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Abstract:  We investigate the formation of photonic crystal waveguide
(PCW) modes within the framework of perturbation theory. We derive a
differential equation governing the envelope of PCW modes constructed
from weak perturbations using an effective mass formulation based on
the Luttinger-Kohn method from solid-state physics. The solutton of this
equation gives the frequency of the mode and its field. The differential
equation lends itself to simple analytic approximations which reduce the
problem to that of solving slab waveguide modes. By using this model, we
demonstrate that the nature of the projected band structure and correspond-
ing Bloch functions are central to the behaviour of PCW modes. With this
understanding, we explain why the odd mode in a hexagonal PCW spans
the entire Brillouin zone while the even mode is cut off.
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1. Introduction

Photonic crystal waveguides (PCWs) enable control over many optical properties such as dis-
persion {1, 2] and slow light [3, 4]. These properties have been exploited to enable the creation
of devices such as temperature-tuned slow light PCWs [5], optical delay lines [6] and more
recently to enhance nonlinear effects such as third harmonic generation [7]. In such applica-
tions, the linear properties of PCWs are typically obtained using purely numerical methods.
These algorithms accurately calculate the frequencies and fields of PCW modes, and are often
employed because the problem is considered too complicated to admit an analytic treatment,
However, in solid-state physics a range of perturbative methods have been developed to give
physical insight into localised modes in bandgaps [8]. Perhaps the most well-known method is
the eifective mass approximation (EMA) as introduced by Luttinger and Kohn (LK) [9]. This
method has been applied to investigate solid state phenomena including the behaviour of donor
states in silicon [10] and the formation of superlattice band structures f11].

PCWs are typically constructed by removing a row of inclusions, creating a large perturba-
tion, and therefore the frequencies of their modes lie deep within the bandgap. Consequently,
their behaviour is typically analysed under these conditions. For example, Notami er al. showed
that the shape of dispersion curves of even PCW modes is due to an anti-crossing {12}, How-
ever, this only explains the shape of the dispersion curve of even modcs when they are deep in
the gap. Building on this, Petrov and Eich [1] qualitatively explained the shape of both odd and
even modes in hexagonal lattices by the folding of the Brillouin zone (BZ} as a result of the
introduction of a PCW. PCWs are perhaps experimentally most useful in the deep-gap regime
where their modes are tightly bound. However, in this paper we show that the nature of PCW
modes can be alternatively explained when traced back to the shallow limit.

Using the LK framework, we derive a differential equation governing the ficld and frequency
of PCW modes, where the PCW is constructed by a weak periodic perturbation in a two-
dimenstonal (2D) photonic crystal (PC). Crucially, the differential equation is written in terms
of the envelope function of the PCW mode rather than the modal fields themselves; this results
in the equation being of the same form as that governing a simple slab waveguide structure. By
making further approximations, we show that the differential equation admits analytic solutions
for a PCW constructed by altering a row of inclusions. The results obtained using our analytic
formulation are in excellent agreement with fully numerical calculations and work particularly
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Fig. 1. Contour plot of a quadrant of the second band in a hexagonal PC lattice with TE (H;)
polarisation, background index #, = 3.0, hole index, #, = 1.0 and cylinder radius g = 0.34
where 4 is the pitch, Dark shading indicates high frequencies while light shading indicates
low frequencics. Red line is the BZ edge for the 2D PC while the broken black line indicates
the edge of the BZ when the PCW is introduced. The projected band-edge trajectory (thick
blue linc) is obtained by finding the minimum frequency and its corresponding &, for cach
ky. The insct schematically iflustrates the projected band trajectory over the entire BZ.

well when modes are near the band-edge. While the method is applicd here to PCWs, the EMA
is quite general and has the potential to provide insight into a variety of photonic crystal devices
based on defects.

Previously, it has been shown that modes of point defects evolve from band extrema and
enter the band gap; that is, their fields resemble the band-edge Bloch mode modulated by an
envelope function [13]. For PCWs, periodicity along the direction of propagation is preserved
and thus their modes evolve from projected band-ecdges rather than band extrema. The projected
band-edge for a PCW zalong the v direction is defined by finding the frequency extremum for
each value of &, {14, 15]. This is tustrated in Fig. I, in which a PCW is constructed in a
hexagonal lattice along the T-K direction, which we take to be the £, axis. As this is at the top
of the bandgap we leok for frequency minima. At &y = ¢ the minimum frequency is at the
BZ cdge (hd = 27 /\/3), since the global band minimum is at the M point. At kvef ~ 1.956 the
minimum moves inside the BZ along two inequivalent trajectories, where the sccond frajectory
is the refiection of the first about k. = 2/+/3 as shown Fig, 1. The path of the frequency
minima within the BZ gives the projecred band-edge trajectary. PCWs in hexagonal lattices
are typically constructed by increasing the amount of dielectric, and thus form at the top of the
gap. We show in this paper that the formation of an odd and even mode in hexagonal PCWs
results from coupling between modes associated with the two inequivalent trajectories shown
in Fig. 1, We use this to explain why the odd mode spans the entire BZ, while the even mode is
cut off.

