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Abstract—Multilevel cascaded H-bridge converters are be-
coming popular for next generation large-scale photovoltaic
power converters. However, the power generation levels in the
three phases can be significantly unequal, especially in a large
plant, owing to the non-uniform irradiance levels and/or ambient
temperatures. This paper proposes the delta-connected cascaded
H-bridge converter for large-scale photovoltaic farms. Compared
to the existing star connection, the delta connection reduces
the converter overrating required. Experimental results obtained
from a 430 V, 10 kW, three-phase, seven-level, delta connected
cascaded H-bridge converter prototype are provided to demon-
strate the superiority of the delta connection.
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I. INTRODUCTION

The Cascaded H-Bridge (CHB) multilevel converter is
considered as one of the most promising configurations for
next-generation large-scale photovoltaic (PV) power plants
[1]–[14]. With multilevel waveform synthesis, the switching
frequency of semiconductor devices can be reduced greatly
without affecting the harmonic performance [15]. Also the
redundancy of multilevel converters improves the system
availability [16]. The PV power generation levels in each
bridge are unlikely to be equal, owing to the non-uniform
solar irradiance, unequal ambient temperatures, partial shading
and/or inconsistent module degradation.

The most common configuration presented in the literature
is the star connection [17]–[22]. A Fundamental Frequency
Zero-Sequence Injection (FFZSI) method presented in [18] is
able to generate three-phase balanced grid currents under the
inter-phase power imbalance. Advanced methods to achieve
the inter-phase power balance were derived in [17], [19]–[22]
to minimize the required converter output voltages, and thus
enabling the converter to operate under more severe inter-phase
power imbalance cases. However, extremely severe power
imbalance scenarios still cannot be dealt with, even when the
converter is considerably overrated by increasing the number of
series connected bridges compared to that required in normal
balanced operation.

The objective of this paper is to propose the delta-
connected CHB converter, which has been not explored in the
literature of large-scale PV applications. Subsequent analysis
demonstrates that the delta connection, compared to its star-

connected counterpart, offers superior power balance capability
dealing with inter-phase power imbalance.

The rest of the paper is organized as follows. Section II
presents the delta connected CHB converter for large-scale
PV plants. Simulation results based on Matlab/PLECS are
presented in Section III. Experimental waveforms based on a
430 V, 10 kW, three-phase, seven-level, delta connected CHB
converter prototype are provided in Section IV.

II. DELTA-CONNECTED CHB CONVERTER

Fig. 1 illustrates the layout of the three-phase, seven-level
CHB converter for large-scale PV plants in both star and
delta connections. Each phase leg consists of N bridges, and
the converter output voltages feature (2N + 1)-level wave-
forms. Each H-bridge could be fed by multiple PV strings
via independent dc-dc converters. Galvanic isolation can be
provided in the dc-dc conversion stage (high-frequency trans-
formers typically preferred) to isolate the PV modules from
the grid, because most commercial PV modules are designed
to withstand less than 1000 V between the active part and
the grounded frame [23]. Compared to the star connection
investigated in the literature [17]–[22], the delta connection
in Fig. 1 requires a bridge number of

√
3 times larger, since

one phase leg must synthesize the line-to-line voltage.

When the power generation levels in the three phases
become unequal, three-phase line currents can become unbal-
anced. Nevertheless, balanced line currents are usually required
by grid codes. As a result, a zero-sequence current needs to
be injected to the converter currents to provide three-phase
balanced line currents. It is similar to the injection of zero-
sequence voltage in the star connection.

Fig. 2 demonstrates the phasor diagram of the delta-
connected CHB converter under unbalanced power generation.
In this case, more power is generated in phase ab than the
other two phases. The injected zero-sequence current vector
I0 contributes to the power transfer among the three phases.
For the case illustrated in Fig. 2, I0 helps transfer the excessive
power in phase ab to phases bc and ca. Since the zero-sequence
current only flows within the delta loop, the three-phase line
currents are hence unaffected. Therefore, viewed from the grid
side, the converter produces three-phase balanced grid currents
as required, just like the balanced operation. The converter
output voltage vectors Vab, Vbc, Vca are not drawn in Fig. 2,
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Fig. 1. Three-phase, (2N + 1)-level cascaded H-bridge converter: (a) delta
connection, (b) star connection, (c) H-bridge.

as they change corresponding to the converter current vectors
(Iab, Ibc, Ica).

