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Abstract 

A non-resonant interaction of two Hopf bifurcations may appear after the trivial solution 

of a controlled van der Pol-Duffing oscillator without external excitation loses its stability, 

when two critical time delays corresponding to two Hopf bifurcations have the same 

value. In the vicinity of the non-resonant Hopf bifurcations, the presence of a periodic 

excitation in the controlled oscillator can induce difference resonances in the forced 

response, when the forcing frequency and the frequencies of the two Hopf bifurcations 

satisfy certain relationships.  It is found that the frequency response curves of the 

controlled system under difference resonances are an isolated closed curve. The difference 

resonance response may admit two stable motions on a three-dimensional torus consisting 

of three frequencies. Illustrative examples are given to show the quasi-periodic motions. 

 

1. Introduction 

Time delayed feedback control has been applied to suppress nonlinear vibrations and 

stabilise bifurcations of nonlinear systems with parametric (or external) excitations [1-5]. 

In addition to the selection of control gains, effective vibration control requires an optimal 

selection of the appropriate values of time delays to achieve satisfactory control 

performance. Usually the time delays are selected to be well separated from the critical 

values at which the trivial solution of the corresponding autonomous system loses its 

stability. It is now accepted that an introduction of time delays in a nonlinear system can 
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induce certain dynamic behaviour such as instability, bifurcations and chaotic motions [6-

13], which may be undesirable from the perspective of vibration control. 

For a nonlinear system having external excitation, the presence of time delays may 

lead to distinct behaviour that cannot be observed in the same nonlinear system without 

time delay. An important phenomenon is the interaction of the periodic external excitation 

and the stable periodic solutions that result from Hopf bifurcations of the corresponding 

autonomous system. In particular, for a nonlinear system losing the stability of its trivial 

solution through a single Hopf bifurcation, the interaction may lead to primary resonances, 

sub-harmonic and super-harmonic resonances in the forced response when the frequency 

of the Hopf bifurcation and the forcing frequency satisfy a certain relationship. More 

interestingly, for a nonlinear system losing the stability of its trivial solution via two Hopf 

bifurcations, the interaction can further result in additive resonances and difference 

resonances, when the forcing frequency and the frequencies of the two Hopf bifurcations 

satisfy certain relationships.  The main purpose of the present paper is to study difference 

resonance response of a controlled van der Pol-Duffing oscillator subjected to a periodic 

excitation, which results from an interaction of the external excitation and two periodic 

solutions bifurcated from the trivial solution of the corresponding autonomous system at 

non-resonant Hopf bifurcations. 

An externally forced van der Pol-Duffing oscillator under a linear-plus-nonlinear 

feedback control considered in the present paper is of the form 

       )cos()( 00
322 texxxxx    )()(   txqtpx  )(3

1  txk  

           )(3
2  txk  )()( 2

3   txtxk  )()(2
4   txtxk  , (1) 

where x is the displacement, an overdot indicates the differentiation with respect to time t, 

  is the natural frequency,   is the coefficient of the nonlinear term,   and   are the 

linear and nonlinear damping coefficients  with 0 , 0 , 0e  and 0  represent the 

amplitude and frequency of the external excitation,  p, q and ik  ( 4,3,2,1i ) are linear and 
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weakly nonlinear feedback gains, respectively, and   denotes the time delay occurring in 

the feedback path.  Only one time delay is considered here for simplicity. 

With the increase of the value of time delay, the trivial solution of the corresponding 

autonomous system (obtained by letting 0 0e   in equation (1)) was found to lose its 

stability via a subcritical or supercritical Hopf bifurcation and regain its stability via a 

reverse subcritical or supercritical Hopf bifurcation [14]. An intersection of two non-

resonant Hopf bifurcations may occur on the stability boundary of the trivial solution. The 

point of the intersection is usually associated with the bifurcation of co-dimension two and 

may be a source of complicated behaviour in the context of ordinary differential equations 

[15,16]. It was found that the autonomous system may admit the trivial solution, two 

periodic solutions and a quasi-periodic solution on a two-dimensional (2D) torus [17]. 

