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Abstract: It is not known whether Thompson’s group F is automatic. With the recent extensions of the
notion of an automatic group to graph automatic by Kharlampovich, Khoussainov and Miasnikov and then
to C-graph automatic by the authors, a compelling question is whether F is graph automatic or C-graph auto-
matic for an appropriate language classC. The extended definitions allow the use of a symbol alphabet for the
normal form language, replacing the dependence on generating set. In this paper we construct a 1-counter
graph automatic structure for F based on the standard infinite normal form for group elements.
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1 Introduction
The notion of an automatic group was introduced in the 1990s based on ideas of Thurston, Cannon, Gilman,
Epstein and Holt in the hopes of categorizing the fundamental groups of compact 3-manifolds. As not all
nilpotent groups proved to be automatic, the definition required expansion to make it more robust. A simul-
taneous motivation behind this definition was to use the automatic structure to ease computation within
these groups. To that end, it was shown that automatic groups are finitely presented, have word problem
solvable in quadratic time and possess at most a quadratic Dehn function [9]. In an automatic group there is
a natural set of quasigeodesic normal forms which define the structure, and this normal form representative
for any group element can always be found in quadratic time.

It is not knownwhether Thompson’s group F is automatic. Guba and Sapir present a regular normal form
for elements of F and prove that the Dehn function of F is quadratic in [11]. Theword problem in F is solvable
in O(n log n) time (see, for example, [13]) and it is shown in [2] that F is of type FP∞. However, no one has
been able to prove that the group is (or is not) automatic. In [6] it is shown that F cannot have a regular
combing by geodesics with respect to the standard finite generating set, while in [5] it is shown that F admits
a tame 1-combing by quasigeodesics for this generating set, with a linear tameness function.

In [12] Kharlampovich, Khoussainov and Miasnikov expand the definition of an automatic group to that
of a graph automatic group by allowing the normal forms for elements to be expressed in terms of a symbol
alphabet, rather than the group generators. The precise definition is given below in Section 2.1. Groupswhich
are not automatic, but are graph automatic with this definition include the Baumslag–Solitar groups and
finitely generated groups of nilpotency class 2 (see [1, 12]). Graph automatic groups retain the properties that
the word problem is solvable in quadratic time, and the normal form for any group element is computable in
quadratic time.
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The concept of a graph automatic groupwas extended by the authors in [8] to aC-graph automatic group,
where all languages comprising the structure are required to be in the language class C. This definition is
stated precisely in Section 2.1.

The introduction of a symbol alphabet makes F a natural candidate for the class of graph (or C-graph)
automatic groups, as there are two natural symbol alphabets associated to this group.
(1) The first symbol alphabet is based on the standard infinite normal form for elements of F, and in this

paper we prove that there is a language of quasi-geodesic normal forms over this alphabet which forms
a 1-counter graph automatic structure for F. Moreover, F is not graph automatic with respect to this
language of normal forms.

(2) The second symbol alphabet is based on the combinatorial “caret types” of nodes in the reduced pair of
trees representing a given element. In [14], Younes and the second author define a language of quasi-
geodesic normal forms for elements of F based on this alphabet which they show to be the basis of
a 3-counter graph automatic structure for F, although they note that the number of counters can be
reduced to 2. They also show that F is not graph automatic with respect to this language of normal forms.

Neither of these results rules out the possibility that F is graph automatic with respect to a different normal
form, or alternate symbol alphabet.

We remark that a third possibility for constructing aC-graph automatic structure for Fwould be to use the
regular normal form language of Guba and Sapir [11]. In preparing this article we considered the complexity
of the multiplier automata for this structure and found that the multiplier automaton for the generator x1
would require at least four counters, and hence did not include the details in this article.

This paper is organized as follows. In Section 2 we recall the definition of a C-graph automatic group
introduced in [8] which generalizes the definition of a graph automatic group introduced by Kharlampovich,
Khoussainov and Miasnikov in [12], and present a brief introduction to Thompson’s group F. Section 3 is
devoted to describing a language of normal forms based on the standard infinite normal form for elements
of F, and the resulting 1-counter graph automatic structure.

2 Background
We present some background material on C-graph automatic groups as well as a brief introduction to
Thompson’s group F.

2.1 Generalizations of automaticity

The following definitions are taken from [8] and include the definition of a graph automatic group given
in [12]. We begin with the definition of a convolution of strings, following [12].

Let G be a group with symmetric generating set X, and Λ a finite set of symbols. In general we do not
assume that X is finite. The number of symbols (letters) in a word u ∈ Λ∗ is denoted |u|Λ.

