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Abstract—This note addresses the problem of feedback control
with a constrained number of active inputs. This problem
is known as sparse control. Specifically, we describe a novel
quadratic model predictive control strategy that guarantees
sparsity by bounding directly the `0-norm of the control input
vector at each control horizon instant. Besides this sparsity
constraint, bounded constraints are also imposed on both control
input and system state. Under this scenario, we provide sufficient
conditions for guaranteeing practical stability of the closed-loop.
We transform the combinatorial optimization problem into an
equivalent optimization problem that does not consider relaxation
in the cardinality constraints. The equivalent optimization prob-
lem can be solved utilizing standard non-linear programming
toolboxes that provides the input control sequence corresponding
to the global optimum.

Index Terms—Model predictive control, constrained control,
sparse control, `0 optimization, practical stability

I. INTRODUCTION

Classical control theory considers the full control action
vector to govern a process [1]. However, in the latest years
the control community has been attracted to study the so-
called sparse control [2], where the goal is to control a process
employing a reduced number of inputs, see e.g. [3], [4].
Decreasing the number of active control inputs can benefit
the operation of control systems. For instance, sparse control
has been proposed in [5] to alleviate the traffic information
when dealing with limited communication resources. This can
also be useful to reduce the power budget when transmitting
through self-powered devices [6]. On the other hand, sparse
control was utilized in [7] to minimize propellant ejection
and to accommodate the minimal impulse constraint in the
spacecraft rendezvous problem.

Promoting sparsity (having a zero value on most of the
elements of the decision variable) has also called the attention
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in other research fields with an increasing number of interest-
ing applications in system identification [8], [9], state estima-
tion [10], compressive sampling [11], [12], power grids [13],
and over-actuated control systems [14] among others.

The inherent characterization of sparsity is through the
`0-norm (number of non-zero elements of a vector), which
represents the cardinality of a vector. However, explicitly
including `0-norm constraints in the control decision problem
leads to an NP-hard combinatorial problem [15]. Mainly, three
approaches have been proposed in optimal control problems to
avoid the computational burden: i) a greedy algorithm known
as Orthogonal Matching Pursuit (OMP) [5], ii) a `1-norm
relaxation [3], [16] and more recently iii) an algorithm based
on coordinate descent type methods [17].

OMP algorithms [18] rely on computing suboptimal solu-
tions satisfying `0 constraints. Even if it is computationally
inexpensive, adding further constraints into the optimization
problem (as states and control inputs belonging to convex
sets) is not a simple question. Approaches based on a `1-norm
relaxation do offer enough flexibility to introduce these kind of
constraints. Despite the fact that in [8] the authors proposed an
approach to choose the regularization parameter of a modified
`1-norm regularization algorithm, the `1-norm has no clear
meaning in most applications (as it just represents the sum of
the absolute values). On the other hand, coordinate descent
type methods [19], where one decision variable is updated at
each iteration using some selection rule, handle the `0-norm
but provide only local minima [17].

Works such as [4], [7], [16] and [5] have introduced sparsity
constraints on the control inputs when dealing with model pre-
dictive control (MPC). While in [4], [7], [16] the authors also
included extra convex constraints in the optimization problem,
in [5] this issue is not clearly established. Still, neither of them
consider `0-norm restrictions to limit the number of active
control actions at each control horizon instant.

In the current work, we develop a receding horizon
technique for quadratic MPC controllers with explicit `0-
constraints on each control horizon instant. The contribution
of the current work is twofold: i) we establish sufficient
conditions to guarantee asymptotic and practical stability of
the closed loop system considering that the input sequence
satisfies a combination of a non-convex (but closed) and a
cardinality constraints, and ii) we re-write the corresponding
optimization problem into an equivalent form that, in the
simulation study in section VI performs better than alternative
formulations available in the existent literature [20]. Also,
as another novelty, we address the chattering phenomenon
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(infinite frequency of switching of active control inputs [21])
when the system is close to the origin by using a dual-
MPC strategy. This work extends our recent paper [22] by: i)
including extra bounded constraints (on the states and control
actions) in the optimization problem, ii) guaranteeing practical
stability instead of exponential stability, which is more difficult
to achieve (due to the additional constraints), iii) considering
the chattering problem and iv) improving the `0 optimization
algorithm to obtain a global optimum instead of a local one.

The remainder of this note is organized as follows: Sec-
tion II introduces some preliminary definitions on practical
stability. In Section III we describe the MPC problem with
`0 constraints. The `0 optimization algorithm is discussed in
Section IV and in Section V we address the stability issues.
Numerical studies are included in Section VI and Section VII
draws conclusions.