#114003 - $15.00 USD Received 9 Jul 2009; revised 7 Sep 2009; accepted 7 Sep 2009; published 15 Oct 2009
{C) 2009 OSA 26 October 2009 / Vol. 17, No. 22/ OPTICS EXPRESS 19631




CHON® O OOOoo
OOOVL_OOOO

AN=d @ * AN=d ®

Fig. 2. Schematic showing parts of infinite PCs with period o each with a PCW. We express
the perturbation as a sum over columns for (a) square latticc PCW with period A = & and
(b} hexagonal lattice PCW with period A = 4. Filled circles indicate cylinders altered to
construct a PCW. Region between black lines indicates a single period of the perturbation.

The outline of this paper is as follows: Section 2 contains the derivation of the envelope
differential equation for PCWs in the simplest (non-degenerate) case in a form amenable to
numerical solution. In Section 3 we obtain analytic solutions to the differential equation for a
simple instance, namely, a square PC in TM {E;) polarisation. Section 4 deals with the PCWs
in hexagonal lattices and outlines how the introduction of the PCW causes the coupling of
degenerate band-edge trajectories. We discuss how this determines the formation of odd and
even PCW modes in different parts of the BZ.

2. Formulation

We commence by writing down the polarisation independent wave equation governing an infi-
nite 2D PC, composed of lossless dielectric, in the x-y plane:

{(vax)—&‘i’c(r}%] Eg(r) =0, (n

where £pc (r) denotes the permittivity of the photonic crystal. Here, ay is the freguency of the
mode with Bloch wavevector k and Bloch mode Ex(r). We construct our PCW such that it is a
periodic perturbation oriented along x {see Fig. 2). The wave equation governing the modes of
the PCW is

W, .
(V< Vx) = | gpc(r) + X, 86,1 | =2 | By (r) = 0. 2)
”

Here, @y, and Eg (r) are the frequency and fields of the PCW mode with associated Bloch
wavevector &, indicating that the modes of the PCW are Bloch modes duc to periodicity along
x. We have expressed the perturbation as an infinite sum over each of its periods, We show
below that this reduces the problem to a single period of the PCW. We note that although the
columns are of width A = d, more general perturbations of size A = md, where m is a positive
integer forming coupled-resonator optical waveguides [17] can also be made.

We choose to expand the eigenfunctions of the PCW, namely E; (r). in terms of the Bloch
modes of the infinite 2D PC. We use an extended zone scheme, whereby ail the PC bands are
folded out such that we can usc a single wavevector k ranging over all of reciprocal spacc to
specify a point in the band-structure uniquely (see Appendix of [9]). The ansatz takes the form
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B, () = [ dkClk)EA(r), )

where the integral is over all of k.. Our ansatz implies that we look for PCW mode selutions in
the form of Bloch modes modulated by an envelope function in the direction transverse to their
propagation. The function C(ky) tells us how we superpose Bloch modes in reciprocal space to
construct the PCW mode, E; (r). We now substitute Eq. (3) into Eq. (2) making use of Eq. (1).
Taking the inner product with EJ, and utilising the normalisation condition, fi,2 epc{r)EL (1)
Ex(r)d*r = M8(K' —K), where M is a normalisation constant, gives the effective-mass-like
equation:

M[0F g~ 0 | ISt K= 0, [ ahClh) [ dr S 82, (0B 00 ). @
Pl

Here, the normalisation constant is M = (21} & /Q, defined in terms of the electric energy over

the unit cell, & = [ €pc(r) 1 |E£',-.k,_y(r)| l2d2r, and the area of the unit cell, Q. Eq. (4) thus
shows how the introduction of a PCW couples Bloch modes.