Definition 2.1 (Convolution, [12, Definition 2.3]). Let Λ be a finite set of symbols, ⬦ a symbol not in Λ,
and let L1, . . . , Lk be a finite set of languages over Λ. Set Λ⬦ = Λ ∪ {⬦}. Define the convolution of a tuple
(w1, . . . , wk) ∈ L1 × ⋅ ⋅ ⋅ × Lk to be the string ⊗(w1, . . . , wk) of length max |wi|Λ over the alphabet (Λ⬦)k as
follows. The i-th symbol of the string is

(

λ1
...
λk

) ,

where λj is the ith letter of wj if i ≤ |wj|Λ and ⬦ otherwise. Then

⊗(L1, . . . , Lk) = {⊗(w1, . . . , wk) | wi ∈ Li}.

We note that the convolution of regular languages is again a regular language.
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As an example, if w1 = aa, w2 = bbb and w3 = a, then

⊗(w1, w2, w3) = (
a
b
a
)(

a
b
⬦
)(

⬦
b
⬦
) .

When Li = Λ∗ for all i, the definition in [12] is recovered.

Definition 2.2 (Quasigeodesic normal form). A normal form for (G, X, Λ) is a set of words L ⊆ Λ∗ in bijection
with G. A normal form L is quasigeodesic if there is a constant D so that

|u|Λ ≤ D(‖u‖X + 1)

for each u ∈ L, where ‖u‖X is the length of a geodesic in X∗ for the group element represented by u.

The ‖u‖X + 1 in the definition allows for normal forms where the identity of the group is represented by
a nonempty string of length at most D. We denote the image of u ∈ L under the bijection with G by u.

Definition 2.3 (C-graph automatic group). Let C be a formal language class, (G, X) a group and symmetric
generating set, and Λ a finite set of symbols. We say that (G, X, Λ) is C-graph automatic if there is a normal
form L ⊂ Λ∗ in the language class C such that for each x ∈ X the language Lx = {⊗(u, v) | u, v ∈ L, v =G ux} is
in the class C.

If we take C = {regular languages}, we recover the definition of a graph automatic group given in [12]. If we
further require Λ to be the set X of group generators, we obtain the original definition of an automatic group.

In this paper we will consider the case when C denotes the set of non-blind deterministic 1-counter
languages, which are defined as follows.

Definition 2.4 (1-counter automaton). A non-blind deterministic 1-counter automaton is a deterministic finite
state automaton augmented with an integer counter: the counter is initialized to zero, and can be incre-
mented, decremented, compared to zero and set to zero during operation. For each configuration of the
machine and subsequent input letter, there is at most one possible move. The automaton accepts a word
exactly if upon reading the word it reaches an accepting state with the counter equal to zero.

Indrawinga1-counter automaton,we label transitions by the input letter to be read,with subscripts to denote
the possible counter instructions:
∙ = 0 to indicate the edge may only be traversed if the value of the counter is 0.
∙ > 0 (resp. <) to indicate the edge may only be traversed if the value of the counter is greater (resp. less)

than 0.
∙ +1 to increment the counter by 1.
∙ −1 to decrement the counter by 1.

The class C1 of 1-counter languages is closed under homomorphism and inverse homomorphism [10],
intersection with regular languages and finite union [10], see also [7, Lemma 3], and is strictly contained in
the class of context-free languages [7, Lemmas 1–2].

We end this section with a lemma which is used to streamline several proofs in later sections, and is
a restatement of [14, Lemma 2.6].

Lemma 2.5 ([14, Lemma 2.6]). Fix a symbol alphabet Λ and let L1 and L2 be regular languages over Λ, and
x ∈ Λ∗ a fixed word. Then the set

{⊗(zw, zxw) | z ∈ L1, w ∈ L2}

is a regular language.

If the language of normal forms for a k-counter-graph automatic group is additionally quasigeodesic, it is
proven in [8] that given a string of group generators of length n, the normal form word can be computed in
time O(n2k+2). It is proven in [9] that normal forms are quasigeodesic in any automatic group, and in [12] that
normal forms are quasigeodesic in graph-automatic groups. In [8] an example is given to show that a C-graph
automatic structure need not have a quasigeodesic normal form language.
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2.2 Thompson’s group F

Thompson’s group F can be equivalently viewed from three perspectives:
(1) As the group defined by the infinite presentation

Pinf = ⟨x0, x1, x2 ⋅ ⋅ ⋅ | xjxi = xixj+1 whenever i < j⟩

or the finite presentation

Pfin = ⟨x0, x1 | [x−10 x1, x
−1
0 x1x0], [x

−1
0 x1, x

−2
0 x1x

2
0]⟩.

(2) As the set of piecewise linear homeomorphisms of the interval [0, 1] satisfying
(a) each homeomorphism has finitely many linear pieces,
(b) all breakpoints have coordinates which are dyadic rationals,
(c) all slopes are powers of two.

(3) As the set of pairs of reduced finite rooted binary trees with the same number of nodes, or carets.
For the equivalence of these three interpretations of this group, as well as a more robust introduction to the
group, we refer the reader to [4].