Notation and Basic Definitions: Let R and R≥0 denote
the real and non-negative real number sets. The difference
between two given sets A ⊆ Rn and B ⊆ Rn is denoted by
A\B = {x ∈ Rn : x ∈ A, x /∈ B}. We represent the transpose
of a given matrix A and a vector x via (Ax)′ = x′A′. The
Euclidean norm is denoted via |·| while the weighted Euclidean
norm (squared) is denoted by |x|2P = x′Px. Additionally, the
induced norm of a given matrix A is its largest singular value.
The maximum and minimum eigenvalues of a given matrix
A are represented via λmax(A) and λmin(A) respectively. I
denotes an identity matrix of appropriate dimension. ~0m, and
~1m denote vectors with only zero or one entries respectively.
The operator diagm(x) transforms x ∈ Rn into a diagonal
matrix A ∈ Rn×n.

Definition 1. A function σ: R≥0 → R≥0 is said to be a K-
function if it is continuous, strictly increasing and σ(0) = 0; σ
is a K∞ function if it is a K-function and unbounded (σ(s)→
∞ as s → ∞); a function β: R≥0 × R≥0 → R≥0 is a KL-
function if it is continuous and if, for each t ≥ 0, the function
β(·, t) is a K-function and for each s ≥ 0 the function β(s, ·)
is non-increasing and satisfies β(s, t)→ 0 as t→∞.

II. PRELIMINARIES: PRACTICAL STABILITY

In this section, main aspects on practical stability for
discrete-time systems are given. These concepts are based
on the regional input-to-state practical stability framework
presented in [23], [24]. The term regional is related to the
fact that stability properties hold only in a specific region,
which is often the case when system constraints are present,
see [25]. The term practical is used to emphasize that, in some
cases, only stability of a neighborhood of the origin can be
guaranteed, see e.g., [26].

Consider a discrete-time system described by:

xk+1 = f(xk), f(0) = 0, (1)

where xk ∈ Rn is the system state and f(·) is not necessarily
continuous.

Definition 1 (Positively Invariant Set). A set A ⊆ Rn is said
to be a positively invariant (PI) set for the system (1) if f(x) ∈
A, for all x ∈ A.

Definition 2 (UpAS). The system (1) is said to be Uniformly
practically Asymptotically Stable (UpAS) in A ⊆ Rn if A
is a PI set for (1) and if there exist a KL-function β, and a
nonnegative constant δ ≥ 0 such that

|xk| ≤ β(|x0|, k) + δ, ∀x0 ∈ A, k ∈ N.

Particularly, if δ = 0 then, system (1) is said to be UAS. If
A , Rn then, system (1) is said to be globally UpAS.

Definition 3 (Practical-Lyapunov function). A (not necessarily
continuous) function V : Rn → R≥0 is said to be a practical-
Lyapunov function in A for the system (1) if A is a PI set
and if there exist a compact set, Ω ⊆ A, neighborhood of
the origin, x = 0, some K∞-functions α1, α2, and α3, and a
constants d ≥ 0, such that

V (|x|) ≥ α1(|x|), ∀x ∈ A, (2)
V (|x|) ≤ α2(|x|), ∀x ∈ Ω, (3)

V (f(x))− V (x) ≤ −α3(|x|) + d, ∀x ∈ A. (4)

If A , Rn then, the function, V , is said to be a global
practical-Lyapunov function.

Theorem 1 ( [24]). If (1) admits a practical-Lyapunov
function in A, then it is UpAS in A.

III. PROBLEM DESCRIPTION

Consider the following discrete-time linear time-invariant
system:

xk+1 = Axk +Buk, (5)

where xk ∈ X ⊆ Rn is the system state, uk ∈ U ⊆ Rm
is the control input vector. Here, both X and U are assumed
to be compact sets which contain the origin in their interior.
Moreover, convexity is only assumed for X. The pair (A,B)
is assumed to be stabilizable where the matrix A is not
necessarily Schur stable. In this case, we seek to control
system (5), if possible, by using an MPC with a reduced
number of active inputs γ, i.e., γ ∈ {0, . . . ,m}. To this
end, one needs to design a controller which can provide the
best possible actuation considering only γ active inputs while
the remaining m − γ inactive inputs will take a null value.
For this problem, we denote by σ ∈ Rm the binary vector
which indicates the active and inactive inputs, i.e., the i− th
component of σk is given by:

e′iσk =

{
1, if e′iuk is active,
0, otherwise (e′iuk = 0),

for all i ∈ {1, . . . ,m}, where ei is the i-th column of the
identity matrix. Thus, the number of non-zero elements of
vector σk (`0-norm) is |σk|0 = γ. To formulate the MPC
optimal problem, we first consider the following cost function

