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Photonic erystal fibers often consist of rotationally symmetrie inclusions in an otherwise uniform background
medium. The band diagrams and modes of such structures can be efficiently caleulated using geometry-specific
methods that exploit this rotational symmetry. Until now, these have only been applied to fibers in which the
inclusions are circular and have a uniform refractive index. Here, we generalize this to arbitrary rotationally
symmetric inclusions using a transfer matrix approach, and we implement this approach in an approximate
scalar method, which is valid for low-index contrasts and in the rigorous Rayleigh multipole method. We apply
the methods to structures incorporating inclusions with graded refractive indices and to structures incorpo-

rating metal rings. © 2009 Optical Society of Ameriea
OCIS codes: 230.4170, 310.5448, 310.6860, 350.2460.

1. INTRODUCTION
Photonie erystal fibers (PCFs) are optical fibers composed
of a lattice of inclusions in a background matrix surround-
ing a central core [1]. The majority of PCFs studied con-
sist of a lattice of simple high-index dielectric rods or cy-
lindrical holes around a central core. More recently,
however, fibers based on inclusions with a more compli-
cated structure have begun to be investigated involving
layered, cylindrically symmetric inclusions as shown
schematically in Fig. 1(a). Examples include PCFs based
on an array of high-index rings around a central core [2,3]
and fibers involving graded index inclusions [4,5]. A me-
tallic coating on the insides of the holes of a PCF opens up
the possibility of exploiting very strong surface plasmon
resonances with potential applications in sensing and
very strong light confinement [3,6,7]. Accurate modelling
is required to realize the potential of such fibers.

Existing mode-finding algorithms capable of dealing
with fiber structures of arbitrary design include finite-
element methods (FEMs) [8] and plane-wave expansion
methods (PWEMs) [9]. FEM methods approximate Max-
well’s equations by a system of ordinary differential equa-
tions and require the PCF profile to be discretized spa-
tially. PWEM methods expand the modal fields in a plane-
wave basis to reduce the numerical mode-finding problem
to find the eigenvalues of a matrix. This generally re-
quires a large number of plane waves to describe the
modes accurately, especially for structures involving high
refractive index contrasts, Both methods have the advan-
tage of being applicable to arbitrarily shaped fiber pro-
files.

There exists also a class of somewhat less general nu-
merical methods for microstructured optical fibers, the so-
called integral equation methods [10-14]. These methods
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are generally more efficient than FEM and PWEM be-
cause they assume that the geometry is piecewise homo-
geneous, but the boundaries between regions are arbi-
trary.

However, methods tailored toward a specific fiber ge-
ometry are more accurate and are usually much faster
than generalized methods. In cases with complicated in-
clusions, the advantages are even more pronounced,

In this paper, we present a set of numerical tools to
characterize the properties of PCFs constructed from cy-
lindrically symmetric inclusions with arbitrary radial
profiles. A useful approach in studying PCFs is to investi-
gate the properties of their claddings, which in them-
selves share properties with infinite, periodic lattices as
shown in Fig. 1(h) [15]. Light is guided in the core of a fi-
ber if the cladding acts like a mirror—that is, if no modes
of the infinite lattice exist. A plot showing for which the
combinations of wavelength A and effective index n.
modes of the cladding exist (propagation diagram) en-
ables us to predict the spectral transmission of PCFs [16].
We are therefore chiefly concerned with constructing
propagation diagrams for infinite lattices of layered inclu-
sions. Here, we are interested in two regimes—one where
a scalar treatment of the electromagnetic fields is suffi-
cient, and another that accounts for the fully vectorial na-
ture of both the electric and magnetic fields. We find that
in both cases a transfer matrix approach is a streamlined
way to track field quantities across boundaries within the
inclusion.

Our scalar approach builds on the ideas of Birks et al.
[17], which allows an investigation of the properties of an
infinite periodic system of homogenous dielectric rods of
slightly higher refractive index than the background ma-
terial. We generalize their method to treat a lattice of lay-
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(a)
Fig. 1. (Color online) (a) Cross section of an example fiber whose
cladding consists of an array of layered inclusions—in this case,
dielectric rings representing materials with homogeneous refrac-
tive indices. (b) Many of the spectral properties of the fiber follow
from those of the associated infinite periodic lattice.

ered inclusions of an arbitrary number of layers with a
weak index contrast between all component materials
(typically An<1%).

To treat the fully vectorial case, we turn to the Rayleigh
multipole methods. This class of methods has been par-
ticularly useful in modelling PCTF's involving arrays of ¢y-
lindrically symmetric homogeneous rods or holes [18].
Multipole methods enable the calculation of quantities
such as the band structure (in the infinite case), projected
band diagrams, propagation diagrams, and the photonic
density of states [19,20].