There is a standard normal form for elements of F with respect to the infinite generating set, as discussed
by Brown and Geoghegan [2]. Any element g ∈ F can be written uniquely, by applying the relations from the
presentation Pinf, as

xe0i0 x
e1
i1 ⋅ ⋅ ⋅ xemim x

−fn
jn ⋅ ⋅ ⋅ x−f1j1 x

−f0
j0 , (2.1)

where
(1) 0 ≤ i0 < i1 < i2 < ⋅ ⋅ ⋅ < im and 0 ≤ j0 < j1 < j2 < ⋅ ⋅ ⋅ < jn,
(2) ei , fj > 0 for all i, j,
(3) if xi and x−1i are both present in the expression, then so is xi+1 or x−1i+1.
Wewill refer to this as the standard infinite normal form for g ∈ F; an expression in this form is called reduced.
If an expression of the form in (2.1) contains xi and x−1i but not xi+1 or x−1i+1 for some i, it is called unreduced.
Relations from Pinf must be applied to obtain an equivalent expression satisfying the third condition above,
and then the resulting expression is reduced.

3 A 1-counter language of normal forms for elements of F
In this sectionwe define a language of normal forms, based on the standard infinite normal form for elements
of F, which yields a 1-counter graph automatic structure for F. If g ∈ F, let w denote the infinite normal form
for g given in (2.1). From the expression w, define a normal form over the finite alphabet {#, a, b} as follows.
(1) First, we require that every generator between x0 and xM appear twice in the expression in (2.1), where

M = max{im , jn}. To accomplish this, insert x0t for any index t ≤ M not appearing in (2.1). This yields
a word of the form

xr00 x
r1
1 x

r2
2 ⋅ ⋅ ⋅ xrMM x

−sM
M ⋅ ⋅ ⋅ x−s22 x−s11 x−s00 , (3.1)

where ri , si ≥ 0, exactly one of rM , sM is nonzero, and risi > 0 implies ri+1 + si+1 > 0.
(2) Second, rewrite the expression in (3.1) in the form

ar0bs0#ar1bs1# ⋅ ⋅ ⋅ #arMbsM ,

where ri , si ≥ 0, exactly one of rM , sM is nonzero, and risj > 0 implies ri+1 + si+1 > 0.
Define L∞ to be the set of all such strings satisfying these conditions on ri and si, together with the empty

string.
As an example, the element with standard infinite normal form

x21x
3
4x
−1
8 x
−6
5 x
−2
4

has the following representative in the language L∞:

#aa###aaabb#bbbbbb###b.
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#
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Figure 1. A finite state automaton accepting the language L∞. Accept states are q0 , q1 , q2.

Note that if the largest index in the standard infinite normal form string w is k, then the normal form
string in L∞ representing w contains exactly k # symbols.

Lemma 3.1. The language L∞ is a normal form for F, and is a regular language.

Proof. The procedure described above clearly gives a bijection between the set of standard infinite normal
forms for elements of F and the language L∞. To see that this language is regular,wegive afinite statemachine
which accepts it in Figure 1. The automaton only accepts strings of the form ε, ai , bi , w#ai , w#bi with i > 0
and w a word in {a, b, #}∗ with no subword ba, and if w has a subword ab, then any maximal substring of
the form

ak1bk2#ak2bl2# ⋅ ⋅ ⋅ #akzblz#,

where all ki , li > 0 is immediately followed by aj# or bj#.

To prove that this language of normal forms is quasigeodesic we quote a proposition proven by Burillo in [3].

Proposition 3.2 ([3, Proposition 2]). Let g ∈ F have standard infinite normal form

xe1i1 x
e2
i2 ⋅ ⋅ ⋅ xemim x

−fn
jn ⋅ ⋅ ⋅ x−f2j2 x

−f1
j1

and define

D =
m
∑
l=1
el +

n
∑
l=1
fl + im + jn .

Then D
6 − 2 ≤ l(g) ≤ 3D, where l(g) denotes the word length of g with respect to the finite generating set {x0, x1}.

Using Proposition 3.2 we prove the following proposition.

Proposition 3.3. The language L∞ is quasigeodesic.

Proof. Let g have standard infinite normal form xe1i1 x
e2
i2 ⋅ ⋅ ⋅ xemim x

−fn
jn ⋅ ⋅ ⋅ x−f2j2 x

−f1
j1 which we alter as above to the

expression in (3.1):
xr00 x

r1
1 ⋅ ⋅ ⋅ xrMM x

−sM
M ⋅ ⋅ ⋅ x−s11 x−s00

inwhich each index 0 throughM = max{im , jn} appears twice, althoughpossiblywith zero exponent. If rk ̸= 0
(resp. sk ̸= 0), then rk = ei (resp. sk = fi), for some i ≤ M. The length of the resulting normal form for g in the
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language L∞ is then
M
∑
l=0

(rl + sl) +M =
m
∑
l=1
el +

n
∑
l=1
fl +M = D�.

It is clear that D ≤ D� ≤ 2D, as M = max{im , jn}. Combining this with the inequality in Proposition 3.2 we
obtain

D�

12 − 2 ≤
D
6 − 2 ≤ l(g) ≤ 3D ≤ 3D�

and hence L∞ is a language of quasigeodesic normal forms for elements of F.