The power generation ratios (λab, λbc, λca) are defined to
reflect the actual power generation levels in the three phase
legs [17]:

λi =
pi

Pnom/3
, i ∈ {ab, bc, ca} (1)

where Pnom denotes the three-phase nominal power, and pab,
pbc, pca denote the actual power generation in each phase. The
average power generation ratio λ̄ can be calculated as:

λ̄ =
λab + λbc + λca

3
. (2)

The active power generated by each phase should be equal
to the generated PV power:

VgIg/
√

3 + VgI
0 cos (π/6− θ) = λabPnom/3, (3a)

VgIg/
√

3 + VgI
0 cos (3π/2− θ) = λbcPnom/3, (3b)

VgIg/
√

3 + VgI
0 cos (5π/6− θ) = λcaPnom/3. (3c)

The amplitude and phase angle of the required zero-
sequence current to balance the phase leg power levels can

I

II

III

IV

V

VIθ

Fig. 2. The phasor diagram of the delta-connected CHB converter under the
unbalanced operation.

TABLE I. ZERO-SEQUENCE CURRENT VECTOR SECTOR

Power Generation Ratios Sector
λbc < λca < λab (I)

λbc < λab < λca (II)

λab < λbc < λca (III)

λab < λca < λbc (IV)

λca < λab < λbc (V)

λca < λbc < λab (VI)

be calculated as:

I0 =

√
2Γ∆Pnom

9Vg
, (4a)

θ =



π/6 + sin−1

(√
6 (λca − λbc)

2Γ∆

)
Sectors (I), (VI)

5π/6 + sin−1

(√
6 (λbc − λab)

2Γ∆

)
Sectors (II), (III)

3π/2 + sin−1

(√
6 (λab − λca)

2Γ∆

)
Sectors (IV), (V)

,

(4b)

where Γ∆ is defined as:

Γ∆ =

√
(λab − λbc)2

+ (λbc − λca)
2

+ (λab − λca)
2
, (5)

and the sector can be determined via Table I by three-phase
power generation ratios λab, λbc, λca.

In the star connection, the injection of the zero-sequence
voltage increases the required converter output voltages,
whereas the dc-side capacitor voltage is usually designed to
be constant. Therefore, when the inter-phase power imbalance
becomes severe and a larger zero-sequence voltage is needed,
the converter reaches saturation easily. However, the scenario
in the delta connection presented in this paper is different.
When the inter-phase power imbalance occurs, the symmetrical
component of the converter currents and the line currents
decrease from the nominal value, owing to the drop of the
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Fig. 3. The overall power balance loop.

overall power. Hence, the increase of the converter currents
caused by the zero-sequence current can be alleviated, and the
required converter overrating is reduced.

The required current rating during the nominal operation
can be written as:

Inom =

√
2Pnom

3Vg
. (6)

The maximum required current rating occurs when two
phase generate full power and the other phase stands idle, i.e.
(λab, λbc, λca) = (1, 1, 0) , (1, 0, 1) and (0, 1, 1):

Imax

Inom
=

2
√

3

3
≈ 1.155. (7)

The result shows that a delta-connected CHB converter
with the current overrating of 15.5% can theoretically tolerate
all possible power imbalance cases. However, in the star
connection [17], much higher voltage redundancy has to be
left to tolerate the same imbalance cases.

The overall balance loop, based on the conventional decou-
pled dq control, regulates the positive sequence component of
the converter currents (Fig. 3), as if an equal amount of power
were generated by the three phases. The active power reference
of each bridge is calculated by comparing the measured dc-
side capacitor voltage vdc(ij) (i = ab, bc, ca; j = 1, 2, 3) to its
command v∗dc. The phase power reference can then be obtained
by adding the three bridge power references in the phase
leg, and the overall power by adding the three phase power
references. The zero-sequence current, calculated in (5), is
added after this stage.

