One of the major topics in macroeconomic theory is the coordination mechanism through which a large number of agents exchange goods in decentralized economies. The mainstream theory of efficient markets fails to provide an internal coherent framework and rules out, by construction, the interaction among heterogeneous agents. A rigorous micro-foundation for macro models can overcome this limitation and provide more reliable policy prescriptions. This book develops an innovative approach to the analysis of agent based models. Interaction between heterogeneous agents is analytically modelled by means of stochastic dynamic aggregation techniques, based on the master equation approach.

This book offers a systematic and integrated treatment of original concepts and tools, together with applications, for creating an alternative micro-foundation framework for a widespread adoption among the profession and by graduate students. In order to make the material accessible to graduate students, every non-standard mathematical tool or concept is introduced with a suitable level of detail. All the logical passages and calculations are explicit in order to provide a self-contained treatment that does not require prior knowledge of the technical literature.

Corrado Di Guilmi is Senior Lecturer at the University of Technology Sydney. His research interests include agent-based modelling, complex system theory, and post-Keynesian economics.

Simone Landini is Researcher at IRES Piemonte, Turin. His research interests include mathematical methods for socioeconomic and regional sciences, political and financial economics, agent-based modelling and complex systems theory.

Mauro Gallegati is Professor of Advanced Macroeconomics at the Università Politecnica delle Marche, Ancona. His research interests include heterogeneous interacting agents, growth and business fluctuations, financial fragility and complexity.
Interactive Macroeconomics

One of the major topics in macroeconomic theory is the coordination mechanism through which a large number of agents exchange goods in decentralized economies. The mainstream theory of efficient markets fails to provide an internal coherent framework and rules out, by construction, the interaction among heterogeneous agents.

A rigorous micro-foundation for macro models can overcome this limitation and provide more reliable policy prescriptions. This book develops an innovative approach to the analysis of agent based models. Interaction between heterogeneous agents is analytically modelled by means of stochastic dynamic aggregation techniques, based on the master equation approach.

The book is divided into four parts: the first presents the stochastic aggregation and macro-dynamics inference methods, based on the stochastic evolution of the microeconomic units; the second applies these inferential techniques on macroeconomic agent-based models; the third provides conclusions and stimulates further developments; the last part contains technical appendices.

This book offers a systematic and integrated treatment of original concepts and tools, together with applications, for the development of an alternative micro-foundation framework. In order to promote a widespread adoption among the profession and by graduate students, every non-standard mathematical tool or concept is introduced with a suitable level of detail. All the logical passages and calculations are explicit in order to provide a self-contained treatment that does not require prior knowledge of the technical literature.
Corrado Di Guilmi. Senior Lecturer at the University of Technology Sydney. His research interests include agent-based modelling, complex system theory and post-Keynesian economics.

Simone Landini. Researcher at IRES Piemonte, Turin. His research interests include mathematical methods for social, economic and regional sciences, political and financial economics, agent based modelling.

Mauro Gallegati. Professor of Advanced Macroeconomics at the Università Politecnica delle Marche, Ancona. His research interests include heterogeneous interacting agents, business fluctuations and nonlinear dynamics, models of financial fragility, and sustainable economics, economic history, history of economic analysis, applied economics and econophysics.

Physics of Society: Econophysics and Sociophysics

This book series is aimed at introducing readers to the recent developments in physics inspired modelling of economic and social systems. Socio-economic systems are increasingly being identified as ‘interacting many-body dynamical systems’ very much similar to the physical systems, studied over several centuries now. Econophysics and sociophysics as interdisciplinary subjects view the dynamics of markets and society in general as those of physical systems. This will be a series of books written by eminent academicians, researchers and subject experts in the field of physics, mathematics, finance, sociology, management and economics.

This new series brings out research monographs and course books useful for the students and researchers across disciplines, both from physical and social sciences disciplines, including economics.