Next we consider the multiplier languages Lx−10 and Lx−11 . It is proven in [8] that for R = {regular languages}
or C1 = {1-counter languages} we have Lx ∈ R (resp. C1) if and only if Lx−1 ∈ R (resp. C1). Hence it suffices
to consider only the multiplier languages Lx−10 and Lx−11 .
Proposition 3.4. The language Lx−10 = {⊗(u, v) | u, v ∈ L∞, ux−10 =F v} is regular.

Proof. Let g ∈ F with L∞ normal form

u = ar0bs0#ar1bs1# ⋅ ⋅ ⋅ #arMbsM

and infinite normal form w. We consider two cases, depending on whether wx−10 is already in infinite normal
form, or must be simplified in order to obtain the infinite normal form.

First suppose that wx−10 is in infinite normal form. This occurs if and only if any one of the following
conditions holds:
(1) The expression w contains no x0 terms to a positive exponent, that is, r0 = 0.
(2) The expression w contains x1 to a nonzero power, that is, r1 ̸= 0 or s1 ̸= 0.
(3) The expression w contains x0 to a negative power, that is, s0 ̸= 0.
Write u = ar0bs0γ ∈ L∞, where γ is empty or has initial letter #. Then v = ar0bs0+1γ is the word in L∞ corre-
sponding to ux−10 .

Next suppose that wx−10 is not in infinite normal form, so that none of the above conditions hold. That
is, u = ar0##ar2bs2γ, where r0 > 0 and γ is either empty (and at least one of r2, s2 is zero) or begins with #.
If r2 = s2 = 0 and γ is empty, then u = ar0 and v = ar0−1 if r0 > 1, and u = a and v = ϵ if r0 = 1. Otherwise
wx−10 is an unreduced expression and has the form xe00 x

ei
i ⋅ ⋅ ⋅ x−fjj x

−1
0 for some i, j > 1. Rewrite this expression

as wx−10 = xe00 βx
−1
0 , where β = xeii ⋅ ⋅ ⋅ x−fjj .

From the infinite presentation for Fwehave the relations x0xj+1x−10 = xj for j ≥ 1.Weapply this repeatedly
to the word xe00 βx

−1
0 to obtain xe0−10 β�, where xi in β is replaced by xi−1 to obtain β�. As none of the exponents

are altered in this process, as words in L∞ we have
∙ u = ar0##ar2bs2γ,
∙ v = ar0#ar2bs2γ
where v denotes the string in L∞ corresponding to wx−10 .

Under either assumption, let K be the set of convolutions ⊗(u, v) where u and v have any of the above
forms„ altered so that any string γ is allowed to lie in the set {a, b, #}∗. It follows from Lemma 2.5 that K
is a regular language. Then Lx−10 = K ∩ ⊗(L∞, L∞) is a regular language and accepts exactly those convolu-
tions ⊗(u, v), where u, v ∈ L∞ and ux−10 =F v.

Wenowshow that themultiplier language Lx−11 is a deterministic non-blind1-counter language. In Lemma3.7
we prove this language cannot be regular.

Proposition 3.5. The language Lx−11 = {⊗(u, v) | u, v ∈ L∞, ux−11 =F v} is a deterministic non-blind 1-counter
language.

Proof. Let g ∈ F have L∞ normal form

u = ar0bs0#ar1bs1# ⋅ ⋅ ⋅ #arMbsM

and infinite normal form w. We will always use v to denote the representative in L∞ of gx−11 . We consider
several cases depending on the value of certain exponents.
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Case 1. Suppose first that s0 = 0, that is, the infinite normal form w for g does not contain x0 to a negative
exponent. We consider three subcases.

Case 1.1. If u = ar0 for r0 ≥ 0, then v = ar0#b.

Case 1.2. If u contains at least one # symbol, then wx−11 is the infinite normal form for gx−11 if at least one of
the following conditions holds:
(1) The expression w contains no x1 terms to a positive exponent, that is, r1 = 0.
(2) The expression w contains an x1 to a negative power, that is, s1 ̸= 0.
(3) The expression w contains x2 to a nonzero power, that is, r2 ̸= 0 or s2 ̸= 0.
If we write u = ar0#ar1bs1γ ∈ L∞, where γ is empty or begins with #, then v = ar0#ar1bs1+1γ.

Case 1.3. If none of the previous conditions hold, we must have u = ar0#ar1γ ∈ L∞ with r1 > 0 and γ either
empty or γ = ##γ�. The corresponding infinite normal form is then w = xr00 x

r1
1 η, where η is either empty or

η = xrii ⋅ ⋅ ⋅ x
−sj
j for some i, j > 2 and rk , sl > 0. Then wx−11 = xr00 x

r1
1 ηx
−1
1 . As in Proposition 3.4, this simplifies

to wx−11 = xr00 x
r1−1
1 η�, where x±1i in η is replaced by x±1i−1 to obtain η

�. Since η and η� have the same sequence
of exponents, we have, for r1 > 0,
∙ u = ar0#ar1γ,
∙ (1) v = ar0#ar1−1 if r1 > 1 and γ is empty,

(2) v = ar0 if r1 = 1 and γ is empty,
(3) v = ar0#ar1−1#γ� if r1 > 1 and γ = ##γ�.