VN (x, ~u) =

N−1∑
j=0

`(x̂j , ûj) + Vf (x̂N ), (6)

where N is the prediction horizon, and `(x̂, û) = |x̂|2Q + |û|2R
is the stage cost with Q and R positive definite matrices,
while the term Vf (x̂) = |x̂|2P , in which P is positive definite,
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Fig. 1. Illustration of an optimal active input sequence, ~σop, for a prediction
horizon N = 4.

represents the terminal cost. The vector ~u in (6) contains the
tentative control actions over the prediction horizon, i.e.,

~u =
[
û′0, . . . , û

′
N−1

]′ ∈ RNm.

The MPC optimization of interest for the current state, xk =
x, is given as

PN (x) : V opN (x) = min
~u
{VN (x, ~u)}, (7)

subject to: x̂j+1 =Ax̂j +Bûj , (8)
ûj ∈U, (9)
x̂j ∈X, (10)

|ûj |0 ≤γ, (11)
x̂N ∈Xf ⊆ X, (12)

for all j ∈ {0, . . . , N − 1}, where x̂0 = xk and γ ≤ m.
Here, (9) and (10) take into account the system bounded

constraints, where U is not necessarily convex. Constraint (11)
encompasses the number of active inputs (sparse) constraint
over the prediction horizon. Constraint (12) is the, so-called,
terminal constraint. Similarly to convex MPC formulations, the
terminal region Xf and matrix P can be designed to guarantee
stability of the resulting closed-loop [27]. Their design will
be considered in the stability analysis presented in Section V.
We define the set U(x) to represent all the input sequences
sequences, ~u, which satisfy constraints (9)-(12).

Consequently, the optimal input sequence, ~uop(x), is the
one which minimizes the cost function, i.e.,

~uop(x) , arg

{
min
~u∈U(x)

VN (x, ~u)

}
.

Thus, the resulting optimal solution is the, so-called, optimal
input control sequence

~uop(x) =
[
(ûop0 )′, . . . , (ûopN−1)′

]′
, (13)

while the resulting optimal state sequence is:

~xop(x) = [x′, (x̂op1 )′, . . . , (x̂opN )′]
′
.

Additionally, for this particular problem, we also obtain the
resulting optimal active input sequence, given by:

~σop(x) =
[
(σop0 )′, . . . , (σopN−1)′

]′
.

Notice that the elements of ~σop(x) may differ from each other.
However, |σopj | ≤ γ for all j ∈ {0, . . . , N − 1}. For example,
if N = 4, m = 3 and γ = 2 a possible ~σop(x) is shown in

Fig. 1. We also denote the domain of attraction of the cost
function, VN (x), via

XN , {x ∈ X : U(x) 6= ∅}. (14)

Therefore, XN contains all x ∈ X such that there exists a
control sequence ~u ∈ U(x) satisfying conditions (9)-(12).

Finally, we use a receding horizon policy, i.e., only the first
element of ~uop(x) is applied to the system at each sampling
instant (see, e.g. [27]). The solution of the optimal problem,
PN (x) in (7), yields the sparse MPC law, κN (·) : XN → U,

κN (x) , ûop0 . (15)

Consequently, the resulting sparse MPC loop can be repre-
sented via

xk+1 = Axk +BκN (xk). (16)

In the following section, we present a general method to
solve an optimization problem subject to `0−norm constraints.
This solution is then used to solve the sparse quadratic MPC
problem in (7)-(12).

IV. `0-CONSTRAINED BASED SOLUTION

Consider the following `0-constrained optimization problem

P0 : min
x∈Rp

f(x), (17)

subject to: x ∈ Ω,

|x|0 ≤ γ.

A way of handling cardinality constraints is through the
following mixed-integer programming formulation [20]:

P0,MIP : min
x∈Rp,z∈{0,1}p

f(x), (18)

subject to: x ∈ Ω,

−Le′iz ≤ e′ix ≤ Le′iz, ∀i ∈ {1, . . . , p}, (19)
~1′mz = γ, (20)

where each entry of vector z is set to be binary, and ei is
the i-th column of the identity matrix. By means of constraint
(19), a semi-continuous behavior is induced on variable xi.

To solve the problem P0,MIP , standard Mixed-Integer
Quadratic Programming (MIQP) solvers such as CPLEX or
BARON [28] can be used. However, in this work the input is
restricted to belong to a compact set that may be non-convex.
Therefore, it cannot be handled by CPLEX [20].