In the neighbourhood of non-resonant Hopf bifurcations, the presence of an external 

periodic excitation can further induce rich dynamic behaviour of the controlled oscillator 

(1), which includes primary resonances, sub-harmonic and super-harmonic resonances, 

additive and difference resonances [18]. These phenomena are hard to identify from the 

original system (1), as they do not relate to the so-called natural frequency   (nor to its 

multiples).  Understanding of the distinct observable behaviour in nonlinear systems 

involving time delays remains limited.  The non-resonant response and two types of 

primary resonances of the controlled oscillator were studied in reference [18] and three 

types of additive resonances were discussed in reference [19]. Difference resonance 

response has not yet attracted much attention even in the context of non-linear oscillations 

to the authors’ best knowledge. Two types of difference resonance responses will be 

discussed in the present paper. 

The present paper is organised into five sections. Section 2 presents four first-order 

ordinary differential equations on the centre manifold. Section 3 lists types of resonances 
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that can occur in the forced response. Two types of difference resonance responses are 

studied in Section 4. Conclusion is given in Section 5. 

2. Reduction of the centre manifold 

The dynamic behaviour of the solutions of equation (1) in the vicinity of non-resonant 

Hopf bifurcations can be interpreted by the solutions and their stability of four ordinary 

differential equations on the centre manifolds, which are expressed in component form as 

  )cos(),,,()( 1043211041431321211111 tezzzzfzlzlzlzlz   , 

  )cos(),,,()( 2043212042432322212112 tezzzzfzlzlzlzlz   , 

  )cos(),,,()( 3043213043423332321313 tezzzzfzlzlzlzlz   , 

  )cos(),,,()( 4043214044434322421414 tezzzzfzlzlzlzlz   ,  (2) 

where 1  and 2  are the normalized frequencies of Hopf bifurcations. ),,,( 43210 zzzzf i  

( .4,3,2,1i ) are polynomial functions of order three in terms of nmlk zzzz 4321  with 

3 nmlk  and .3,2,1,0,,, nmlk  More details on the coefficients and relevant 

algebraic manipulations can be found in the reference [17]. 

3. Types of resonances 

When two natural frequencies (or their combinations) and the forcing frequency satisfy 

certain relationships, the forced response of the system (2) may exhibit non-resonant 

response and a number of resonant responses. In particular, two types of primary 

resonances may occur when 1  or 2 . Two types of sub-harmonic resonances 

happen when 13  or 23 , and two types of super-harmonic resonances take 

place when  31  or  32 . For 21   , a number of combinational resonances of 

additive and difference types may appear in the forced response. Specifically, additive 

resonances may appear when either  221  , or  212  , or  21 2 . 

Difference resonances may occur when either  221  , or  22 21  , or 
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 212  ; or  122  . Accordingly, a total of 13 types of nonlinear responses 

may take place in the forced nonlinear response. Thus in studying the forced response of 

the nonlinear system (2), six cases need to be distinguished based on six categories of 

resonances discussed above, which are (a) primary resonances at either frequency of two 

Hopf bifurcations; (b) sub-harmonic resonances at either of two Hopf bifurcation 

frequencies; (c) super-harmonic resonances at either of two Hopf bifurcation frequencies; 

(d) additive resonances; (e) difference resonances; and (f) non-resonant response when the 

forcing frequency   is well separated from the above-mentioned resonances.  

4. Difference resonances 

By using the method of multiple scales [20], the first-order solutions to equation (2) can 

be written in a general form as 

         )sin()cos()cos( 0201101111 TATATrz   , 

         )sin()cos()sin( 0201101121 TBTBTrz   , 

         )sin()cos()cos( 0403202231 TATATrz   , 

         )sin()cos()sin( 0403202241 TBTBTrz   , (3) 

where 1r , 2r , 1 , 2  represent the amplitudes and phases of the free-oscillation terms, and 

the coefficients A and B’s denote the amplitudes of the particular solutions. 

