5 of Algorithm 2 when fusing local mapk) is used
to construct the Cholesky factorization ofI(k +1) as follows.

By (8), the relation betweenI(k + 1) andI(k) is

I(k + 1) = I(k) +
[

0 0
0 Ω

]
(9)

where the upper-left element inΩ is non-zero. Here
Ω is a symmetric matrix determined by the term
∇HT

map(P
L)−1∇Hmap in (8). Its dimension is less thann0

since otherwise the state vector would have been reordered.

3The thresholdn0 needs to be properly chosen in order to make the
SLSJF algorithm efficient. A smallern0 will make the incremental Cholesky
factorization step (Case (i) in Section III-G) more efficient but will also
increase the total number of reordering and the direct Cholesky factorization
operations (Case (ii) in Section III-G). As a rule of thumb,n0 can be chosen
to be around one tenth of the dimension of the global state vector.

4The thresholdd0 is related to the parametern0; it also depends on the
feature density of the environment. The guideline is that the number of features
that are within distanced0 to X̂G

(k+1)e
is around half ofn0.
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Let I(k) and its Cholesky factorizationLk (a lower trian-
gular matrix) be partitioned according to (9) as

I(k) =
[

I11 IT
21

I21 I22

]
, Lk =

[
L11 0
L21 L22

]
. (10)

According to (9) and (10),I(k + 1) can be expressed by

I(k + 1) =
[

I11 IT
21

I21 Ik+1
22

]
=

[
I11 IT

21

I21 I22 + Ω

]
. (11)

By Lemma 1 in the Appendix of [4], the Cholesky factor-
ization of I(k + 1) can be obtained by

Lk+1 =
[

L11 0
L21 Lk+1

22

]
(12)

whereLk+1
22 is the Cholesky factorization of the low dimen-

sional matrixΩ + L22L
T
22 = Ik+1

22 − L21L
T
21.

Computing Lk+1 by (12) is much more efficient than
directly computing the Cholesky factorization of the high
dimensional matrixI(k + 1).

Case (ii). If the global state vector has been reordered in
Section III-F, then the Cholesky factorization ofI(k) cannot
be used to construct the Cholesky factorization ofI(k + 1).
In this case, a direct Cholesky factorization ofI(k + 1) is
performed to obtainLk+1.

Since the reordering only happens occasionally, Case (i)
occurs most of the time.

H. State vector recovery

Because the global map is maintained as an information
vector and an information matrix, the global state estimate
X̂G(k+1) is not directly available. Using (4), the state vector
estimateX̂G(k + 1) can be recovered by solving the sparse
linear equation

I(k + 1)X̂G(k + 1) = i(k + 1). (13)

The Cholesky factorizationLk+1 computed in Section
III-G is used to solve the sparse linear equation. Since
Lk+1L

T
k+1 = I(k + 1), the sparse linear equation (13) can

be solved efficiently by solvingLk+1Y = i(k + 1) and
LT

k+1X̂
G(k + 1) = Y .

IV. SIMULATION AND EXPERIMENT RESULTS

In this section, simulation and experiment results are given
to illustrate the accuracy and efficiency of SLSJF.

A. Simulation results

The 150 × 150m2 simulation environment used contains
2500 features arranged in uniformly spaced rows and columns.
The robot started from the left bottom corner of the square and
followed a random trajectory as shown in Fig. 3(a). A sensor
with a field of view of 180 degrees and a range of6 meters
(the small semi-circle seen near the bottom in Fig. 3(a)) was
simulated to generate relative range and bearing measurements
between the robot and the features. There were27924 robot
poses in total and170846 measurements were made from the
robot poses. The robot observed2270 features in total and
most of them were observed a number of times.