Also, consider the following optimization problem involving
bilinear constraints

P0equiv : min
x,w∈Rp

f(x), (21)

subject to: x ∈ Ω,

(e′ix)(e′iw) = 0, ∀i ∈ {1, . . . , p}, (22)
~0p ≤ w ≤ ~1p, (23)
~1′mw = p− γ, (24)
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where Ω ⊂ Rp is a constraining set, f : Rp → R is the
objective function, and ei is the i-th column of the identity
matrix. The following result, that was independently obtained
in [29]–[32], shows that problems P0 in (17) and P0equiv in
(21)-(24) are equivalent.

Theorem 2 ( [29]–[32]). A vector x∗ ∈ Rp is a global solution
of P0 if and only if there exists a vector w∗ ∈ Rp such that
the pair (x∗, w∗) is a global solution of P0equiv .

Results in [29] and [30] are similar. However, [30] have
been obtained in a more general framework where constraints
on the rank of a matrix are utilized. A key observation is that
P0equiv can be solved by using standard tools of nonlinear
programming. In particular, we obtain a global solution of
P0equiv by using the optimization software BARON [28].

In problem P0equiv , the auxiliary variable w in (22)-(24),
at the optimum is a binary variable taking the value e′iw =
1 for those elements corresponding to e′ix = 0. Additional
constraints over w can be included in the optimization problem
to manage how the zero and non-zero elements of x interact.
These interactions are difficult to handle by relaxation methods
such as the `1-norm heuristic. Moreover, our approach obtains
a solution in less time than the corresponding binary non-linear
programming (i.e., e′iw ∈ {0, 1}) for the simulation study in
Section VI.

Remark 1. The proposed approach can easily handle `0-norm
constraints over a selection in the vector, i.e. |diagm(ai)~u|0 ≤
γ, where ai is a given vector with entries {0, 1}. We use this
approach latter in the note to solve problem (7)-(12), where `0-
norm constraints are imposed on several selections of vector
~u. In addition, we can also minimize the `0-norm of the whole
optimal input vector, i.e., |~u|0 ≤ γ.

Therefore, a comparison between both approaches is done
using the optimization software BARON.

A. Application to Sparse Quadratic MPC

The quadratic MPC with `0-input constraint described by
(7)-(12) can be equivalently formulated as the following opti-
mization problem

Pequiv,N (x) : V opequiv,N (x) = min
~u,~w
{VN (x, ~u)}, (25)

subject to: x̂j+1 =Ax̂j + ûj , (26)
ûj ∈U, (27)
x̂j ∈X, (28)

diagm(wj)uj =~0m, (29)
~0m ≤wj ≤ ~1m, (30)

w′j~1m =m− γ, (31)

x̂N ∈Xf ⊆ X, (32)

for all j ∈ {0, . . . , N − 1}, where x̂0 = xk and γ ≤ m. Note
that in this case the set U(x) represents all the input sequences,
~u, that satisfy constraints (27)-(32).

The `0-norm constraint (11), in problem PN (x) in (7), is
substituted by (29)-(31) in problem Pequiv,N (x) as per (25).

This substitution allows us to obtain a global solution of
PN (x) by using standard tools in nonlinear programming over
Pequiv,N (x). Note that the equivalence between PN (x) and
Pequiv,N (x) holds in the global optimum (see [31], [32]).

V. STABILITY ANALYSIS

In this section, sufficient conditions to guarantee stability of
the sparse quadratic MPC loop in (16) are established.

Firstly, we define the predicted state sequence as

~x[1:N ] = [x̂′1, . . . , x̂
′
N ]′.

Considering an initial system state x̂0 = x, from (8), we obtain

~x[1:N ] = Λx+ Φ~u,

where

Λ ,


A

A2

...

AN

 , Φ ,


B 0 · · · 0 0

AB B · · · 0 0

...
...

. . .
...

...

AN−1B AN−2B · · · AB B

 .
Thus, the cost function (6) can be re-written as

VN (x, ~u) = ν(x) + ~u′HN~u+ 2~u′FNx,

where the term ν(x) is independent of ~u and HN , Φ′QNΦ+
RN ∈ RNm×Nm, FN , Φ′QNΛ ∈ RNm×n, with QN ,
diag {Q, . . . , Q, P} ∈ RNn×Nn, RN , diag {R, . . . , R} ∈
RNm×Nm. Notice that, since Q, R, and P are positive
definite, so is HN . Based on this representation, the following
unconstrained optimal input, ~uopuc(x), can be defined, see [27].