These semi-analytic methods expand field quantities in
a Fourier—Bessel basis, the natural solutions to the Helm-
holtz equation in cylindrical coordinates, making them
suited to problems with cylindrical symmetries. A far
smaller number of terms is then required in the expan-
sion to capture the details of the field relative to a more
general algorithm such as a plane-wave method [21]. The
general idea behind the method has been adapted to
study numerous PCF geometries [19], but not to inclu-
sions with an arbitrary number of layers.

Multipole methods require the scattering matrix of the
inclusions, which relates the incoming fields in the vicin-
ity of the inclusion to those scattered from it. The scatter-
ing matrix for a homogeneous cylindrical rod or hole is
well known and available in analytic closed form [22]. The
scattering matrix for an inclusion of uniform refractive in-
dex but arbitrary cross section can also be calculated nu-
merically, but at the cost of decreased accuracy and speed
[23]. To treat the cases of graded index and coated inclu-
sions using the multipole method, we must calculate the
scattering matrix for rotationally symmetric but layered
inclusions.

Common to both the derivation of the scattering matrix
(for use in the multipole method) and the approximate
scalar approach is the need to know the fields in every
layer of the inclusion. We use a transfer matrix [24] to
link the fields in adjacent layers of the inclusion, an ap-
proach that allows us to deal with an arbitrary number of
layers.

This paper presents methods to construct propagation
diagrams in both the scalar and fully vectorial regimes.
Section 2 defines the geometry and coordinate system de-
scribing our infinite lattice and gives the general form of
the fields in the lattice. Section 3 is a mathematical de-
scription of the transfer matrix method we use to find the
fields in all layers of the inclusion. Section 4 details our
extension of the scalar method developed by Birks et al. to
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the case of layered inclusions. Section 5 uses the transfer
matrix formalism to derive the scattering matrix for a
layered inclusion. Section 6 compares the propagation
diagrams for a photonic crystal composed of graded index
inclusions generated by the approximate and fully rigor-
ous multipole methods. Section 7 presents simulations of
a PCF consisting of an array of holes coated with a thin
metallic layer.

2. GEOMETRY AND FIELD
REPRESENTATION

We consider the 3D propagation of waves through a peri-
odic array of layered parallel dielectric cylinders. In this
paper, we consider only hexagonal lattices, though our ap-
proach is valid for other lattice types. The lattice geom-
etry and hexagonal unit cell are shown in Fig. 2. The
methods developed here do not apply to the case of inter-
penetrating inclusions—the outer boundary r=py must
lie entirely within the hexagonal unit cell boundary.

We orient a coordinate system with the z axis parallel
to the cylinders and the lattice periodicity in the x-y
plane. Within a particular unit cell, we look for solutions
of the form

E(r, hz,t) = Er, Mexpli(fz — wt)| + c.c. , (1)

Hir,0,z,t) = H(r,Mexpli(fz - wt)] + c.c., (2)

where o is the angular frequency related to the free-space
wavenumber k=2m/)\ via w=ke, and S is the propagation
constant. We also define the effective index as nqg=p/k.
All field components satisfy the Helmholtz equation in
the homogenous material around the inclusion [25]. Here,
we are concerned with two regimes—one that requires a
fully vectorial description of both the electric and mag-
netic field and one where a scalar approach is valid. In the
former case, the translational invariance along the z di-
rection means that all field components can be generated
from the longitudinal components of the electric and mag-
netic fields &, and H, [25]. In the latter, as described in
more detail in Section 4, the magnitude of a single trans-
verse component (which we denote by W) is sufficient to
describe the fields. Using the fact that the fields are nec-

(a) . (b)

Fig. 2. (Color online) (a) Infinite hexagonal lattice geometry,
with coordinate system indicated. (b) Unit cell of hexagonal lat-
tice of layered inclusions of pitch A representing different com-
ponent materials. The index of the p'" annulus is n,, with the in-
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essarily 27 periodic in the angular coordinate, it follows
that an arbitrary field around the inclusion can be written
as a Fourier-Bessel series,

V(r,0) = z {A"'"“J,,,(k’f_r)+B:';"H[”Uz”r}')exp(imf}),

m m
m=—x

(3)

where Ve {&,,H,,V}. J,, denotes the Bessel functions of
the first kind of order m, and the H'! are the Hankel
functions of the first kind of order m [26]. The index p la-
bels the particular layer of the inclusion for which the
field expansion is valid, with different expansion coeffi-
cients A*, BY? in each layer. The quantity %, the trans-
verse wavenumber in each layer, is defined as

k= kPn, - B2 (4)

We choose the positive root for the transverse wavenum-
ber outside the inclusion to ensure that fields decay away
exponentially in the background medium. The sign of £”
inside the layered inclusion is immaterial in the cases in-
vestigated in this paper, and we choose the positive root to
be consistent. A full discussion on the appropriate choice
of the sign of £ can be found in Appendix A of [27].