Since we are deriving a band-edge theory, we are looking at perturbations where 6g,(r)
is shallow, or equivalently, the change in electric energy in each period of the PCW can be
treated as a shallow perturbation. The function C(k,) is then highly localised in reciprocal
space because the PCW modes are loosely bound. The dominant Bloch contribution in Eq.
(4) is then the mode with Bloch wavevector corresponding to the peak of C(k;). If there are
multiple points in the BZ which have the same frequency at a given value of k,d (for example
kyd > 1.956 in Fig. 1), the function C(,.) has multiple narrow peaks in reciprocal space. Both
single and multiple peak cases arise in PCs with typical parameters; however, in this section
we assume that the perturbation does not cause any coupling between these peaks and leave the
analysis of the coupled case for Section 4.

We note here that a similar treatment was previously reported by Charbonneau-Lefort et
al {16}, but that their study made the additional assumption that the perturbation, that is, the
change in dielectric constant, did not vary rapidly over a unit cell. Since typtcal PC perturba-
tions contain abeupt changes in dielectric constant, we do not make this assumption here, We
however make an alternative assumption: recalling that C{4,) is & highly localised function,
the Bloch modes Ei{r) do not change much in the region of reciprocal space where C(k)) is
large. Therefore, for small perturbations, Eq. (4) is dominated by Bloch modes with &y, ~ kg,
where k. is the point in reciprocal space where C{k,} is centered. Bloch modes have the form
Ei(r) = ug ; (r}e™" (where ug 4, (v} is a periodic function with the period of the lattice) and
we thus approximate ug_ g, ~ Wi 4, We then immediately write Eg(r) ~ By _,‘.r_r(r)e"“‘i**“—.“}—".
The cquivalent replacement for E(r) in Eq. (4} is alse made, as both sides of the cquality are
of appreciable magnitude only when &) is near &;,, and thereforc these points contribute most
to the PCW mode. '

Our goal is to obtain a differential equation satisfied by the envelope function in real space
50 we must take the inverse Fourier transform of our equation. We thus multiply by exp{i(k. —
ki, )y'] and integrate over k... The right hand side (RHS) of Eq. (4) is then '

: : . B . I VTS R
o, / ok / dkyClky) / APy 8e, (VB . (1) By g, (r)elfs it =nghtur, (5)
. . ) > )
We now introduce the function
f)y = f dlhy Clly el (6)
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where the integral is again over all k,. We show below that f{) is the envelope function of the
PCW mode in the direction perpendicular to its propagation. Using this definition we obtain for
Expression (5),

21l f) f dx Y, 8ep(1)Ef 4, (1) Ep iy, (1), (7
P

Using Eq. (6), the left hand side (LHS) of Eg. {4), after multiplication by exp{i(k)',. — gy )y} and
integration over all £, reads

Mlw? o — o] f) 8k — k). (3)

"‘.\' d?

2 3 . - i i
Here, €% _iajqy 1S aN Operator, expanded about the frequency extremum in a Taylor series.

This aperates on f(»') and its mixed subscript is mathematically a result of inverse Fourier
transforming with respect to &) but not k. Physically, this is becanse the PCW is periodic in the
x direction, but not in y, and therefore the modes propagate with specified 4. The confinement
of the modes in the y direction means & mode is associated with a range of %, and hence the
differential equation is for the envelope function in the y direction. The operator thus expands
about a frequency extremum at a given k, in powers of —id/dy’. This frequency extremum
is simply the projected band-edge. The expansion in powers of —id/d)’ 1s related to how the
band surface curves in the k, direction along the projected band-edge trajectory. Since f{y)
is a slowly varying envelope function, we can take only the leading order term in —id/dy.
Typically, this means the operator is of the form —d” /dy'?, however in Section 4 we show that
points exist where higher order derivatives need to be included.

Throughout, we have kept the quasi-periodicity of the Bloch modes in the x direction, which
we now use to simplify the summation in Eq. (7). We proceed by replacing the integral over all
space with an integral of the Bloch modes over a single period of the perturbation multiplied by
an infinite sum over the phases of the Bloch modes over each period of the perturbation. Using
the Poisson summation formula, the integral in Eq. (7) becomes

b

RA) [ e Bele)EY g, (6) B () 30k, — ) EEL

Dropping the primes, we equate the LHS and RHS of our equation giving a differential
equation governing the PCW mode,

&)

0],y )= 0k, |14 [ dese(nl By, (7] 10 (10
where again we note that ey is the frequency of the PCW mode. Here the integral is over those
regions lor which §2(r) is non-zero. We recall that Ey 4, (r) is the clectric ficld of the Blach
mode at k, along the projected band-edge.