Series Editors:

Bikas K. Chakrabarti
Professor, Saha Institute of Nuclear Physics, Kolkata, India

Mauro Gallegati
Professor of Economics, Polytechnic University of Marche, Ancona, Italy

Alan Kirman
Professor emeritus of Economics, University of Aix-Marseille III, Marseille, France

H. Eugene Stanley
William Fairfield Warren Distinguished Professor Boston University, Boston, USA

Editorial Board Members:

Frédéric Abergel
Professor of Mathematics Centrale Supélec, Château Malabry, France

Hideaki Aoyama
Professor, Department of Physics, Kyoto University, Kyoto, Japan

Anirban Chakrabarti
Professor of Physics Dean, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India

Satyajit Chakravarty
Professor of Economics Indian Statistical Institute, Kolkata, India

Arvind Chatterjee
TCS Innovation Labs Delhi, India

Sky-Hung Chen
Professor of Economics and Computer Science Director, AIECON Research Center, National Chengchi University, Taipei, Taiwan
Interactive Macroeconomics
Stochastic Aggregate Dynamics with Heterogeneous and Interacting Agents

Corrado Di Guilmi
Simone Landini
Mauro Gallegati

Cambridge University Press
Contents

Figures xi
Tables xv
Preface xvii

1 Introduction
1.1 Why are We Here? 1
1.2 Aggregation and Interaction 7
1.3 The Road Ahead 12
1.4 Structure of the Book 21
 1.4.1 Three possible reading paths 22

Part I Methodological Notes and Tools

2 The State Space Notion
2.1 Introduction 29
2.2 The State Space Notion 31

3 The Master Equation
3.1 Introduction 46
3.2 The Master Equation: A General Introduction 49
 3.2.1 The mechanics inside 49
 3.2.2 On the meaning of the ME 53
3.3 The Markov Hypothesis 55
Contents

3.3.1 The simplest case 55
3.3.2 A generalization 57
3.3.3 Stationary solution 60
3.4 Moments Dynamics 62
3.4.1 Basics on moments 62
3.4.2 Exact dynamic estimators 64
3.4.3 Mean-field dynamic estimators 66
3.5 Concluding Remarks 67

Part II Applications to HIA Based Models

A Premise Before Applications 71

4 Financial Fragility and Macroeconomic Dynamics I: Heterogeneity and Interaction

4.1 Introduction 73
4.2 A Financial Fragility ABM 75
4.2.1 Goal of the model 76
4.2.2 Main assumptions 78
4.2.3 States of financial soundness 80
4.2.4 The microeconomic behaviour 81
4.2.5 The optimal programing rule 84
4.2.6 Macroeconomic effects and parametrization 88
4.3 Macroeconomic Inference of Stochastic Dynamics 97
4.3.1 The ME applied to the ABM 97
4.3.2 The ME transition rates from the ABM 101
4.3.3 The ME solution to the ABM 105
4.4 Results of Monte Carlo Simulations 108
4.4.1 The simulation procedure 108
4.4.2 Economic scenarios and inference 111
4.5 Concluding Remarks 131

5 Financial Fragility and Macroeconomic Dynamics II: Learning

5.1 Introduction 133

5.2 A Financial Fragility ABM 136
5.2.1 Main assumptions 137
5.2.2 Goal of the model 139
5.2.3 The microeconomic behaviour 142

5.3 Macroeconomic Inference of Stochastic Dynamics 151
5.3.1 The ME applied to the ABM 153
5.3.2 The ME transition rates from the ABM 155
5.3.3 The ME solution to the ABM 161

5.4 Monte Carlo Scenarios and Simulation Results 161
5.4.1 The simulation procedure 161
5.4.2 Economic scenarios and inference 163
5.5 Concluding Remarks 190

Part III Conclusions

6 Conclusive Remarks

6.1 The Relevance of this Book 195
6.2 Current Work and Possible Future Developments 199
6.2.1 Thinking atoms 200
6.2.2 Towards a comprehensive representation of the economy 201

Part IV Appendices and Complements

Appendix A Complements to Chapter 3 205
Appendix B Solving the ME to Solve the ABM 211
Appendix C Specifying Transition Rates 242
References 273
Index 283