Fq. (3) can be broken into two parts—the Bessel func-
tions of the first kind are regular for every argument and
correspond to fields with sources exterior to the inclusion,
while the Hankel functions diverge at zero and satisfy the
outgoing wave equation. Physically, these two terms in
the expansion are linked via a scattering of incoming
waves from the inclusion, which penerates outgoing
waves. The major aim of the following sections is to derive
a scattering matrix formalism linking the expansion coef-
ficients B associated with sources within the inclusion to
those coefficients A associated with fields sourced within
the inclusion.

3. TRANSFER MATRIX

This section introduces and motivates the transfer matrix
formalism we use to relate field expansion coefficients in
adjacent layers.

The field components parallel to each boundary be-
tween layers must be continuous, as required by Max-
well’s equations. In a fully vectorial approach there are
four such field components. In the scalar approximation
[25], which reduces the fully vectorial fields to a single
scalar field, we require the field and its normal derivative
to be continuous across each boundary. To solve for the
field everywhere in a layered inclusion of N layers for a
given azimuthal order i in Eq. (3} then requires solving a
4N X 4N gystem in the fully vectorial case, or a 2N X 2N
system in the scalar approximation.

A more streamlined and versatile method, and one we
use in this paper, is to link the fields on either side of an
interface via a transfer matrix. More specifically, the
fields are expanded in a Bessel function basis, as in Eq.
(3). The fields anywhere within a particular layer are con-
trolled by the expansion coefficients of that layer. The cy-
lindrical symmetry of the layered inclusion means that
each order m in the expansion of Eq. (3) may be decoupled
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and treated one at a time. Vectors v containing the four
(in the full vector case) or two (in the scalar case) expan-
sion coefficients for a particular expansion order m in ad-
jacent layers are linked via a 4 X 4 or 2 X 2 transfer matrix
T. Symbolically,

m _rpm m =)
Vpe1 = T etV » (5)

Importantly, a product of transfer matrices can be used to
express the field coefficients in the center of an inclusion
with N layers (region 1 in Fig. 2(b}) to those outside the
inclusion (region N+1):

VI (TR, .. T, Vi (6)

The physicality of the fields requires the coefficients con-
trolling the diverging part of the fields in the center of the
inclusion [the B”' in Eq. (3)] to be zero; otherwise, the
field would diverge at the center. In the symbolic notation
of this section, specific elements of v{* must be zero. We
give examples of the implementation of this condition in
two situations described below. Equations (5) and (6), to-
gether with the condition that the fields remain finite in
the center, allow us to link the fields at any point within
the inclusion with those outside it. Importantly for the ex-
tension to the multipole method we present in Section 5,
the finite field condition additionally implies a connection
between the diverging field coefficients B,, and the con-
verging field coefficients A,, outside the inclusion. Our
transfer matrix approach is key to both the approximate
scalar theory of the next section and the full multipole
method of Section 5.

4. APPROXIMATE MODEL TO CONSTRUCT
PROPAGATION DIAGRAMS

Here we present our extension to the method of Birks et
al. [17] to generate the edges of photonic bands on a
propagation diagram for a low-index contrast structure.
The particular approximations and assumptions underly-
ing the method may be found in [17].

A propagation diagram consists of bands of modes of
the infinite lattice separated by bandgaps. To construct a
propagation diagram, it is only necessary to map out the
top (the maximum value of .y in a band for a given wave-
length) and bottom of the band (minimum value of ngy in
the band for a given wavelength). It is known that the top
and bottom of a band correspond to Bloch states with the
most bonding and anti-bonding character, respectively.
The corresponding boundary conditions at the edge of the
unit cell are V=0 and d'W/ds =0, respectively, where s is a
coordinate normal to the unit cell boundary [17]. These
two conditions correspond to particular vectors wyy,
["‘1N+I 'BNH-ITs

H' N {kgtu l"UU)

m

N a [k‘y-‘ IJ"U(;)

m

I

11, for dWds =0, (7)

HL:JUZ'?%-"UC}

,11| , for =0, (8)

where, following Birks ef al., we approximate the hexago-
nal unit cell to a circle with radius rye (given in Appendix
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A). Comparison with rigorous calculations (which we
present in Section 6) validates the approximation in the
weak-index contrast limit. This approximation makes it
straightforward to impose the boundary conditions on W
on the perimeter of the unit cell [17].