Lemma 1 (Unconstrained Solution). If for the optimal prob-
lem PN (x) in (7), constraints (9)-(12) are not taken into
account, i.e., U , Rm, X = Xf , Rn, and γ = m, then
VN (x, ~u) is minimized when

~uopuc(x) , arg

{
min

~u∈RNm
VN (x, ~u)

}
, −H−1N FNx. (33)

for all x ∈ Rn.

A. Sparse Local Controller
We propose to prove stability of `0-input constrained MPC

loop in (16) by examining properties of a feasible local
controller based on the optimal nominal solution presented
in (33) with prediction horizon N = 1; cf. [26]. To take
into account the `o-input constraint, for a given γ = |σf |,
we consider the following sparse matrix

Lσ = diagm{σf} ∈ Rm×m. (34)

Thus, the proposed feasible sparse local controller is given by

κf (x) = Kσx = (K + ∆σ)x, ∆σ = (Lσ − I)K, (35)

where

K = −H−11 F1 = (B′PB +R)−1B′PA.

Thus, based on the nominal sparse local controller, we chose
the terminal region in (12) as:

Xf , {x′Px ≤ ϕx : x ∈ X,Kσx ∈ U} . (36)
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Fig. 2. Illustration of the terminal set Xf ⊂ X ⊂ R2 for the case when
U ⊂ R2 is non-convex.

Here, ϕx ∈ R≥0 is designed to obtain the largest ellipsoid
which guarantees that for all x ∈ X,Kσx ∈ U. Notice that
since the origin belongs to X and U then, Xf 6= ∅. Therefore,
both the proposed local controller and terminal region provide
that for all x ∈ Xf , κf (x) ∈ U. It is important to emphasize
that in this work the compact set U is not restricted to be
convex. However, the local controller, κf (x), maps the states
in Xf to the convex set KσXf , which is contained by U, i.e.,
KσXf ⊆ U. This is illustrated in Fig. 2.

On the other hand, the closed-loop expression for system
(5) governed by the local controller (35) is given by

xk+1 = AKσxk = (AK +B∆σ)xk, ∀xk ∈ Xf , (37)

where AK = A+BK, and the term B∆σ represents the sparse
control effect on the “nominal system”, xk+1 = AKxk.

Theorem 3. Suppose that the terminal cost, Vf (x), in (6) is
designed such that the matrix P is chosen to be the solution
to the algebraic Riccati equation

A′KPAK − P +Q∗ = 0, Q∗ , Q+K ′RK. (38)

If γ in (11) is chosen such that there exist a σf in (34) which
satisfies that γ = |σf | and

Q∗ −Ψσ � 0,

Ψσ = (2AK +B∆σ)′PB∆σ.
(39)

Then, κf in (35) is a uniformly exponentially stabilizing sparse
local controller in Xf for the system (5).

Proof. We first consider the terminal cost, Vf (x) in (6), as
a candidate Lyapunov function. Therefore, we apply The-
orem 1 with α1(s) = a1s

2 and α2(s) = a2s
2, where

a1 , λmin(P ), a2 , λmax(P ). Direct calculations give that:

Vf (Ax+Bκf (x))− Vf (x) = x′
(
A′KσPAKσ − P

)
x

=x′
(
A′KPAK − P + 2A′KPB∆σ +B′∆′σP∆σB

)
x.

Since matrix P is chosen according to (38), it follows that

Vf (Ax+Bκf (x))−Vf (x) = −x′(Q∗−(2AK+∆σ)′P∆σ)x.

Then, considering the proposed stabilizing condition (39),
property (4) holds with α3(s) = a3s

2, where a3 = λmin(Q∗−
Ψ) > 0. Therefore, it follows that

∆Vf (xk) = Vf (xk+1)− Vf (xk) ≤ −a3|xk|2, (40)

for all xk ∈ Xf . This allows us to establish the following

relationship

Vf (xk+1) ≤ ρVf (xk), ∀xk ∈ Xf . (41)

Taking into account inequality (40), it follows that

0 ≤ Vf (xk+1) ≤ Vf (xk)− a3|xk|2 ≤ (a2 − a3)|xk|2.

Hence, 0 < a3 ≤ a2, which implies that ρ = 1− a3
a2
∈ [0, 1).

Therefore, considering (36) and (41), we have that Xf is
a PI set for (37). Moreover, for all x ∈ Xf , κf (x) ∈ U. By
iterating (41), it is possible to exponentially bound the system
state evolution via:

|xk|2 ≤
a2
a1
ρk|x0|2, ∀k > 0, x0 ∈ Xf .