Six hundred small sized local maps were built by con-
ventional EKF SLAM using the odometry and measurement
information. Each local map contains around10 features. Fig.
3(a) shows the global map generated by fusing all the600
local maps using SLSJF. The data association in SLSJF was
performed using Nearest Neighbor method [8]. The global
map was superimposed with the global map generated by
fusing the600 local maps using EKF sequential map joining
[6][7] and the map generated by a single EKF SLAM. Close
examination (e.g. Fig. 3(b)) shows that the feature position
estimates computed by the three methods are all consistent.
The feature position estimates of SLSJF and EKF sequential
map joining are almost identical.

Fig. 3(c) shows the errors and2σ bounds of the estimates
of the 600 robot end poses obtained using the three methods.
It is clear that the estimates are all consistent. It should be
noted that in SLSJF, the robot end poses are included in the
global state vector and are continuously updated. Therefore
the error and2σ bounds of SLSJF are smaller than that of
EKF sequential map joining and EKF SLAM where the robot
poses except the most recent are not included in the state
vector (hence are not updated).

Fig. 3(d) shows all the non-zero elements of the sparse
information matrix obtained by SLSJF in black. Fig. 3(e)
shows the CPU time5 required for the local map fusion
using SLSJF and EKF sequential map joining. The total time
for fusing all the600 local maps is145 seconds for SLSJF
and 7306 seconds for EKF sequential map joining (building
the 600 local maps takes95 seconds, it takes conventional
EKF SLAM more than15 hours to finish the map). Table I
presents the detailed processing time for the two map joining
algorithms. In SLSJF, the major computation cost is due to
“data association” which includes the time for covariance
submatrix recovery. The “others” including reordering of the
state vector, Cholesky factorization and state vector recovery
also take significant time. On the other hand, “global map
update” uses most of the computation time in EKF sequential
map joining.

Fig. 3(f) compares the CPU time of SLSJF with the pro-
posed reordering strategy and that of SLSJF with the AMD-
only reordering [2][13] (for the proposed reordering, the pa-
rametersn0 = 400 andd0 = 15, for the AMD-only reordering,
the reordering is performed after fusing every5 local maps,
the parameters are chosen such that both algorithms have their
best performance). The performance of the two reordering
algorithms are very similar, presumably due to the fact that the
MATLAB implementation of AMD algorithm is very efficient.

B. Experimental results

SLSJF was also applied to the Victoria Park data set
which was first used in [14]. Neither ground truth nor noise
parameters are available for this data set. Published results
for the vehicle trajectory and uncertainty estimates vary

5All time measurements in this paper are performed on a laptop computer
with Intel Core 2 Duo T7500 at 2.2GHz, 3GB of RAM and running Windows,
with all programs written in MATLAB. More simulation results are available
at the web site: http://services.eng.uts.edu.au/˜sdhuang.
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(a) The robot trajectory and the global map obtained by
SLSJF (red:feature, green: robot poses) superimposed with
the EKF SLAM map (black) and the global map by EKF
map joining (blue)
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(b) A close look at the estimate of the five features at
the upper-left corner of the map (a): dots (black) are true
positions, solid ellipses (red) are from SLSJF, dotted ellipses
(blue, coincide with red ones) are from EKF map joining,
dashed ellipses (black) are from EKF SLAM
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Fig. 3. Simulation results

Algorithm Data Association Update Others Total
EKF map joining 12s 7287s 7s 7306s

SLSJF 87s 12s 46s 145s

TABLE I
PROCESSING TIME OFEKF SEQUENTIAL MAP JOINING AND SLSJF.

[3][4][13][14], presumably due to different parameters used
by various researchers. The results in this section therefore
only demonstrate that SLSJF can be applied to this popular

data set.
Fig. 4(a) shows the map obtained by conventional EKF

SLAM. The odometry and range-bearing observation data
were used to build200 local maps by EKF SLAM. Fig.
4(b) shows the global map obtained by joining the200 local
maps using SLSJF. Data association in SLSJF was performed
using Nearest Neighbor method [8]. Fig. 4(c) shows all the
non-zero elements of the information matrix in black. The
information matrix is not very sparse because the sensor range
is relatively large (around80m) as compared with the size of
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the environment (300m × 300m). Fig. 4(d) shows the CPU
time required to fuse each of the200 local maps. The total
processing time for joining all the200 maps by SLSJF is22
seconds (the time required for building the200 local maps is
63 seconds).