Propagation diagrams are constructed by imposing the
two boundary conditions corresponding to the top and bot-
tom of a band and enforcing continuity of the scalar field
W and its derivative d¥/dr at each interface between ad-
jacent layers of the inclusion through the application of
an appropriate 2 X 2 transfer matrix T;-“’.;f“f’l, whose form is
given explicitly in Appendix A:

A R g Ay
{Bl]zTE" 5:52---T5:??,N|iBN+1 : (9)

Equation (9) gives the explicit form of the vector v in Eq.
(6), in the scalar case. Requiring that the fields be finite at
the center of the inclusion (in this case, B;=0), allows us
to solve for the two effective indices ny=p/k lying at the
top and bottom of a band for a particular wavelength.
Varying the wavelength and repeating the procedure
maps out the edges of the bands.

Birks et al. treated analytically the case of a single
solid rod in each circular unit cell, An analogous, purely
analytic approach is impossible for the case of an arbi-
trary number of layers. A transfer matrix approach en-
ables any number of layers to be treated, simply by mul-
tiplying the appropriate transfer matrices.

As demonstrated in Section 6, the approximate band-
edge finding algorithm works well in the limit of small re-
fractive index contrasts (An=1%) but breaks down out-
side this regime. A more general method is required to
construet propagation diagrams for periodic lattices of
layered inclusions, and to this end we introduce our ex-
tension to the Rayleigh multipole method in the next sec-
tion.

5. EXTENSION OF THE RAYLEIGH
MULTIPOLE METHOD

In this section, we extend the multipole method to enable
modelling of an infinite, perfectly periodic lattice com-
posed of cylindrically symmetric inclusions of arbitrary
index profile.

The multipole method involves two essential ingredi-
ents [18]—a description of how electromagnetic fields are
scattered from an individual inclusion and a description
of the structure of the lattice. Our extension to the
method then involves only a modification of the formalism
describing scattering from a simple cylinder to the case of
scattering from a cylindrically symmetric layered inclu-
sion, We therefore do not trace the entire derivation of the
multipole method, but show only the derivation of the
scattering matrix for a cylindrical inclusion with an arbi-
trary number of layers.

Armed with our scattering matrix, the multipole
method allows us to formulate a condition to determine
whether a mode of the infinite lattice exists for a particu-
lar combination of wavelength A, Bloch vector kg, and ef-
fective index ngq.
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Derivation of the Scattering Matrix

To deseribe scattering from an inclusion, we must relate
the diverging field coefficients B,‘,’; of Eq. (3) outside the in-
clusion (controlling the outgoing waves), to the converg-
ing field coefficients A}, also outside the inclusion. In ma-

trix notation, we need to find the scattering matrix S,

defined by
Bf;;;.a\ﬁ 1 A:":;_.a\"-i-l
gHN+L | = S, AHN - (10)

m

Scattering from an inclusion depends on the geometry of
the inclusion, its refractive index profile, the propagation
constant, and the operating wavelength. The derivation of
the scattering matrix requires knowledge of the field in
all layers of the inclusion, particularly in the center.

As in Eq. (6), we obtain the coefficients in the center of
the inclusion in terms of those outside [for a particular or-
der m in the expansion of Eq. (3)] as

E E E
A 1 AN-i— 1 A:\"+ 1

E E

0 BE ,
_pdxAmdxd 44 Nl | TN

AH ] T2.l T.'s.z e TN+ I,N AH e AH
1 N+l N+l

H H
0 BN-I-] BN-H

(11)

Here, T{[,| is a 4 X4 transfer matrix, and Eq. (11) gives
the explicit structure of the symbolic vector v of Eq. (5) in
the fully vectorial case. The explicit form of T‘fj"fl is given
in AppendixB. It links a vector of multipole coefficients on
one side of a eylindrical boundary to the corresponding co-
efficients on the other side for a particular order m.

The physicality of the fields requires B B‘;f =0; other-
wise, the field would diverge at the center. Equation (11)
then yields two equations in only the four multipole coef-
ficients outside the cylinder. These can be solved to give
the form of the scattering matrix S, defined in Eq. (10).
The procedure is illustrated in Appendix B.

Knowledge of the scattering matrix for layered inclu-
sions is then sufficient to use the existing multipole for-
malism fo find the modes of finite or infinite arrays of lay-
ered inclusions, A change of basis operator K is used to
express the fields scattered from all other inclusions in
the local coordinates of a particular inclusion in the lat-
tice. Conservation of the total ingoing and outgoing fields
in the vicinity of the inclusion then allows a self-
consistent matrix equation to be written for the field ex-
pansion coefficients [18].