Finally the PCW mode is obtained from our ansatz Eq. (3), by again making the approxima-
tion ug(r) ~ uy g, (r), giving Eg (v} = f(}E; 4, (r). Thus, #(3) is the envelope function of
the PCW mode, which is expressed as a band-edge Bloch mode modulated by f{y).

3. Solution for TM polarisation in a square lattice

Equation (10) can be solved using a variety of numerical methods for arbitrarily shaped shallow
PCWs. This has several advantages over solving the wave equation directly using finite element
or finite difference methods. In our approach, calculating the modes of the periodic steucture is
separated from finding the modes of the perturbed structure. This means that we first calculate
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Fig. 3. An illustration of replacing a perturbation with another which preserves the change
in clectric energy. Red curve shows [, {[Eq, 4, (F)||dx for a Bloch mode at /4 = 0.2653
in a square PC with eylinder index n. = 3 background index 1, = 1 and radius @ = 0.34
where d is the pitch. Tac box with broken biue lincs corresponds to the arca-preserving
perturbation with height [/(2a) o |IEg g, (r) P efxiy.

the Bloch medes of the 2D PC, and with these, we solve Eq. {10) to obtain modes of the PCW.
We also note that Eq. (10) can be solved in a similar fashion to that for a symmetric graded
index slab waveguide. This is less numerically intensive than solving the full wave equation
directly.

In this section, we solve Eq, (10) analytically for a PCW constructed by uniformly altering
the refractive index of a row of cylindrical inclusions in a square lattice PC along the x direction
as shown in Fig. 2(a}. This leads to a uniform change in permittivity 8z in a row of cylinders.
The parameters of the PC we use for numerical examples are: cylinder index . = 3, background
index »p = 1 and eylinder radius a = 0.34 in TM (£:) polarisation. We begin by writing down
our operator along a projected band-edge trajectory, which, to first order, is quadratic in the ky
direction:

0, 4= ok L&
I R TR TS P
' 2 (1)
ar’ @ (k) ke kiy) o
g i = ) e =
ﬁ'_\—‘*t‘(-:f-':, SRR D.lf._l'(k\') {',J‘z
Here. @ik, &y, ) denotes the frequency along the projected band-cdge and Dy, {4} is the cur-

vature in the &, direction along the projected band-edge trajectory. We construct the PCW by
decreasing the index of a row of inclusions and therefore its mode appears at the bottom of the
bandgap. The projected band-edge trajectory for the first projected band-edge ranges from the
Y to the M point in the BZ and hence is non-degencrate. Our perturbations are shallow and
therefore the envelape function f{v) is slowly varying with respect to the lattice period. Thus,
when operating with w.;_:.-.—id,’t(r we keep only lowest order terms in the derivative. Equation (10)
now becomes

2, ooy Olkeky) 3 N Q ) : 2] g
o (ke ky, ) TU‘\)W} fv) = o, {E +ﬁ/cd.\ 5£E\Ek,\..k,1‘_(r)ﬂ T, (12
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Fig. 4. (a) Frequency of a PCW mode (dashed purple linc) moving off the projected band-
edge for PCW cylinder index s, = 2.9. Blue shading indicates the band. {b) Frequency
shift of {a) from the projected band-edge as a function of kyd. The dashed purple linc
is calculated from our theory, while red lines arc numerical calculations. Broken vertical
lines indicate the valucs of kyd for which field comparisons are made in Figs. 5(b) and 5(c)

where C indicates the integral is over the domain of the perturbation, namely the region where
d¢ is non-zero and uniform. We cannot yet solve this equation analytically because of the term
containing Bloch modes. The typical shape of this term is shown by the red curve in Fig. 3.
Since we are pursuing an analytic solution of this equation, we wish to replace this term with
one which is piecewise continuous, as shown by the dashed line in Fig. 3. Given that our for-
mulation is based on first order perturbation theory, the quantity governing the frequency of the
PCW modes is the total change in eleciric energy resulting from the introduction of the PCW.
Therefore, if we alter the shape of the change in electric energy as a function of y while preserv-
ing its tolal magnitude, we can solve for the frequency of the PCW miode exactly. We then make
the following replacement: [ 8 ||Ey, 4, (r)|[2dx — 1/(2a) [ 8&||Eg, x,,.(r)|Pdxdy, where C'
now indicates the perturbed domain in two dimensions. The inclusion of the integral over dy
and division by 2a ensures that the change in magnitude of the perturbation is unaltered. The
two curves in Fig. 3 thus show the form of this term before and after the alteration. As the area
under the two curves is the same they lead to the same total change in electric energy. We can
now solve for the frequency analytically. The cost of this simplification is that the resultant en-
velope function and corresponding fields inside the perturbation are slightly altered. This effect
is almost irrclevant for weakly perturbed PCWSs since most of the encrgy of modes is outside
the perturbation. Equation (12} then becomes