V. RELATED WORK AND DISCUSSIONS

In this section, some of the properties of SLSJF and some
related work are discussed.

A. Different ways to achieve sparse representation

The sparse representations of SLAM recently proposed in
the literature (e.g. [1][2][3][4][15]) make use of different state
vectors and/or have different strategies for marginalizing out
robot poses. In SAM [2], incremental SAM (iSAM) [13],
Tectonic SAM [11] and full-SLAM [5], all the robot poses
are included in the state vector and no marginalization is
needed. However, the dimension of the state vector is very
high, especially when the robot trajectory is long.

When all the previous robot poses are marginalized out as
in conventional EIF SLAM, the information matrix becomes
dense although it is approximately sparse [16]. The Sparse Ex-
tended Information Filter (SEIF) presented in [1] approximates
the information matrix by a sparse one using sparsification, but
this leads to inconsistent estimates [3].

The Exactly Sparse Extended Information Filter (ESEIF)
developed by [3] follows the conventional EIF SLAM al-
gorithm, but marginalizes out the robot pose and relocates
the robot from time to time. In this way the information
matrix is kept exactly sparse by sacrificing the robot location
information once in a while.

In Decoupled SLAM (D-SLAM) algorithm [4], the robot
pose is not incorporated to the state vector for mapping. The
observations made from one robot pose are first transferred
into the relative position information among the observed
features (the robot pose is marginalized out from the observa-
tions), then the relative position information is used to update
the map. This process also results in some information loss.

The D-SLAM map joining algorithm [15] first builds local
maps and then marginalizes out the robot start and end poses
from the local map, the obtained relative position information
among features are fused into the global map in a way similar
to the D-SLAM algorithm. The odometry information is
maintained in the local maps but there is still some information
loss due to the marginalization of robot start/end poses.

In SLSJF, the robot start and end poses of the local maps
are never marginalized but kept in the global state vector. Thus
all the information from local maps is preserved.

If each local map is treated as one integrated observation,
then SLSJF has some similarity to iSAM [13]. The role of
local maps in SLSJF is also similar to the “star nodes” in
the Graphical SLAM [17]. However, in the Graphical SLAM,
the poses are first added in the graph and then “star nodes”
are made. While in SLSJF, most of the robot poses are
marginalized out during the local map building steps. Those
robot poses are never present in the global state vector.

B. Computational complexity

The map joining problem considered in this paper is similar
to that studied in [6] and [7]. The computational complexity
of the local map building isO(1) since the size of local map is
small. The computational complexity of the global map update
is O(n2) for the sequential map joining approach in [6] and
the Constrained Local Submap Filter in [7].

In SLSJF, the robot start/end poses of the local maps are
included in the global state vector and the EIF implementation
results in an exactly sparse information matrix. This makes
SLSJF much more efficient than the EKF sequential map
joining [6][7].

Although simulation results show that SLSJF is compu-
tationally very efficient for large-scale SLAM, the compu-
tational complexity of several steps in SLSJF may not be
O(n) for worst case scenarios. For example, the number of
fill-ins introduced in the Cholesky factorization depends on
the environment and the robot trajectory. This influences the
computational cost of the full Cholesky factorization step and
the step of solving the sparse linear equations. Also, the
computational cost of the proposed reordering is not well
understood yet. In theory, SLSJF suffers the generalO(n1.5)
cost for worst case scenario of planar grids, as all sparse
factorization based methods do [18]. This is similar to the
treemap algorithm [19] and the SAM using nested dissection
algorithm [20].

Very recently, it was shown in [21] that the total compu-
tational cost of local map building and map joining can be
reduced toO(n2) by an EKF based “Divide and Conquer
SLAM” (D&C SLAM). Although D&C SLAM was shown
to be much more efficient than conventional EKF SLAM, it
was not compared with the more efficient EKF sequential map
joining [21].