Symbolically, a mode of the system exists when

[1-SKIB = P(\,ko,n.qB=0. (12)

Here, S is a scattering matrix combining the S, for all or-
ders m. K contains lattice sums describing the structure
of the lattice in the case of an infinite periodic lattice
[28,29]. B is a vector holding the diverging field coeffi-
cients of all orders for a single unit cell (in the infinite
case), or for all inclusions (in the finite PCF case). A
propagation diagram for an infinite lattice can be con-
structed by scanning the Bloch vector k; over the irreduc-
ible Brillouin zone perimeter for a given effective (N, nqy)
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combination [30]. The existence of a mode corresponds to
the determinant of P being zero.

6. NUMERICAL SIMULATIONS

In this section, we compare the performance of the ap-
proximate band-finding theory of Section 4 with that of
the fully vectorial multipole method of Section 5. The
structure we consider is a hexagonal array of pitch A
=6.7 pm made up of graded index cylinders in a silica
background. The characteristics of the inclusions match
those of a fiber whose spectral properties were investi-
gated numerically and experimentally by Kuhlmey et al.
[5]. In that work, differences between theoretical and ex-
perimental results were in part attributed to the inability
to accommodate both the material dispersion and an ac-
curate description of the index profile of the cylinders in
numerical simulations. The methods developed in this pa-
per allow us to evaluate this claim. Each cylinder has a
graded refractive index distribution above that of the
background silica, given by

{ns“im(l + Angi(l - (rlrg)), ifr<0

nir)= , (13)

' silicas ifr=rg

where r is the distance from the cylinder’s center, a=4.7,
Ang =0.0203, ry=1.5927, and ngj, is the wavelength-
dependent index of fused silica, obtained using a Sell-
meier expansion. This refractive index profile is the black
dashed curve in Fig. 3.

To generate propagation diagrams for this structure,
we discretize the graded index profile, as illustrated by
the step index function in Fig. 3. This is done by dividing
the inclusion into N concentric layers of equal refractive
index steps An, whose radii 7, ave calculated by taking the
square root of the average of the square of the radial co-
ordinate r weighted by the index distribution over each

index step:
1 L8|
P ; b
ri= .= re(n)dn. (14)
UV An J“

Here, n; and n,. are the refractive indices on the edges of
each index step. Such an area-weighted discretization en-
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Fig. 3. (Color online) Graded index profile of each cylinder in
the hexagonal infinite lattice (black curve) with an example dis-
cretization into four layers.

Grujic et al.

sures there are more steps approximating the graded pro-
file where it varies most rapidly with r, while also taking
into account the cylindrical geometry of the inclusion.

A. Approximate Band Edges

To obtain accurate band edges using the approximate
theory of Section 4, we must use an adequately large
number of approximating layers N. To establish criteria
for constructing accurate propagation diagrams, we calcu-
late band edges for a number of different approximating
layers, as in Fig. 4.

The wavelength range we use corresponds to that in-
vestigated by Kuhlmey et al. Each band in the propaga-
tion diagram corresponds to a particular m in the field ex-
pansion of Eq. (3) and therefore consists of modes with a
particular azimuthal field dependence.

We see that simply approximating the graded index
profile by a single rod (N=1) or even a double-step index
distribution (N=2) is not sufficient to capture accurately
all details of the band structure. The band edges for N
=8 and N=10 overlap to within the thickness of the lines
used to plot them. Subsequent graded index inclusion
simulations therefore used N=8 approximating layers.
The dotted curves in Fig. 5, to be discussed below, are the
N=8 band edges generated by the approximate method.

B. Full Multipole Propagation Diagrams

We now use the fully vectorial multipole formalism of Sec-
tion 5 to construct rigorous band diagrams for our struc-
ture of interest. The scattering matrix S,, in Eq. (10} is
caleulated using eight approximating layers, and field
gquantities were expanded in eleven terms (corresponding
to m ranging from -5 to 5).

The solid black regions of Fig. 5 show where modes of
the infinite lattice exist, as found by the multipole
method. The white regions between the black photonic
bands show where the bandgaps lie in n.—\ space. The
curves show the results of a commercial plane-wave nu-
merical package. The density of these lines gives some
limited information on the density of photonic states. We
note that owr formulation can also calculate detailed den-
sity of states data, though we are here only interested in

i i vl N layers
AR\ LooN | net

s N i
NG \ \ N=2

0.5

S.-}:_ e T e \

Fig. 4. (Color online) Band edges for an infinite lattice of graded
inclusions, generated by the scalar method of Section 4, for dif-
ferent numbers of approximating discretized layers N. Here n,
is the wavelength dependent background index of silica, obtained
using a Sellmeier expansion [31].
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Fig. 5. (Color online} Comparison of approximate band-edge
finding algorithm (curves) with fully vectorial multipole method
(black solid regions). Also shown are the results of a commercial
plane-wave package (lines). White dots are the cladding modes of
a flinite fiber consisting of three layers of graded inclusions
around a central missing inclusion. Gray dashed curves are core
modes for this finite fiber.

the combinations of effective index and wavelength for
which a bandgap exists (i.e., when the structure supports
no modes).