Let K denote the regular language of convolutions ⊗(u, v) arising from Case 1, with the string γ replaced by
any string in {a, b, #}∗. Then K is the union of four languages, splitting Case 1.3 according to whether γ is
empty or not. The languages of pairs ⊗(u, v) arising from Cases 1.1 or 1.3 with γ empty are clearly regular,
and it follows from Lemma 2.5 that the languages arising from Cases 1.2 and 1.3, with γ nonempty in the
latter, are also regular. Thus K is a regular language, and Ls0=0 = K ∩ ⊗(L∞, L∞) is a regular language, and
contains exactly those convolutions of strings covered by Case 1.

Case 2. Next suppose that s0 ̸= 0, so w ends in x−10 , and hence wx−11 is not the infinite normal form for gx−11 .
We will describe Ls0 ̸=0, which is the set of all strings ⊗(u, v) ∈ Lx−11 in which u satisfies s0 ̸= 0.

We will apply the relation x−1i x
−1
j = x−1j+1x

−1
i for i < j repeatedly, to “push” the final x−11 to the left in this

expression, at the “cost” of increasing its index.
Let

w = xe0i0 x
e1
i1 ⋅ ⋅ ⋅ xemim x

−fn
jn ⋅ ⋅ ⋅ x−f1j1 x

−f0
j0 (3.2)

be the infinite normal form for g, where f0 = s0 ̸= 0. Applying the relation above f0 times to the expression
wx−11 yields

xe0i0 x
e1
i1 ⋅ ⋅ ⋅ xemim x

−fn
jn ⋅ ⋅ ⋅ x−f2j2 x

−f1
j1 (x1+f0)

−1 x−f00 .

If 1 + f0 ≤ j1, then this process is completed, and we must determine if the resulting word is reduced, or can
be simplified further. If 1 + f0 > j1, then we can apply the relation again f1 times to obtain

xe0i0 x
e1
i1 ⋅ ⋅ ⋅ xemim x

−fn
jn ⋅ ⋅ ⋅ x−f2j2 (x1+f0+f1 )−1x

−f1
j1 x
−f0
0 .

We continue applying this relation until the first time we obtain x−1R , where either
∙ R = 1 + f0 + f1 + ⋅ ⋅ ⋅ + fn > jn, or
∙ R = 1 + f0 + f1 + ⋅ ⋅ ⋅ + ft ≤ jt+1 for some 1 ≤ t ≤ n − 1.

Case 2.1. Suppose that R > jn. We must consider the relative values of R and M = max{im , jm}.
First assume that R > M. Then the infinite normal form expression for gx−11 is

xe0i0 x
e1
i1 ⋅ ⋅ ⋅ xemim x

−1
R x
−fn
jn ⋅ ⋅ ⋅ x−f2j2 x

−f1
j1 x
−f0
0

with f0 ̸= 0. It follows that the representatives of the elements g and gx−11 in L∞ are:
∙ u = ar0bs0γ, where γ is either empty or starts with #, ends with a or b and contains exactlyM # symbols.
∙ v = ar0bs0γ#R−Mb. Note that the number of # symbols in this word is R, as required.
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q0start q1 q2 q3
(bb)+2

(aa)

(aa), (
b
b)>0,+1, (

#
#)>0,−1

(⬦#)>0,−1 (⬦b)=0

(⬦#)>0,−1

Figure 2. A deterministic non-blind 1-counter automaton used in Case 2.1 of the proof of Proposition 3.5 when R > M. The start
state is q0 and the accept state is q3.

The deterministic non-blind 1-counter automaton given in Figure 2 accepts exactly those strings of the
form ⊗(ar0bs0γ, ar0bs0γ#R−Mb) in which the suffix of the convolution has the correct number of (##) symbols
and γ ∈ {a, b, #}∗. We denote this language by L�. The automaton operates as follows.
∙ After reading (aa)

i(bb) the value of the counter is set to 2, and the automaton is in state q1.
∙ For each (bb) read the counter is increased by 1, and for each (##) the counter is decremented by 1, so that

after reading a prefix of a string from L∞ containing p copies of the symbol (##), the value of the counter
is equal to

1 + f0 + f1 + ⋅ ⋅ ⋅ + fp−1 − p.

∙ If the counter returns to zero while at state q1 after having read p copies of the symbol (##), we are not
in Case 2.1 and the input is rejected, since the edge leaving q1 for state q2 checks that the counter is
positive.