As discussed in Section 3, four types of difference resonances may appear in the 

forced response. The present paper will study two cases of difference resonances, namely 

 221  ,  212  . The other cases can be studied in a similar manner.  To 

account for the nearness of the forcing frequency to the combination of two natural 

frequencies, two detuning parameters, 1  and 2 , are introduced in terms of 

1212   ,   2212   .  These two types of difference resonances will 

be referred to here as Cases I and II. 
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Case I: 1212    

The averaged equations that determine the amplitudes and phases of the response of 

difference resonance Case I are given by 

   )sin()cos( 12112331211213
2

2112
3

111111   rsrsrrsrsrr , 

   )cos()sin()( 12112331211213
2

2132
3

1311112
1

111   rsrsrrsrsrr  , 

   )sin()cos( 12111431211123
3

2222
2

121222   rsrsrsrrsrr , (4) 

   )cos()sin()( 12111431211123
3

2422
2

1412212
1

122   rsrsrsrrsrr  , 

where 1012
1

11   T , 2012
1

12   T , the coefficients are not reproduced here. 

The steady-state difference resonance response can be studied by finding the solutions 

to the four algebraic equations which can be obtained by letting  021  rr   and 

01211     in equation (4). The frequency response equations are given by  

   2
2

2
33

2
13

2
1

22
232

2
131112

12
1

22
212

2
1111 )()()( rssrrsrsrrsrs   , 

  2
1

2
43

2
23

2
2

22
242

2
141212

12
2

22
222

2
1212 )()()( rssrrsrsrrsrs   . (5) 

Real positive solutions of equation (5) lead to the frequency-response curves. The stability 

of the solutions can be examined by computing the eigenvalues of the coefficient matrix 

of characteristic equations which are derived from equation (4) in terms of small 

disturbances to the steady state solutions. 

 
Case II: 2212    

The averaged equations for difference resonance Case 2 are given by 

  )2sin()2cos( 2221213422212114
2

2112
3

111111   rrsrrsrrsrsrr , 

  )2cos()2sin()( 2221213422212114
2

2132
3

1311123
1

211   rrsrrsrrsrsrr  , 

  )2sin()2(cos 2221
2

1442221
2

124
3

2222
2

121222   rssrsrsrrsrr ,      (6) 

  )2cos()2sin()( 2221
2

1442221
2

124
3

2422
2

1412223
1

222   rsrsrsrrsrr  , 
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where  1023
1

21   T , 2023
1

22   T , the coefficients are not produced here. 

The frequency response curves can be determined by numerically solving the equations: 

    2
2

2
1

2
34

2
14

2
1

22
232

2
131123

12
1

22
212

2
1111 )()()( rrssrrsrsrrsrs   , 

   4
1

2
44

2
24

2
2

22
242

2
141223

12
2

22
222

2
1212 )()()( rssrrsrsrrsrs   .  (7) 

Equation (7) admits two types of solutions which are referred to here as the single-mode 

solutions with 01 r  and 02 r , and the mixed-mode solutions with 01 r  and 02 r . 

As illustrative examples, consider a specific system with parameters 1.0 , 0.1 , 

4.0p , 40219.0q , 4.0 , 5.0 , 2.01 k , 5.04 k , 0.032  kk . The 

frequencies of non-resonant Hopf bifurcations were found to be 28038.1  and 

71582.0 . Difference resonances may appear in the neighbourhood of 28228.00   

for Case I, and 84494.10   for Case II. 

When 01.01  , 002.02  , 14.00 e , 28228.00  , the frequency-response 

curves for difference resonance Case I are shown in Figure 1.  Stable solutions are 

represented by circles and unstable solutions by crosses. The frequency response curve is 

an isolated closed curve in Figures 1(a) and (b). The difference resonance exists only in a 

small interval of the external detuning 1  and does not exist outside this closed curve.  