The two photonic bandgaps beneath the light line n.g
=ny, between bands can be used to guide a core mode in a
finite photonic crystal fiber. The gray dashed curves in
Fig. 5 are core modes calculated for a fiber consisting of
three rings of graded inclusions around a central solid
core that were formed by removing an inclusion. The
white dots are the cladding modes of the same fiber and
coincide almost exactly with the photonic bands of the in-
finite unperturbed lattice.

While these results, which take into account both the
actual nature of the graded index inclusion profile and the
dispersion of silica, ditfer appreciably from the numerical
results previously obtained by Kuhlmey et al. [5], the
agreement with experimental results is not improved.
The discrepancy may be due to other factors, such as an
inaccurate characterization of the experimental fiber’s
properties, in particular the exact index profile of each in-
clusion, and the pitch of the acoustic grating used.

Figure 5 shows that the approximate theory gives very
good agreement with the full multipole simulations, as
expected in this limit of a weak index contrast between
the maximum index of the inclusion and the background
index of silica. In weak contrast situations where only the
positions of the bands and bandgaps are required, it is
much faster to use the approximate approach than a fully
vectorial method.

However, the assumption that the electromagnetic
fields can be treated as scalar quantities breaks down in
systems with a higher contrast between the permittivities
of the component materials, rendering the approximate
method inaccurate. The multipole formalism deals well
with inclusions consisting of concentric layers with high
refractive index contrasts between them, as it does not
suffer from convergence issues inherent in other ap-
proaches such as the plane-wave class of methods.
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7. ANALYSIS OF THIN METAL COATINGS

An example of a situation involving a very high contrast
in the permittivity of component materials is that of a lat-
tice of air-filled thin metallic rings in a silica background.,
Photonic erystal fibers involving metals open up the pos-
sibility of exploiting surface plasmon polariton reso-
nances, with potential applications in sensing and opto-
electronic components [32]. 3

We simulate structures similar to those studied both
experimentally by Schmidt et al. [33] and numerically by
Poulton et al. [6] , who studied the properties of an infi-
nite hexagonal lattice of solid metallic nanowires. We in-
stead model lattices of air-filled thin metal rings of vary-
ing thicknesses in a silica background. Following Poulton
et al., we take the permittivity of the rings ¢,,=-125.3 to
be that of silver at the vacuum wavelength 1.55 pm and
construct propagation diagrams by varying the scale of
the structure rather than the wavelength. Additionally,
we neglect material absorption (Im[e,,|=0). The exten-
sion of our method to the case of a structure involving ma-
terials with a finite imaginary component to their permit-
tivities is straightforward but beyond the scope of this
paper, as discussed in the conclusion. The permittivity of
the background siliea at this wavelength is £,=2.085. We
fix the outer ring radius at b=0.15A and vary the inner
radius a.

The photonic bands and bandgaps for a number of dif-
ferent ring thicknesses are shown in Fig. 6 in terms of
normalized frequency and the quantity (neg—nygko
=(B~npgho)A. The white regions indicate where modes of
the infinite lattice exist, and the gray areas in between
are the photonic bandgaps. We remark that propagation
diagrams are not appreciably different from those for the
corresponding lattice of solid metal rods until the ring
thickness becomes comparable to the skin depth of the
metal, All three propagation diagrams in Fig. 6 corre-
spond to such a regime in which the ringlike nature of the
inclusions is important.

Bound modes of single thin metallic rings in a silica
background are also plotted as dots in Fig. 6 and are cut
off at neg=npackeround- For an infinite periodic lattice, the
plasmonic modes of the individual rings couple together,
broaden into the white bands, and extend below the cutoff
[34].

Figure 6(a) indicates the azimuthal order m of the
modes of the isolated rings that broaden into the three
bands visible for .= Ryaekground- Between ring radius ra-
tios a/b=0.95 and 0.98, we see a transition in the behav-
ior of the m=1 band of modes. For a/b=0.95, the m=1
mode of the isolated metal ring broadens into a photonic
band near koA=0, while for «/b=0.98 a bandgap has
opened up at low frequencies. Figure 6(b) shows the inter-
mediate behavior.