Thus, lim supk→∞ |xk| = 0, provided that x0 ∈ Xf .
Consequently, the proposed sparse local controller, κf (x)

in (35), is a stabilizing controller for (5) for all x ∈ Xf .
More precisely, the local sparse MPC loop (37) is uniformly
exponentially stable.

Remark 2. Since Q,R � 0 and the pair (A,B) is stabilizable
then, there exists a unique solution of the discrete algebraic
Ricatti equation (38), i.e., P > 0. Moreover, AK in (37) is
Schur stable; see [33].

B. Multi-Step Sparse MPC Stability Analysis

Based on the proposed stabilizing local controller, κf (x),
we next establish sufficient conditions for practical stability
for the `0-input constrained multi-step MPC loop in (16).

Theorem 4. Consider the positive constants c1 = λmin(P ),
c2 = λmax(P +Wσ), and c3 = λmin(Q), where

Wσ = F ′H−1N (Lσ − I)HN (Lσ − I)H−1N F ∈ Rn×n,
Lσ = diag{Lσ, . . . , Lσ} ∈ RNm×Nm.

Suppose that x0 ∈ XN and matrix P , in Vf (x), is designed
as per (38). If the proposed sparse local controller, κf (x), in
(35) satisfies both (39) and

|Gσ| < a1

(
c3
c2

)
, Gσ = ∆′σH1∆σ. (42)

Then, the sparse MPC closed-loop system (16) is UpAS for
all x ∈ XN , with

Dδ ,
{
x ∈ Xf : x′Px ≤ δ =

c3ϕx
c2a1

|Gσ|
}

(43)

as an ultimately invariant set.

Proof. To prove this theorem, we verify conditions presented
in Definition 3. Since matrix P in (6) satisfies (38), the
unconstrained solution, ~uopuc(x) in (33) can be expressed via:

~uopuc(x) =
[
(Kx̂)′ (Kx̂1)′ . . . (Kx̂N−1)′

]′
.

Now, V opN (x), with xk = x, can be rewritten as:

V opN (x) = V opN (x, ~uop(x))

= x′Px+ (~uop(x)− ~uopuc(x))
′
HN (~uop(x)− ~uopuc(x)) .

(44)

Note that when constraints (9)-(12) are not considered, i.e.,
X = Rn, U = Rm, Xf = Rn, and γ = m, we have that
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~uop(x) = ~uopuc(x). Hence, V opuc (x) = x′Px, implying that

V opN (x) ≥ c1|x|2, ∀x ∈ XN ,

Thus, property (2) holds with α1(s) = c1s
2. Then, we obtain

an upper bound for the cost function for the case when γ ≤ m.
To do this, we use the following suboptimal solution1 based
on the proposed sparse local controller, κf (x) in (35):

ũ = Lσ~uopuc(x) = [(LσKx̂)′ (LσKx̂1)
′ . . . (LσKx̂N−1)

′]
′
,

for all x ∈ Xf . Thus, the optimal cost function satisfies that:

V opN (x) ≤ VN (x, ũ)

= x′Px+ ~uopuc(x)′(Lσ − I)′HN (Lσ − I)~uopuc(x)

Then, we obtain that

V opN (x) ≤ c2|x|2, ∀x ∈ Xf . (45)

Thus, property (3) holds with a2(s) = c2s
2. Based on (13) and

considering the proposed stabilizing local controller, κf (x),
we adopt and use the following shifted sequence (see [27]):

ũ(xk+1) = [(ûop1 )′, . . . , (ûopN−1)′, κf (x̂N )′]′. (46)

This generates the following state sequence:

x̃(xk+1) = [(x̂op1 )′, . . . , (x̂opN )′, (x̂N+1)′]′.

Notice that by constraint (12), x̂N ∈ Xf . Therefore, since
κf (x) satisfies (39), we have that x̂N+1 = AKσx̂N ∈ Xf .

By optimality, we obtain the bound

V opN (xk+1) ≤ V opN (xk+1, ũ(xk+1))

Comparing (44) with (45), we obtain that

∆V opN (x) = V opN (xk+1)− V opN (xk)

≤− |x|2Q + |x̂N+1|2P − |x̂N |2P + |x̂N |2Q + |κf (x̂N )|2R
=− |x|2Q + |(AK +B∆σ)x̂N |2P − |x̂N |2P + |x̂N |2Q

+ |(K + ∆σ)x̂N |2R
=− |x|2Q + x̂′N∆′σ(B′PB +R)∆σx̂N

+ x̂′N (A′KPAK − P +Q∗ + 2(A′KPB +K ′R)∆σ) x̂N

Since matrix P is chosen according to (38), we have that

A′KPB +K ′R = A′PB +K ′(B′PB +R) = 0.