The SLSJF has some similarity to the Tectonic SAM
algorithm [11]. Tectonic SAM is also an efficient submap
based approach and the state vector reordering and Cholesky
factorization are used in solving the least-square problem. The
submap fusion in Tectonic SAM uses a divide-and-conquer
approach, which is more efficient than the sequential map
joining in SLSJF when data association is assumed. The
major difference between Tectonic SAM and SLSJF is that
in Tectonic SAM, all the robot poses involved in building the
local maps are kept and the dimension of the global state
vector is much higher than that of SLSJF.

C. Requirements on SLSJF

In SLSJF, it is assumed that the local maps are consistent
and accurate enough. If the local maps are inconsistent, SLSJF
may produce wrong results due to the wrong information pro-
vided by the local maps. When the local maps are inaccurate,
SLSJF may become inconsistent due to linearization errors.

Another assumption made in SLSJF is that the local map
only involves “nearby objects”. This guarantees that the in-
formation matrix is exactly sparse no matter how many local
maps are fused. When this assumption does not hold such
as the case with vision sensors, SLSJF can still be applied
since a significant number of feature pairs will not be present
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Fig. 4. The map joining results using Victoria Park data set.

concurrently in the same local map. However, the processes of
selecting potentially matched features and reordering the state
vector may need modifications to make the algorithm more
efficient.

Similar to [6][7], there is no requirement on the structure of
the environments for SLSJF to be applicable. This is different
from the efficient treemap SLAM algorithm [19] where the
environment has to be “topological suitable”. Another differ-
ence between SLSJF and the treemap SLAM algorithm is that
the covariance submatrix recovery and data association have
been ignored in the treemap SLAM implementations available
to date [19][22][23].

D. Exact covariance submatrix recovery

The covariance submatrix recovery in SLSJF is exact.
This is different from the approximate covariance submatrix
recovery methods (e.g. [1] [10]) where only an approximate or
upper bound of covariance submatrix is computed. As pointed
out in [10], the upper bound can only be used in nearest
neighbor data association [8] but cannot be used in the more
robust joint compatibility test [12].

An algorithm for exact recovery of covariance submatrix
was proposed in iSAM [13]. It has “O(n) time complexity
for band-diagonal matrices and matrices with only a constant

number of entries far from the diagonal, but can be more
expensive for general sparse matrices” [13]. The covariance
submatrix recovery in SLSJF is similar. The major advantages
of SLSJF over iSAM is that the dimension of the state vector
in SLSJF is much lower than that of iSAM. Thus SLSJF may
be more suitable for the situations where the robot trajectory
is very long and/or the observation frequency is high, which
is true for many common sensors such as laser range finders.

E. Incremental Cholesky factorization for recovery

The idea of incrementally computing the Cholesky factor-
ization is motivated by [4]. The main difference between the
recovery method in SLSJF and that in [4] is that complete
Cholesky factorization and direct method for linear equation
solving are used in SLSJF, while approximate Cholesky factor-
ization and Preconditioned Conjugate Gradient method were
used in [4].

The incremental Cholesky factorization also has some sim-
ilarity with the QR factorization update in [13]. The QR
factorization update in [13] is based on “Givens rotations”,
while the incremental Cholesky factorization process in SLSJF
is based on the “block-partitioned form of Cholesky factoriza-
tion”. The performance of these two approaches are expected
to be similar.



IEEE TRANSACTIONS ON ROBOTICS, VOL. ??, NO. ??, ?? 2008 9

F. Reordering of the global state vector

In SLSJF, the reordering of state vector aims to combine the
advantages of AMD reordering (where the number of fill-ins
is reduced [2][13]) and the reordering by distance (where the
efficient incremental Cholesky factorization procedure can be
applied in most cases [4]).

The idea behind the “reordering by distance” is to make sure
that the robot observes only the features that are in the bottom
part of the state vector for as long as possible no matter in
which direction the robot is moving. However, this is not the
best way of reordering for indoor environments where features
in different rooms might actually be very close but cannot be
seen simultaneously. For indoor environments, the knowledge
on the structure of the environment (and the knowledge on
the possible robot trajectory) can be exploited to place “the
features that are likely to be re-observed” near the bottom of
the state vector.