We can explain this transition by realizing that in the
low-frequency limit, the wavelength is much greater than
the overall size of individual inclusions. The details of the
rings cannot be resolved by the fields, and we may treat
the inclusions as a uniform material with a homogenized
permittivity. Below a critical ring thickness, the homog-
enized permittivity of the inclusions passes from negative
to positive. Plasmonic modes can only exist when there is
a difference in sign between the permittivities of adjacent
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Iig. 6. (Color online) Propagation diagrams for infinite hexago-
nal lattices, pitch A=1 um, of metallic rings of varying thick-
nesses. Dots indicate the bound modes of single metallic rings in
a silica background, which exist for n 4> ny, Metal permittivity
is g, =-125.4 and background permittivity is 2.085.

materials, and so the bandgap apparent in Fig. 6{c) at low
frequencies opens up below this eritical ring thickness.
In the high-frequency limit, the dispersion curves of the
rings approach those of equivalent thin metallic slabs
whose widths are equal to the relevant ring thickness,
bounded by air on one side and silica on the other.
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8. DISCUSSION AND CONCLUSION

The methods presented in this paper allow fast, accurate
calculation of the properties of photonic crystal fiber
based on cylindrically symmetric layered inclusions. The
approximate method of Section 4 allows us to map out the
photonic band edges on a propagation diagram for infi-
nite, periodic structures with weak refractive index con-
trasts. Within the domain of applicability, the advantages
in using this method over the computationally intensive
multipole method to generate band edge information rap-
idly are marked, requiring minutes (rather than hours) to
locate the positions of the bands. It is then possible to rap-
idly predict the wavelength ranges where core modes of a
finite layered PCF exist.

The ability to discretize an inclusion with a radially de-
pendent refractive index profile into an arbitrary number
of layers, as in the case of the smoothly varying graded
index cylinders of Section 6, allows us to treat PCFs com-
posed of such inclusions accurately.

For fibers with a higher permittivity contrast, the vee-
torial nature of the electromagnetic fields can no longer
be ignored. The scattering matrix derived in Section 5 al-
lows efficient, accurate generation of propagation dia-
grams and calculation of core mode dispersion in the case
of finite PCF.

In common with existing multipole algorithms that
solve simple circular inclusion problems, the circular
symmetry of the inclusions is built in, making a multipole
approach to the simulation of layered inclusion PCF very
efficient and accurate when compared with algorithms ca-
pable of simulating more general index profiles. The effi-
ciency becomes further pronounced as more layers arve
added, as the element of the multipole method that re-
quires the most computational resources is the evaluation
of lattice sums, with the scattering matrix calculation re-
quiring far less computing power. Coupled with the fact
that high permittivity contrasts between layers present
no additional numerical convergence issues, this makes
our multipole formulation particularly well suited to mod-
elling PCFs composed of cylindrically symmetric inclu-
sions.

The numerical analysis of PCF involving thin metallic
coatings in Section 7 required the same number of terms
in the field expansions as did the modelling of the all-
dielectric graded index fiber of Section 6. The extremely
large permittivity contrasts present in metal-dielectric
structures present appreciable convergence difficulties in
more general approaches, such as the plane-wave expan-
sion method [22].

Though we have here studied only the case of lossless
metals (i.e., metals with purely real permittivities) at one
operating wavelength, the multipole formalism easily ac-
commodates more general dispersive materials with com-
plex permittivities. The effects of material dispersion are
included easily as the multipole algorithm searches for
modes at a fixed frequency, which is then varied across
the simulation window. To include the effects of loss, the
mode-finding algorithm, which involves finding the roots
of the determinant of the matrix P in Eq. (12), must be
extended in this case to search over complex values of the
modal effective index rather than just purely real ones.

We also note that while the multipole results presented
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in this paper give only a binary indication of whether or
not one or more modes exist at a given point in a propa-
gation diagram, density of states information can be gen-
erated by counting the number of times Eq. (12) is satis-
fied while tracing around the perimeter of the irreducible
Brillouin zone.

APPENDIX A

This appendix presents a transfer matrix method to map
out the band edges on a propagation diagram for an infi-
nite lattice of layered dielectric inclusions in the limit of a
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cular unit cell with radius .*‘Uc=(\§f217]”"”!\ (this choice
preserves the filling fraction) is identical to that of Birks
ef al. [17].

The scalar field W has the form given in Eq. (3). We iso-
late one particular order m=/ in the expansion for the
field in region p (different m yield modes with different
azimuthal dependence):

JP = [ADT (k7 r) + BYH,(R” r)]exp(il 0). (A1)

Requiring that both « and d/dr be continuous across an
interface at radial coordinate r=p,, we can link the vector
of field coefficients [APBP]" on one side of the interface to
those on the other [A?*'BP*1|T via a 2 X 2 transfer matrix

weak refractive index contrast. The assumption of a cir- T
J
- 1 (k";‘H}“'cy;J,(xa -k H ) ) RCHY ) HY () - B H (y)HEY (x)
Lirl = ; i ) i+ ' ; ‘ ¢ '
R T OHM (39) = JHHP ]\ R T3] () = 1Ty () R T HY () = kU TH YT ()

where x=£" p, and y:k*’f”pp. To find the photonic band
edges, we implement the boundary conditions discussed
in Section 4 on the edge of our circular unit cell. For in-
stance, the top of the band corresponds to a zero deriva-
tive dW/dr at r=rye, which corresponds to the particular
choice [AN*1BN*1=[_H{" (kN 11/ (kY*1)1]. The trans-
fer matrix is then used to repeatedly step across dielectric
interfaces, as in Eq. (9).