Then, we obtain that

∆V opN (x) ≤− |x|2Q + x̂′NGσx̂N .

Considering that x̂N ∈ Xf , and considering from (36) that

a1|x|2 ≤ x′Px ≤ ϕx, ∀x ∈ Xf ,

it follows that

∆V opN (x) ≤− c3|x|2 + d, ∀x ∈ XN , (47)

Thus, condition (4) holds with α3(s) = c3s
2 and d = ϕx

a1
|Gσ|.

Now, suppose that for an instant t > 0, x ∈ Xf . Then, using

1It is important to highlight that this suboptimal input sequence is only used
to facilitate the stability analysis. The actual optimal input sequence, ~uop(x),
may present sparse elements which differ from each other, see e.g. Fig. 1.

(45) and (47), it is possible to establish that

V opN (xk+1) ≤ V opN (xk)− c3|xk|2 + d

≤ V opN (xk)− c3
c2
V opN (xk) + d

≤ ρnV opN (xk) + d

(48)

where ρn = 1 − c3
c2
∈ [0, 1). Therefore, by iterating (48), the

optimal cost function will be exponentially bounded by

V opN (xk) ≤ ρknV
op
N (xt) +

(
1− ρkn
1− ρn

)
d, ∀k ≥ t, x ∈ Xf .

From (44), we have that |x|2P = x′Px ≤ V opN (x). Conse-
quently, considering (45), the system state evolution will be
exponentially bounded via

|xk|2P ≤ c2ρk|xt|+
(

1− ρkn
1− ρn

)
d, ∀k ≥ t, x ∈ Xf ,

Finally, the system state will be ultimately bounded by

lim sup
k→∞

|xk|2P ≤
d

1− ρn
= δ.

By considering (42), we obtain that δ < ϕx. Hence,
Dδ ⊂ Xf . Consequently, by Theorem 1, the multi-step sparse
MPC loop (16) is UpAS for all x0 ∈ XN\Xf and practically
exponentially stable for k > t.

Theorem 4 establishes that for all x0 ∈ XN ⊆ X, the system
state will be steered by the multi-step sparse MPC, κN (x) in
(15), towards the terminal region Xf ⊂ XN and then (with the
same controller) into the ultimately bounded set Dδ ⊂ Xf .

Remark 3. Notice that decay rate ρn in Theorem 4 depends
on the binary variable σf . Thus, one can use the results
of this theorem to reduce the number of active inputs to
guarantee stability of the closed-loop while obtaining a desired
performance in terms of the decay rate ρn.

Dual-Mode Sparse MPC Formulation : By using the local
sparse controller in (35), it is possible to define a dual-mode
sparse MPC strategy as follows:

κDM (x) =

{
κN (x), x ∈ XN\Xf
κf (x), x ∈ Xf

The resulting dual-mode sparse MPC loop is expressed via:

xk+1 = Axk +BκDM (xk), ∀xk ∈ XN . (49)

Theorem 5 (Stability of Dual-Mode Sparse MPC). Suppose
that the matrix P in the terminal cost, Vf (x), satisfies (38), and
the proposed sparse local controller, κf (x) in (35), satisfies
both (39) and (42), then (49) is UAS, i.e., lim supk→∞ |xk| =
0 for all x0 ∈ XN .

Proof. The proof can be derived based on the proofs of
Lemma 1 and Theorem 4.

The proposed dual-mode sparse MPC, κDM (x), allows the
system state to achieve the origin by relying on the local sparse
controller, κf (x). Thus, potential infinite number of switches
of the control signal on a finite-time interval, i.e., chattering
effects (see [21] for further details) can be avoided.
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VI. SIMULATION STUDY

Here, we illustrate the benefits of the proposed sparse MPC
strategy. Consider the system (5) with

A =


0.0721 0.6583 −0.4689 0.2238

−0.1881 0.5344 0.2543 −0.6755

0.6522 0.3096 0.5503 0.1500

−0.4926 0.1645 0.5091 1.0681

 ,

B =


0.2138 0.3385 −0.1888

0.4112 −0.0666 −0.2024

0.6095 0.1967 0.2353

−0.2627 −0.0707 0.3762

 ,

(50)

where xk ∈ R4, uk ∈ R3. Matrix A has 2 unstable eigenval-
ues, and the pair (A,B) is controllable. The sparse constraint
over the input is set as |uk|0 ≤ γ, with γ = 2. Additionally, a
convex constraint is imposed to the system as |xk| ≤ δx = 3.