The closed curve consists of two branches. The upper branch of 1r  is stable with the four 

eigenvalues having negative real part. The lower branch of 1r  is unstable with one 

eigenvalue having positive real part. On the contrary, the upper branch of 2r  is unstable 

and the lower branch of 2r  is stable.  As 1  increases from a small value, the amplitude 1r  

of the free-oscillation term with natural frequency 1  grows, whereas the amplitude 2r  of 

the free-oscillation term having natural frequency 2  decreases. The amplitude 1r  is much 

higher than amplitude 2r , which means the motion corresponding to 1  dominates the 

response while the motion relating to 2  is smaller in amplitude but not negligible. Stable 
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non-trivial solutions indicate that the forced response under difference resonances 

comprises both the free-oscillation terms and forced terms as given in equation (2). 

Because two natural frequencies 1  and 2  are incommensurable, the system response 

under difference resonance Case I exhibits quasi-periodic motions. 

Figure 2 shows frequency-response curves for difference resonance Case II under 

001.01  , 0053.02  , 16.00 e , 845.10  . The frequency response curve is an 

isolated closed curve. The upper branch of the curve comprises two parts; stable part and 

unstable part.  The lower branch is stable. There exists a region of bi-stability in the closed 

curve. In the interval ]01695.0 ,015815.0[2  , two stable solutions coexist for the 

amplitudes 1r  and 2r . Amplitude 1r  is much higher than 2r , which means the motion 

corresponding to 1  dominates the response. As the detuning 2  increases along the 

upper branch, both amplitudes 1r  and 2r  increases till 01695.02  , where the stable 

mixed-mode solution loses its stability with one eigenvalue being zero. The other meeting 

point of stable and unstable branches is at 01938.02  , where a saddle-node bifurcation 

occurs with one eigenvalues being zero. 

Two stable solutions coexist in the region ]01695.0 ,015815.0[2  , where two quasi-

periodic solutions appear when doing numerical simulations to equation (1) under 

different sets of initial conditions. Figure 3 shows the phase portraits of two quasi-periodic 

motions at 86094.10   under different sets of initial conditions. The large-amplitude 

quasi-periodic motion shown in Figure 3(a) corresponds to a mixed-mode stable solution 

in the upper branch shown in Figure 2, while the small-amplitude quasi-periodic motion 

shown in Figure 3(b) relates to a mixed-mode stable solution in the lower branch. The 

quasi-periodic motions shown in Figure 3 contain three individual harmonic components: 

1 , 2  and 0 . These three frequencies satisfy the difference resonance condition for 

Case II. The numerical results are in good agreement with the analytical predictions. 
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5. Conclusion 

Two types of difference resonances have been studied using the method of multiple scales. 

Illustrative examples have been given to demonstrate the frequency-response curves and 

quasi-periodic motions. It was shown that the difference resonance response of the forced 

oscillator exhibits quasi-periodic motions on a 3D torus. The quasi-periodic motion 

consists of three components having the frequencies of two Hopf bifurcations and the 

frequency of the excitation, which satisfy the difference resonance conditions. The 

difference resonance response may lose its stability via a saddle-node bifurcation. Two 

stable solutions exist in the forced response of the system under difference resonances. 

The co-existence of two quasi-periodic motions has been validated by numerical 

integration using different sets of initial conditions. 
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Figure 1. The frequency-response curves for difference resonance Case I for 01.01  , 

002.02  , 14.00 e , 28228.00  ; (a) the variation of amplitude 1r  with external 

detuning 1 , (b) the variation of amplitude 2r  with external detuning 1 . Stable 

solutions are denoted by circles while unstable solutions by crosses. 
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Figure 2. The frequency-response curves for difference resonance Case II for 001.01  , 

0053.02  , 16.00 e , 845.10  , (a) the variation of amplitude 1r  with external 

detuning 2 , (b) the variation of amplitude 2r  with external detuning 2 . Stable 

solutions are denoted by circles while unstable solutions by crosses. 
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(a) the initial conditions for numerical integration are )001.0 ,001.0(),( xx  . 
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(b) the initial conditions for numerical integration are )5.0 ,4.0(),( xx  . 

 

Figure 3.  Phase portraits to illustrate the co-existence of two quasi-periodic motions for 

difference resonance Case II at 86094.10  ; (a) the initial conditions for numerical 

integration are )001.0 ,001.0(),( xx  , (b) the initial conditions for numerical 

integration are )5.0 ,4.0(),( xx  . 