APPENDIX B

We derive here the explicit form of the 4 X4 transfer ma-
trix T{}} defined in Eq. (11). Our approach is similar to
that of Yeh and Yariv [24], though we use a basis of Bessel
functions of the first kind and Hankel functions of the
first kind, while Yeh and Yariv used a basis with Bessel
functions of the second kind in place of Hankel functions.

The field components tangential to a cylindrical inter-
face between layers in an ineclusion (the z and ¢ compo-
nents) must be continuous. The multipole expansion coef-
ficients AY, BY generate the longitudinal components V,
of the electromagnetic fields, and we can generate the azi-
muthal components from the longitudinal components us-
ing Maxwell's equations as

s Eﬁ ( o w ) B
=Tg 8 _Ez"' __’Hz , 1
k- g\ o0 par 81
i a w
Hy=—5—5—| —H. + ——¢€.|. B2
k- g2\ rao < o e

This allows us to write continuity relations for the four
tangential field components across an interface in terms
of the multipole expansion coeffcients AY | BY

m? m*

(A2)

The continuity of the longitudinal component of the
electric field &, across a boundary between regions i and
i+1 at radial coordinate r=p is then written:

AST k. )+ BpH (ke ip) = Al ke, i1p)
+ Bﬁ]Hm (k ¢ J+l.”]- (BS}

Similarly, continuity of £, gives the following relation:

1 fim g i
!k” }2 j[Alem(kp P] + Bp‘Hm(kP ﬂ)]

k}-’

2]
= —E—[A;f. (k2 p) + BIYH (k" p)]), (B4)

1 im . .
= e ( ?[AS'JMW_:”PJ +B3H,, (k" p)]

i+l

(B5)

m

[ABTL (R ) + Bé’%”ﬂ‘f’ﬂ”) :

Similar relations hold for the longitudinal and azimuthal
components of the magnetic field. The four resulting
equations can then be written in the matrix form

AY Afy

: B;’ , Bf,
M(i,p) Af =M(i+1,p) A;f":] (B6)

BY Bf,

Finally then, the transfer matrix can be found as T;‘}fl

=M"'(i+1,p)M(i,p). Explicitly, defining x=k"p and y
=k'*'y and writing T;‘ffl as
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by bz tiy t
wxa _ [ b b bag Ly (B7)
WL 9 Vgy tsp tas taq]

fn taz faz fa
we obtain the elements as

=i HY (1) = R e kP ;)] (OH (),
tro=H{ @) H" (y) - (k" /R0 e )HI ()H D),
tig= (i Bllwe ) (Vy = B (ek?))d () HY ),

tyg = (E Bl e, ) (Uy = R (k2 NWHD () HPY (y),

tor = (R s,/ 6, )T () = ()T} ),

tay= HP(HY (y) = (k™ s /0% 6, OHY ()H M (y),
tay = (i Bllwe ;) (Lly = k' (k! ) ) HY (),

toq = (i Bl we; ) (Uy — Rk VHD (O H MV (y),
tar = (BB T kP ) = y) () HIV(y),

tayn = (LBl R (xR? ) = U H M () H (),

tas = HM (v) = (R YR )T} ) H (),
tayg=HVH! (y) - (B2 ) HY () H{M(y),

ty = (i ﬁm;)f Uy — k5 ekE )T ()T (),

tan= (Bl w)(y = B (xhk? DHI D (x) (),

tag= (R TVRD )T ()T (y) = T (x0T (v),

taa = (REYREYHY () (y) — HY ()] (y).

We now show how the scattering matrix S, is obtained
from Eq. (11). Writing the elements of T*** as 7', we can
expand the matrix equation of Eq. (11) to obtain

ToiAR 1 + Te:BYoy + TosAN oy + ToiBi, =0,  (B8)

TiiAfos1 + TioBRay + TisANyy + TaBi = 0. (B9)

These equations only involve field expansion coefficients
outside the inclusion and can be solved for the diverging
field coefficients in terms of the converging coefficients as

B| 1| TyTy-TuTs TaTi—TiTe || A%
B |7 A| TyoToi~ ToeTyy TigTos—ToTis || A7

AE
Esm|:AH:|’ (BID)

where A=TyyT 4~ T45T9y.
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