) ik k) d ] 2 Q 8y,
- k\__]( N —_ = |1 — X
ko)~ G | f0) = 0 |1 52

} 0. (a3

where 88; = [ Sedvdvi|{Eg, 4, (r}] . This equation has an internal salution {where 845, # 0)
and an external solution (where 84 = 0). In both cases, Eq. (13) is of the form of a one-
dimensional Helmholtz equation and is solved in the same fashion as a slab waveguide or
potential well. We begin with the external solution, where the equation simplifies to

o 2| s 2 Dylhy) 2en gyt
b\“’f —o ]1‘0) =10, o= 403(1\'.\-.1'61.)-) [(D (ke k) — o | (14)

with solution  f(v} = Ae™ ],
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Fig. 5. (a) Contour plot of |£:] fictd for a PCW mode constiucted from a projected band-
cdge Bloch mode and an envelope function calculated from Eq. (14) and Eq. (15). Parame-
ters as in text with n, = 2.9, /A = 0.245 and 4 = 1.782 (b) Cross sectional comparison
of (a) at x/d = 0 with a numerical calcutation. Here, the broken red ling is the numcrical
resuft, while blue line s calculated using our asymptotic formuiation. {c) Same as (b) but
with /A = 0.266 and k.d=2,962.

Here, t? is always positive, implying that guided solutions are obtained for modes evolving
from both the top and bottom gap-edges; that is, bound PCW modes exist when increasing or
decreasing the index of a row of inclusions. The internal sofution is

P ) e

—_— - (1) = . N . —
[¢2+ﬁ}fd) 0 P ot s ol k) # {15
with solutions  f{v) = Bcos{f3y) {¢ven solution).

For shallow perturbations there exists only a single PCW mode with an even envelope. Odd
envelope functions are associated with higher order modes due to strong perturbations and are
thus not discussed here. The appropriate boundary condition for hoth polarisations requircs
that the envelope function and its derivative be continuous at the boundary of the perturbation,
giving the transcendental equation

tan({fa) = a/B. (16)
An explicit form is obtained by taking a small argument approximation of tan(fa) and real-
ising that, typically in perturbation theory, the magnitude of the perturbation is larger than the
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corresponding shift in medal frequency and thus the sccond term in 872 is of leading order. With
the additional approximation wf_‘,/m(kx,kL).) ~ (ke &1y}, this gives

Diylk) [ @he kr)QN? 768\
8 A & ’

We have thus obtained a simple expression for the frequency of a PCW mode, analytically
expressing how the mode evolves from the band-edge. The quadratic dependence of the fre-
quency on the perturbation is typical of [{) perturbation theory. The PCW has a fundamental
made when 8&; # 0 and the mode emerges from the projected band-edge at all &, valucs. This
is shown for a PCW created by decreasing the index of a row of cylinders in Fig. 4(a). Here
we observe that the PCW mode “peels” off the projected band structure — by this we mean that
the dispersion curve of the PCW mode has a similar shape to the projected band-edge but is
shifted upward in frequency. The magnitude of this shift is different for each 4, and is governed
by Eq. {I7). The agreement between fully numerical calculations and our analytic theory is
shown in Fig. 4(b). The numerical method used throughout this paper employs Bloch modes
to calculate the reflection matrix of a half plane above and below the PCW as shown by de
Sterke er al [20]. As expected the agreement is best when the change in frequency from the
projected band-edge is smallest. Fig. 5 shows a comparison of numerical and analytic calou-
lations for the £, field of a PCW mode constructed by altering the refractive index of a row
of cylinders from #. = 3.0 to m,, = 2.9. Fig. 5(a) shows a contour plot of the waveguide mode
constructed by modulating a Bloch mode by the envelope function calculated from Egs. (14)
and (15). The result was indistinguishable from a contour plot calculated numerically. This is
highlighted in Figs. 5(b) and 5(c) where we compare |E,| calculated numerically and using our
analytic method at /A = 0.245 and &/A = 0.266. The agreement is better for the former, since
from Fig. 4(b) we observe that asymptotic mode! is more accurate when A(d/A) is smaller.