∙ Once the automaton has read the string ⊗(ar0bs0γ, ar0bs0γ), the value of the counter is

1 + f0 + f1 + ⋅ ⋅ ⋅ + fn −M = R −M

since we have read all the (bb) letters in ⊗(ar0bs0γ, ar0bs0γ) andM (##) letters. Recall thatM = max{im , jn}.
From here the input is accepted precisely if the remaining letters to be read are ⊗(ε, #R−Mb), as verified
by the automaton.

Then LR>M = L� ∩ ⊗(L∞, L∞) is a deterministic non-blind 1-counter automaton which accepts exactly those
strings from Case 2.1 which satisfy R > M.

If R = M, which can occur if and only if R = im, we claim that the infinite normal form for gx−11 is either

xe0i0 x
e1
i1 ⋅ ⋅ ⋅ xem−1im x−fnjn ⋅ ⋅ ⋅ x−f2j2 x

−f1
j1 x
−f0
0 if em > 1, (3.3)

or
xe0i0 x

e1
i1 ⋅ ⋅ ⋅ xem−1

im−1 x−fnjn ⋅ ⋅ ⋅ x−f22 x−f1j1 x
−f0
0 if em = 1, (3.4)

that is, in (3.4) we have im−1 ̸= jn and hence there is no additional cancelation of terms through application
of relations from Pinf . We justify this statement as follows.

If im−1 = jn, as we began with a reduced expression in the infinite normal form for g, we must have
im = im−1 + 1 = jn + 1. In Case 2.1, it is always true that

1 + f0 + ⋅ ⋅ ⋅ + fb ≥ jb+1 + 1

for all 0 ≤ b ≤ n. So
1 + f0 + f1 + ⋅ ⋅ ⋅ + fn−1 ≥ jn + 1

and it follows that
R = 1 + f0 + f1 + ⋅ ⋅ ⋅ + fn ≥ jn + 2 = im + 1,

in which case R ̸= im. Thus im−1 ̸= jn and (3.4) is the infinite normal form for gx−11 .
Again letting ux−11 =F v, in this case we have

∙ u = γ#saem , where γ ends in a or b,
∙ v = γ#saem−1 when em > 1 and v = γ otherwise.
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q0start q1 q2 q3

q4q5 q6

(aa)

(bb)+2 (##)>0,−1

(aa)>0, (
b
b)>0,+1, (

#
#)>0,−1

(#◊)>0,−1

(##)>0,−1

(aa)=0

(aa)

(a◊)

(#◊)>0,−1
(a◊)=0

Figure 3. A deterministic non-blind 1-counter automaton used in Case 2.1 of the proof of Proposition 3.5 when R = M. The start
state is q0 and accept states are q4 and q6. The top path is followed when em > 1 and the bottom when em = 1.

The 1-counter automaton in Figure 3 accepts exactly those convolutions of elements of the above forms
with γ ∈ {a, b, #}∗. The top line of states and transitions is followed when em > 1 and the bottom line
when em = 1. Note that the value of the counter must equal 0 when the difference in the words is detected by
the automaton. Intersecting the language accepted by this machine with ⊗(L∞, L∞) yields a language LR=M
consisting exactly of those convolutions of strings accepted in Case 2.1 with R = M.

If R < M, then we must have M = im and we consider three scenarios for the strings u, v ∈ L∞.
(1) The generator xR does not appear in the infinite normal form for g, and hence we have

∙ u = γ#arR−1bsR−1##η,
∙ v = γ#arR−1bsR−1#b#η.

(2) The generator xR does appear in the infinite normal form for g, as does xR+1 and hence we have
∙ u = γ#arR#arR+1#η,
∙ v = γ#arRb#arR+1#η.

(3) The generator xR does appear in the infinite normal form for g but xR+1 does not, and hence we have
∙ u = γ#arR##η,
∙ v = γ#arR−1#η
as in Case 1.3.

In all three cases above, η ⊂ {a, #}∗.
A finite state machine accepting convolutions of the above strings must check that the difference in the

strings comes at the correct position; for this we require a single counter.
We nowbuild a 1-countermachinewhich accepts the language of all strings⊗(u, v) as abovewith γ and η

replaced with an arbitrary string from {a, b, #}∗. Each ⊗(u, v) in this language is the concatenation of a string
from a prefix language with a string from a suffix language. The prefix language is a non-blind deterministic
1-counter language based on the same counter instructions as in Figure 3, and below we explain why the
counter must have value 0 to transition between the two languages. The suffix languages, one for each type
above, are all regular according to Lemma 2.5. The prefix and suffix languages are given in the following
table, where γ and η denote words in {a, b, #}∗.