The sparse MPC strategy (16) was implemented with pa-
rameters N = 4, Q = I4×4, and R = 3 · I3×3. The terminal
cost, Vf = |x|2P , is chosen to satisfy condition (38), yielding:

P =


2.5820 −0.2209 −0.3899 −0.8719

−0.2209 3.1023 1.2104 1.0563

−0.3899 1.2104 5.2290 2.7497

−0.8719 1.0563 2.7497 6.3644

 .
In order to illustrate the benefit of the proposed approach,

we introduce a non-convex constraint over each vector input
ûj over the prediction horizon. These constraints are as follows

û′jQ1ûj ≤ 1, û′jQ2ûj + f2ûj + ρ2 ≥ 1,

with Q1 = 0.3472 · I3×3, Q2 = 3.125 · I3×3, ρ2 = 9, and
f2 =

[
−10.6066 0 0

]
. Based on the proposed design, the

terminal region is chosen as:

Xf ,
{
x′fPxf ≤ ϕx = 4.1223

}
.

This value of ϕx assures that the terminal region satisfies
that Xf ⊂ X, and that Kσx ∈ U (definition of terminal
region in (36)). For this example, the vector of active inputs
σf =

[
1 0 1

]′
satisfies condition (39). Consequently, by

Theorem 3, system (5) with (50) governed by the proposed
sparse MPC is UpAS. Starting from the initial state x0 =[
1 −1.5 −1 2

]′
, the proposed sparse MPC strategy is

implemented using the solver BARON [28].
An exhaustive search method (i.e., evaluating all possibili-

ties and then selecting the optimal one) was implemented using
BARON by fixing zeros in the standard MPC problem and
solving the resulting quadratic programming (QP) problem.
This approach proved to be impractical for this particular
example due to the big amount of time required for some
solutions. This is due to a resulting complex optimization
problem when forcing some variables to be zero.

Solution of the resulting MPC problem using the proposed
approach (Pequiv,N ) is obtained using BARON optimization
software. At each sampling instant, the optimization algorithm
is initialized using the feasible suboptimal solution in (46).
For comparison purposes, the same `0-input constrained MPC
problem is formulated using a mixed-integer approach and
solved also by utilizing BARON.

Note that this particular system can be controlled using
a fixed active input set, e.g., κf (x) in (35) with σf =[
1 0 1

]′
. However, this is in general a suboptimal solution

of the multi-step sparse MPC, κN (x). Moreover, κf (x) pro-
vides a region of attraction, Xf , smaller than the one obtained
by κN (x), i.e., Xf ⊂ XN . On the other hand, when the system
state approaches the origin, the multi-step sparse MPC still
may provide optimal inputs with alternating active inputs, σopk ,
which have unnoticeable effect over the system state. This is
referred to as chattering effect. Therefore, we fix σk = σf by
commuting from κN (x) to κf (x) only when the system state
is close enough to the origin (dual-mode operation).

The results of the simulations of the two different ap-
proaches are shown in Figs. 3 and 4. Here, u_bilinear
and u_mixed_integer represent the optimal sparse in-
put obtained by the proposed sparse MPC strategy and the
mixed-integer approach. These inputs lead to the correspond-
ing system state trajectories denoted by x_bilinear and
x_mixed_integer respectively. From Figs. 3, 4 and 5, it
can be noticed that the system constraints are satisfied, and that
the system is led to the origin by using only 2 active inputs.
Moreover, in Figs. 4 and 5 we note that the optimal inputs
obtained with the two strategies are practically the same. Only
a slightly differences arises when the state is near the origin,
which could be due to numerical problems. Some chattering
can be observed before commuting to the local controller at
the simulation step 13 (specially in input u2).

Finally, an important matter to analyze is the execution time
carried out for each optimization approach. The computing
time of the proposed approach was 46.2 seconds, while
the mixed-integer formulation took 83.6 seconds, thus being
slower. However, a more comprehensive study is needed for
the general case, in order to derive further conclusions.

VII. CONCLUSION

In this note, we address the problem of sparse feedback
control utilizing a quadratic MPC technique for determinis-
tic time-invariant linear systems written in state-space form.
The proposed control strategy considers only some of the
available inputs as “active” at each control horizon instant.
This condition is imposed by utilizing an `0-norm constraint.
The resulting optimization problem is then rewritten into an
equivalent one, which can be solved utilizing a non-linear
programming optimization toolbox (e.g. BARON). Sufficient
conditions are given to ensure stability of the feedback system.
Finally, we propose a solution for the potential chattering
effect that might happen when the state approaches the origin.
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