(a7

O, = w(kx: k.f_y) -

4. Degeneracy and solutions in hexagonal lattices for TE polarisation

In Sections 1 and 2 we mentioned that the introduction of a PCW breaks the symmetry of the PC
and can lead to coupling between degenerate projected band-edge trajectories. In this section
we illustrate that these types of degeneracies are central to understanding the evolntion of PCWs
in hexagonal PCs. Using our formulation we show that the coupling of these degenerate points
leads to the formation of two modes typically observed in hexagonal PCWs. In particular we
explain why the odd mode spans the entire BZ while the even mode is cut off.

We now consider the modes of PCWs constructed in hexagonal PCs, as shown in Fig. 2(b).
Figure 1 shows the projected band-edge trajectory for the second band of a hexagonat PC with,
cylinder index i, = 1, background index 17, = 3 and cylinder radius « = 0.3d for TE (H.)
polarisation. The projected band-edge trajectory moves along the BZ-edge and at ko ~ 1.956
the frajectory moves into the BZ, This point is a supercritical pitchfork bifurcation due to a
single minimum turning into two minima above and below the BZ-edge as well as a maximum
on the BZ edge. When Ay < 1.936 there is a single non-degenerate band-edge trajectory and
thus the PCW modes are obtained as in Section 3. The solution for the trequency of PCW
modes where the index of a row of air holes is changed to n,, = 1.05 is shown in Fig. 6(a).
Here we have plotted the frequency difference between the PCW mode and the projected band-
edge. The frequency difference is small and thus our asymptotic theory works well. When
kyd > 1.956, there are two projected band trajectories which have the same frequency and are
thus degencrate. The existence of a degeneracy means the degenerate modes have the potential
to couple under a perturbation. Therefore, the introduction of the PCW can cause coupling of
the Bloch modes along the two projected band-edge trajectories. We note that although the
band-structure calcuiated in Fig. | is for a particular set of parameters, the occurrence of the
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Fig. 6. (a) Comparison of numerical {red lincs) and asymptotic caleulations (broken bluc
line) for PCW mode frequency splitting with respeet to band-edge in region to the left of
bifurcation point. Parameters as in Fig. 1 with PCW cylinder index n,, = 1.05 (b) Compar-
ison of numerical {red lines) and asymptotic calculations (broken green and bluc lines) for
PCW mode frequency splitting with respect to band-edge in region to the right of bifurca-
tion point. The red line below the green line cannot be distinguished.

bifurcation point along M-K. is a common feature of the second band in hexagonal PCs for
TE polarisation. The band surface for any typical parameter set has a band minimum at the M
point, while the K point is a local maximurm as a function of &, ([14] pg. 76 and pg. 137). With
these two conditions, a bifurcation peint of the form shown in Fig. 1 must exist along M-K.

The effect of the coupling of degenerate points in the BZ has previously been analysed for
point defects in PCs [18] and is typical of degenerate perturbation theory [19]. We now show
that the treatment derived in Section 2 can be adapted to the degenerate case.

We commence our formulation from Eq. (4) in Section 2 outlining the coupling of points
in reciprocal space due to the introduction of a PCW. As there are two projected band-edge
trajectories for a given £, the Fourier transform of the envelope function has narrow peaks
centred on each of the trajectories. Provided we are not too close to the bifurcation point we

may write C(k,) = Cy (k, — kg,)) + ol — k‘(,j,)), where O (k. — A'(L:.)) and Cs (k- — 1’(,(.‘2‘.)) are the
functions associated with the two peaks centered on the upper and lower trajectory respectively.

Re-writing Eq. (4) in this form gives

M|l — | (Cl ~ k) otk —43H) 6k~ 1)
S ). ) (18)
—w} / dk, (C. (ke — ki, +Calky =K ) / Y 8, B (1} Ex{rld?r.
/4

. 1 : 2 - ; . . -
Noting that C, (k, — k(L;-)) and G (ky — kir)) are narrow features in reciprocat space, when one is
large the other is small. Therefore we separate Eq. (18) into two equations
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Fig. 7. Real part of Bloch modes (H; ficld) along the projected band-cdge, where black line
indicates cylinder boundary (parameters as in text). Green shading indicates zero amplitude
while red and bluc indicate large positive and negative amplitudes respectively. (a)} Shows
Bloch mode at kv = 0, which is odd with respect to x. (b) and (¢} show superposition of
Bloch modes at k. = & such that they are orthogonal over the perturbed cylinder. The
moedes then form {b) cven and (¢) odd superpositions with respect o x.