Type of pair Prefix language Suffix language FSA accepting suffix language

(1) {⊗(γanbk##, γanbk#b)} with n, k ≥ 0 {⊗(η, #η)} M1
(2) {⊗(γ#an#, γ#anb)} with n ≥ 1 {⊗(ak#η, #ak#η)} with k > 0 M2
(3) {⊗(γ#an , γ#an)}with n ≥ 0 {⊗(a##η, #η)} M3
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q0start q1 q2 q3

M1 M3 M2

(aa)

(bb)+2 (##)>0,−1

(aa)>0, (
b
b)>0,+1, (

#
#)>0,−1 (##)>0,−1

(#b)=0
ε=0

(aa)=0

(aa)

ε (#b)

Figure 4. A deterministic non-blind 1-counter automaton which verifies that the change in u and v from the case R < M occurs
at the correct position in the word. The start state is q0 and accept states are the accept states from the finite state machines
M1 ,M2 and M3. An arrow terminating at one of these machines is understood to terminate at the start state of the machine.

Figure 4presents a 1-counter automatonwhich accepts the language of convolutions of concatenations of
a prefix and suffix from the above table. Any arrow terminating at a state labeledMi for i = 1, 2, 3 is assumed
to terminate at the start state of that machine. The ε edges can be removed but are used to give the simplest
depiction of the machine.

This automaton initially operates with the same counter instructions as in Figures 2 and 3, that is, (bb)+2
initially followed by (bb)>0,+1 and (##)>0,−1, as in Figures 2 and 3. Note that after reading a prefix in which
there are p copies of the symbol (##), the value of the counter is equal to

1 + f0 + fi1 + ⋅ ⋅ ⋅ + fip−1 − p.
In the case R < M, we have 1 + f0 + f1 + ⋅ ⋅ ⋅ + fp−1 > p for all p, and we have R = 1 + f0 + f1 + ⋅ ⋅ ⋅ + fn. If ⊗(u, v)
arises in the case R < M, the value of the counter will first equal 0 when R symbols of the form (##) have been
read. If we divide ⊗(u, v) into a prefix p and suffix s using the above prefix and suffix languages, the counter
will first equal zero after the final (##) in p has been read. Hence we verify in the machine in Figure 4 that the
value of the counter has value 0 after the final (##) in the prefix word before transitioning to the suffix word.

Let LR<M denote the intersection of the language accepted by the machine in Figure 4 with ⊗(L∞, L∞).
Then L1 = LR<M ∪ LR=M ∪ LR>M is the language consisting exactly of those convolutions of strings described
in Case 2.1.

Case 2.2. For the remaining case, suppose that 1 + f0 + f1 + ⋅ ⋅ ⋅ + ft−1 = t for some t ≤ jn. Beginning with the
expression in (3.2) for the infinite normal form of g, we can write the infinite normal form for gx−11 as

xe00 ⋅ ⋅ ⋅ xemim x
−fn
in ⋅ ⋅ ⋅ x−fw+1jw+1 x−1t x−fwjw ⋅ ⋅ ⋅ x−f00 . (3.5)

We again consider subcases, depending on whether or not the expression in (3.5) is the infinite normal form
for gx−11 . In each case, we show that the language {⊗(u, v)} of accepted words in that case is the concatena-
tion of a prefix language and a suffix language. The suffix language is always a regular language. The prefix
language is always a deterministic non-blind 1-counter language. While it first seems like the language of
all possible prefixes is also regular, we must use a counter to ensure that the difference between the strings
u and v occurs at the proper place in the string. We again use the counter instructions (bb)+2 followed by
(bb)>0,+1 and (##)>0,−1, as in Figures 2 and 3. Note that after reading a prefix in which there are p copies of the
symbol (##), the value of the counter is equal to

1 + f0 + fi1 + ⋅ ⋅ ⋅ + fip−1 − p.
When1 + f0 + fi1 + ⋅ ⋅ ⋅ + fit − t = 0,weare in aposition to read the additional xt letter introducedbypermuting
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q0start q1 M

(aa)

(bb)+2 (a#)=0

(aa)≥0, (
b
b)>0,+1, (

#
#)>0,−1

Figure 5. A deterministic non-blind 1-counter automaton which accepts exactly those strings from Case 2.2.1 with
γ, η ∈ {a, b, #}∗. The start state is q0 and the accept states are the accept states of M. Any arrow terminating at M is assumed
to terminate at the start state of M.

the x−11 past generators with smaller indices using the group relations. The prefix string always terminates
with the difference resulting from the newly introduced generator x−1t . In Case 2.2.1, this difference is the
removal of an “a” symbol to obtain the reduced expression for gx−11 . In Case 2.2.2, the prefix string always
terminates with the symbol (#b) where the “b” corresponds to the x

−1
t .

Case2.2.1. If (3.5) is not the infinite normal form for gx−11 , then t ̸= jw+1, there is an index p ≤ m so that ip = t,
and xt+1 is not present in the normal form for g to any nonzero power, that is, ip+1 ̸= t + 1 and jw+1 ̸= t + 1.
This case is analogous to Case 1.3 above, and we can write
∙ u = γart##η,
∙ v = γart−1#η.
Note that each ⊗(u, v) of the above form can be written as a prefix ⊗(γa, γ#) and a suffix from the language
{⊗(##η, η)}. If we replace γ and η with any strings from {a, b, #}∗, then it follows from Lemma 2.5 that the
language of all possible suffixes is regular. LetM denote the finite state machine accepting these suffixes. As
explained above, we require that the value of the counter be 0 to transition from a prefixword to a suffixword.