G. Consistency

The SLSJF algorithm does not contain any approximations
(such as sparsification [1]) that can lead to estimator inconsis-
tency. However, as the case with all EKF/EIF based estimation
algorithms, it is possible that inconsistencies occur in SLSJF
due to errors introduced by the linearization process.

It has been suggested that local map based strategies can
improve the consistency of SLAM by keeping the robot
orientation error small [24][25]. We had conducted many
simulations and found that this is true for some scenarios
especially when the process noise, the feature density and the
sensor range are all small, or sequential update is used in EKF
when multiple features can be observed from one robot pose.
In many practical scenarios, for example, in the simulation
results presented in Section IV-A, we found that both EKF
SLAM (with batch update) and map joining results are consis-
tent, mainly due to the small observation and odometry noises
and the high feature density. When noise values were gradually
increased both strategies became inconsistent, almost always
at the same level of noise. This is likely due to the fact that
in any submap joining algorithm, inconsistency in even one
of the submaps, leads to an inconsistent global map.

In SLSJF, all the robot start/end poses are in the global state
vector and there is no prediction step within the EIF. Thus
the SLSJF can be treated as a linearized least square solution
with only one iteration in each map fusion step. In fact, at any
map fusion step, the linearization error can be reduced further
by recomputing the information matrixI and the information
vectori as a sum of all the contributions in (8) using the new
estimate as linearization point for the Jacobians. This process
is able to improve the consistency significantly, but with more
computational cost.

H. Treating the local map as a virtual observation

Many submap based SLAM algorithms (either explicitly or
implicitly) treat the local map as a virtual observation, but
most of them treat a local map as “an observation made from
the robot start pose to all the features in the local map”. In
SLSJF, the local map is treated as “an observation made from

the robot start pose to all the features in the local map and
a virtual robot located at the robot end pose”. This motivates
the inclusion of all the robot start/end poses in the global state
vector to achieve exactly sparse information matrix.

I. Comparison with two level mapping algorithms

The output of SLSJF is one single global stochastic map.
This approach is different from the two level mapping al-
gorithms (e.g. Hierarchical SLAM [26], Atlas [27], Network
Coupled Feature Maps [28]), where a set of local maps are
maintained and the relationship among these maps is described
at a higher level. Though promising due to their reduced
computational cost, the two level mapping approaches require
more work to completely resolve the question of how to treat
the overlapping regions among local maps. As pointed out in
[26], all the two level mapping systems result in suboptimal
solutions because the effect of the upper level update cannot
be propagated back to the local level.

VI. CONCLUSIONS

By adding robot start/end poses of the local maps into the
global state vector, an exactly sparse extended information
filter for local submap joining, SLSJF, is developed. There is
no approximation involved in SLSJF apart from linearization
processes. SLSJF contains not only the filter steps but also two
important steps that are essential for real world application of
EIF based algorithms — a covariance submatrix recovery step
and a data association step. The sparse information matrix
together with the novel state vector and covariance submatrix
recovery procedure make the SLSJF algorithm computation-
ally very efficient.

SLSJF achieves an exactly sparse information matrix with
no information loss. The dimension of its state vector is
significantly less than that of the full SLAM algorithm [5]
where all the robot poses are included in the state vector.
As it does not matter how the local maps are built, SLSJF
can also be applied to large-scale range-only or bearing-only
SLAM problem — first use range-only or bearing-only SLAM
algorithms to build local maps and then fuse the local maps
together using SLSJF.

For the successful application of SLSJF for local map
joining, it is important that all the local maps are consistent.
Thus it is essential to use reliable SLAM algorithms to build
the local maps.

More work is required to determine the best reordering
strategy for SLSJF, to improve the robustness of SLSJF to
linearization errors, and to extend SLSJF to 3D local map
joining. Research along these directions is underway.
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