III. SIMULATION RESULTS

A 3.9 kV, 3.2 MW, three-phase, seven-level, delta-
connected CHB converter is simulated in Matlab/PLECS to
validate the feasibility of the presented configuration. The con-
verter parameters used in the simulation are listed in Table II.
The conventional Phase Shift Pulse Width Modulation (PS-
PWM) is implemented with a carrier frequency of 600 Hz [17].
Please note that CHB converters can be extended to more
levels; therefore, the higher voltage/power can be reached in
real applications. The seven-level CHB converter is simulated
here as an example only. The carrier frequency can also be

TABLE II. DELTA-CONNECTED CONVERTER PARAMETERS
(SIMULATION)

Parameters Values
Grid Voltage, Vg 3.9 kV

Nominal Power, Pnom 3.2 MW

dc-side Capacitor Voltage, vdc 2200 V

Filtering Inductance (per phase), Lf 5 mH

Carrier Frequency, fs 600 Hz

TABLE III. CURRENT TOTAL HARMONIC DISTORTION

Operation
Converter Currents Line Currents
iab ibc ica iga igb igc

Balanced 2.64% 2.63% 2.65% 2.19% 2.16% 2.17%

Unbalanced 6.45% 2.82% 2.74% 2.71% 2.56% 2.63%

TABLE IV. EXPERIMENTAL PROTOTYPE PARAMETERS

Parameters Values
Grid Voltage, Vg 430 V

Three-phase Nominal Power, Pnom 10 kW

Filtering Inductance per phase, Lf 10 mH (0.06 p.u.)

MPP of PV Array 239.4 V, 4.645 A

dc-side Capacitor Voltage, vdc 239.4 V

Carrier Frequency, fs 1500 Hz

further reduced to be near the fundamental frequency, as the
number of levels increases.

Fig. 4 shows the balanced operation with three phases
generating equal amount of power. Both the converter currents
(Fig. 4(b)) and the line-currents (Fig. 4(c)) are symmetrical.
The seven-level voltage waveforms generate currents with low
harmonic distortion, as shown in Table III. Since the power
generation levels in the three phases are equal, no zero-
sequence current is injected (Fig. 4(c)).

The unbalanced operation, when the power generated in
phase ab reduces to 50% of its nominal value with no change
in the other two phases, is shown in Fig. 5. It corresponds
to λab = 0.5, λbc = λca = 1. Owing to the injection of the
zero-sequence current to deal with the unequal power gener-
ation levels, the converter currents (Fig. 5(b)) are no longer
symmetrical. However, the line currents (Fig. 5(c)) are still
symmetrical as required by grid codes, as the zero-sequence
current cancels. This confirms the feasibility of the presented
delta-connected CHB converter.

IV. EXPERIMENTAL RESULTS

Experimental results obtained from a 430 V 10 kW lab-
oratory prototype are also provided to show the improved
power balance capability of the delta connection. The converter
parameters are summarized in Table IV. Each H-bridge is fed
by a TerraSAS programmable PV simulator (600 V 8.3 A).
The Maximum Power Point (MPP) of each simulation is
programmed at 239.4 V 4.645 A under the nominal condition
(1000 W/m2 and 25◦C). PS-PWM is used in the experiment
with a carrier frequency of 1500 Hz. With three bridges in
the phase leg, the converter output voltages feature seven-level
waveforms with an equivalent switching frequency of 9 kHz.
The experimental setup is shown in Fig. 6.

The solar irradiance of the three PV simulators in phase
ab is decreased from 1000 W/m2 to 500 W/m2 to emulate the
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Fig. 4. Balanced operation (λab = λbc = λca = 1): (a) converter output voltages, (b) converter currents, (c) line currents and zero-sequence current, (d) dc-side
capacitor voltages.

Fig. 6. Delta-connected, three-phase, seven-level CHB converter prototype.

unbalanced power generation. Due to the lack of dc-dc conver-
sion stages, the actual power generation level is approximately
50% of its nominal value. Fig. 7(a) shows the three-phase con-
verter output voltages and converter currents under inter-phase
power imbalance (λab = 1, λbc = 0.5, λca = 1). The converter
currents are no longer symmetrical, since phase ab generates
less power than the other two phases. However, the three-phase
line currents (Fig. 7(b)) still feature symmetrical sinusoidal

waveforms with an average rms value of 10.3 A. The zero-
sequence current, which only flows within the delta loop, deals
with the unequal power generation levels. Since the imbalance
case cannot be dealt with by the star connection [22], the
superiority of the presented delta connection in terms of the
power balance capability is thus confirmed.

V. CONCLUSION

This paper proposes the delta-connected cascaded H-bridge
converters for large-scale photovoltaic power plants. Compared
to star-connected converters presented in the literature, the
presented delta connection significantly reduces the converter
overrating, required to deal with the inter-phase power im-
balance presented in PV applications. Both the simulation
results and experimental waveforms based a 430 V, 10 kW,
three-phase, seven-level, delta-connected cascaded H-bridge
converter prototype confirms the superiority of delta-connected
converters in terms of the inter-phase power balance capability.
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