Figure 5 contains a deterministic non-blind 1-counter automaton accepting concatenations of prefix
and suffix words of this form. Let L2.2.1 be the intersection of the language accepted by this machine with
⊗(L∞, L∞). Then L2.2.1 is exactly the set of convolutions described in Case 2.2.1.

Case 2.2.2. Now suppose that equation (3.5) is the infinite normal form for gx−11 . This occurs in three ways:
(1) If x−1t is already in the normal form of g, then

∙ u = γ#artbst#η with st ̸= 0,
∙ v = γ#artbst+1#η.

(2) If x−1t is not in the infinite normal form for g, but xt and either xt+1 or x−1t+1 are present, then
∙ u = γ#art#art+1bst+1#η with rt > 0 and rt+1 + st+1 > 0,
∙ v = γ#artb#art+1bst+1#η.

(3) If both xt and x−1t are not present in the infinite normal form for g, then
∙ u = γ#art−1bst−1##η,
∙ v = γ#art−1bst−1#b#η.
We now claim that the set of all strings of types (1), (2) and (3) above form a non-blind deterministic

1-counter language. We again build a machine which accepts the language of such strings with γ and η
replaced by any string in {a, b, #}∗. In each casewe note that the set of suchwords can be divided into a prefix
language which is a 1-counter language and a suffix language which is regular, and the value of the counter
must be 0 to transitionbetween the two languages. Theprefix and suffix languages for each type of pair⊗(u, v)
listed in Case 2.2.2 are given in the following table.

Type of pair Prefix language Suffix language FSA accepting suffix language

(1) {⊗(γ#anbk#, γ#anbk+1)} with n ≥ 0, k ≥ 1 {⊗(η, #η)} M1
(2) {⊗(γ#an#, γ#anb)} with n ≥ 1 {⊗(aη, #aη)} ∪ {⊗(bη, #bη)} M2
(3) {⊗(γ##, γ#b)} {⊗(η, #η)} M1
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q0start q1

M1 (Type (1))

M1 (Type (3)) M2 (Type (2))

(aa)

(bb)+2

(aa)>0, (
b
b)>0,+1, (

#
#)>0,−1

(aa)=0

(bb)=0(#b)=0 (bb)

(aa)

(#b)

(#b)

(bb)

Figure 6. A deterministic non-blind 1-counter automaton used in Case 2.2.2 of the proof of Proposition 3.5. The start state is
q0; any arrow terminating at M1 or M2 is assumed to end at the start state of the appropriate machine. Accept states of this
machine are the accept states of M1 and M2.

The reasoning given at the beginning of Case 2.2 implies that if ⊗(u, v) is a pair in this case, then the
value of the counter at the end of the prefix string is equal to zero This value is verified immediately after the
t-th (##) symbol is read by the machine in the prefix word.

Figure 6 contains a deterministic non-blind 1-counter language accepting concatenations of prefix and
suffixwords in this case, with arbitrary strings γ and η. Let L2.2.2 be the intersection of the language accepted
by the machine in Figure 6 with the regular language ⊗(L∞, L∞). Then the language of all ⊗(u, v) accepted
in Case 2.2 is exactly L2 = L2.2.1 ∪ L2.2.2 which is a deterministic non-blind 1-counter language.

Let Ls0 ̸=0 = L1 ∪ L2, and it follows that Lx−11 = Ls0=0 ∪ Ls0 ̸=0 is a deterministic non-blind 1-counter lan-
guage, as required.

We have now proven the following theorem.

Theorem 3.6. Thompson’s group F is deterministic non-blind 1-counter graph automatic with respect to the
generating set X = {x±10 , x

±1
1 } and symbol alphabet {a, b, #}.

Since 1-counter languages are (strictly) contained in the class of context-free languages, we obtain the corol-
lary that F is context-free graph automatic. We now show that we cannot improve upon this result using the
language L∞ if normal forms for elements of F.

Lemma 3.7. Thompson’s group F is not graph automatic with respect to the normal form L∞ and alphabet
{a, b, #} given above.

Proof. Suppose Lx−11 was a regular language, with pumping length p. The string ⊗(bp , bp#p+1b) is in the
language, representing
∙ ū =F x

−p
0 ,

∙ v̄ =F x−1p+1x
−p
0 =F x

−p
0 x−11 .
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By the Pumping Lemma for Regular Languages, ⊗(bp , bp#p+1b) can be partitioned into xyz with |xy| ≤ p,
|y| > 0 and xyiz ∈ Lx−11 for all i ∈ ℕ. However, the convolution ⊗(bp+m , bp+m#p+1b), for any m > 0, does not
lie in Lx−11 as the second word does not have the correct number of # symbols, that is, x−(p+m)

0 x−11 ̸= x−11+px
p+m
0 .

Hence Lx−11 is not a regular language.
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