M@ sy~ ik~ k3 k)

» x

_— f (€1 k= K5y + Cathe k2 ) e f S 86, Bl (1) - Ex{r)dr
P

(19)

M|} . - o} | Colk, —KED Bk~ )
= o}, [ (Gl k) = Cath =43 )ty [ 56,5 (1) - Enctr)ar.
b5
We then proceed with each equation as in Sections 2 and 3, obtaining the matrix equation
of w;
(CUE‘ - w,li__,' :f ) + 7:("!\ 5((1 1 7{.‘(’ A 5{‘1" fl ()}) 0
m,i_!! i 2 4 w0 2n | =0 | (20)
TR 0621 (o, — w;‘.ﬂ ()T ddn -

where we have used the notation in Section 3, and where 84, refers to the overlap integral
over the perturbation of Bloch modes with wavevectors corresponding to points :’(}_E,‘ and lcf,j_]
respectively. Here, the operalors and the integrals in the disgonal ciements are identical duge to
reflection symmetry about the BZ cdge and the PCW centre, that is, &), = . We assume
the perturbation is lossless and thus the oft-diagonal terms are in general non-zero and are com-
plex conjugates of each other, 6£> = 647, The matrix 13 then Hermitian and 1s diagonalised
to give two equations

(0] — o’ Y+ wf“gé(‘" falvy=0
. — e — 06 P o=
he T Shmidd Sp DAL
o @1)
2 2 I.
[((u;_\_ o ;, )+ 5633} felvi=
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Fig. 8. Comparison of numecrics and analytic theory near the bifurcation point. Dashed
curves indicatce analytic theory, red lines indicate numnerical calculations while the band is
indicated by the orange shading. The blue ling is the even mode, while purple and green
lines arc odd modcs on the left and right of the bifurcation point respectively. The analytic
theory for the odd mode diverges near the bifurcation point. Dashed vertical line indicates
the bifurcation point.

Here, matrix diagonalisation is equivalent to choosing the Bloch mode superpositions such that
they are orthogonal to each other over the perturbation. Therefore, £+ and 84855 correspond
to the change in electric energy associated with the two Bloch modes. Equations (21) governing
F4{(y) and fz(y) are now uncoupled giving envelope functions and frequencies of the two PCW
modes. The frequency difference between the PCW mode and the projected band-edge is shown
in Fig. 6(b). The asymptotic theory agrees better with numerical results when A(d/A) is smaller.

We have shown that the introduction of the PCW breaks the degeneracy associated with
the projected band-edge trajectory and that two modes form. Equation (21) gives the envelope
functions associated with the two PCW modes. Recalling from Section 3 that the envelope
functions are even, we conclude that the underlying Bloch modes determine the symmetry of
the PCW modes. In diagenalising the matrix in Eq. (20) to obtain (21) we have chosen the Bloch
mode superpositions such that the off-diagenal terms vanish. Since the PCW is symmetric
about its centre, its modes must be either even or odd, and thus the superposition of Bloch
modes that diagonalisc the matrix in Eq. (20) must be those that are even and odd about the
waveguide centre. Such linear combinattons are shown in Figs. 7(b) and 7(c) for ke = .
For 1.956 < k. < 1 the projected band-edge trajectory is instde the BZ, the Bloch maodes
are complex, and hence the appropriate superposition of Bloch modes changes. However, the
diagoralisation condition remains unchanged and the modes remain either odd and even. We
have thus established that the two envelope equations associated with the degenerate scction of
the BZ (k. = 1.956) yield an cven and ar odd PCW mode. Fig. 7(a) shows the Bloch mode at
kvd =0, which is clearly odd symmetric about x; hence the PCW mode at this peint is also odd
symmetric. Since the projected band-edge trajectory has two paths at the BZ-edge and a single
path at the BZ centre (see Fig. 1), we expect one of the PCW modes to cut off at the bifurcation
point. Since the Bloch made at the BZ centre is odd symmetric then the even mode must cutoff
at the bifurcation point while the dispersion curve of the odd mode spans the entire BZ. Fig.
8 shows the dispersion curves in the vicinity of the bifurcation point for waveguide cylinder
index s, = 1.05. Qur theory predicts that, for shallow perturbations, the even mode cuts off at
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the bifurcation point as the two projected band-edge trajectories merge. Analytically we know
that the electric energy term must vanish for one of the equations in {21), however we note that
in the vicinity of the bifurcation point the energy term is numerically sensitive to the value of
ky and is often not exactly zero when computed.

3. Discussion and conclusien

The theory in Section 4 makes assumptions that do not hold close to the bifurcation point
(ked ~ 1.956). Accordingly, we now discuss the physics of the PCW mode in the vicinity of
this point. In the above, we have written C(k,) as a superposition of C) {k, — AEI‘)) and Ca{ky, —

.'L‘(,j)) and have postulated that when one is large the other is small. This assumption clearly

breaks down as we get sufficiently clese to the bifurcation point, for which the spacing between
upper and lower projected band-edge trajectories becomes comparable to the width of Cy (&, —

k.(,_ll,)) and Co{k, — kf,_ )). Furthermore, a stronger assumption is that we have used an effective

2
mass approximati(m}, that is, we have taken the band-edge to be quadratic to first order. At
the bifurcation point the band-edge is quartic to first order. This is because the curvature goes
from being positive in &, at M to being negative at K. Since the band-edge is symmetric in
k, about the M-K line the frequency of the band-surface must scale quartically in k&, at the
bifurcation paint. This means that the curvature term Dy, (k;), diverges. Thus from Eq. (17),
[y, — kv, kz,)] diverges as shown by the behaviour of the dashed green and purple curves
in Fig. 8. The assumption that the band-edge is quadratic to leading order is not necessary
in our formulation and we can choose to keep higher order terms in d/dy. Analytic solutions

-potentially exist when keeping terms of order &% /a@v*, but are beyond the scope of this paper.
The effective mass approximation thus breaks down when approaching the bifurcation point,
either from the left or from the right. However, we assert that this region accounts for only a
small fraction of the BZ and from Figs. 6(a), 6(b) and 8, we observe our results retain accuracy
very close to the bifurcation point. Furthermore, the symmetry arguments we have made based
on odd and even modes hofd at this point.

1n this paper we have only shown examples of PCWs constructed by altering the index of
a row of cylinders, however, our treatment works equally for PCWs created by constructing a
periodic perturbation of any form, such as by altering the shape, position or size of inclusions
periodicalty. Moreover, although we derived our formulation for PCWs in 2D PCs, the only
assumptions we have made about the unperturbed structure is that it be periodic and lossless,
and it admits a complete set of Bloch mode sofutions. Since our formulation is polarisation
independent we can apply it to photonic crystal slabs. The envelope function is then the in-
plane envelope function, while out-of-plane confinement due to the slab is unaffccted by small
perturbations.

We complement the previous figures showing the mode evolution with an online animation
(Fig. 9) demonstrating the changes in the odd and even modes as the reltactve mdex of the
PCW cylinders increases from n,. = 1.1 to i, = 3.0. From this, we sce that the even mode has
bigger frequency shifts than the odd mede throughout this index range, and so our asymptotic
estimate for its frequency is less accurate than for the odd mode. While the estimate breaks
down for the odd mode at the bifurcation point, the cutoff of the even mode is accurately pre-
dicted when the perturbation is small. Nevertheless, our asymptotic model incorrectly predicts
that the cutoff point for this mode does not change as the perturbation strength increases. This is
because in our analytic formulation, cutoff occurs when the overlap of the projected band-cdge
Bloch mode with the perturbation is zero, which, for a uniform perturbation, occurs at a fixed
value of k.d. :

Our asymptotic theory is based primarily on band-edge Bloch modes and the topology of
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Fig. 9. {583 KB) Singlc frame cxcerpt of an animation (Media 1) showing dispersion rela-
tions of PCW modes as the index of PCW cylinders ranges from a,, = 1.1-3.0 for hexagonal
lattice parameters as in Scction 4. The red lines are numerical caleulations while the green,
purple and blue lines usc our asymptotic treatment. The black line indicates the projected
band-cdge.

projected band-edges. Therefore, the primary restriction on the accuracy of our formulation
for larger perturbations is that we only consider the contribution of the Bloch mode' along
the projected band-edge trajectory. We previously argued that this approximation is valid for
modes of shallow PCW3s since they arc highly localised in reciprocal space; however, as PCW
modes move deeper into the bandgap they become more tightly bound, and thus spread in
reciprocal space. Hence, rather than approximating the integral in Eq. (4) by taking only the
Bloch modes along the projected band-edge, more Bloch modes need to be taken inte account.
By taking a sufficient number of Bloch mode components it is possible to obtain sotutions for
the frequency and fields of modes of strongly perturbed PCWs. However, such solutions are
not available analytically.
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"I fact we chose to take only the periodic function w4, (r) at this peint rather than the Blech mode itself.
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