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Abstract

This report presents results from the Video Person
Recognition Evaluation held in conjunction with the 8th
IEEE International Conference on Biometrics: Theory, Ap-
plications, and Systems (BTAS). Two experiments required
algorithms to recognize people in videos from the Point-
and-Shoot Face Recognition Challenge Problem (PaSC).
The first consisted of videos from a tripod mounted high
quality video camera. The second contained videos ac-
quired from 5 different handheld video cameras. There were
1,401 videos in each experiment of 265 subjects. The sub-
jects, the scenes, and the actions carried out by the people
are the same in both experiments. An additional experi-
ment required algorithms to recognize people in videos from
the Video Database of Moving Faces and People (VDMFP).
There were 958 videos in this experiment of 297 subjects.
Four groups from around the world participated in the eval-
uation. The top verification rate for PaSC from this evalu-
ation is 0.98 at a false accept rate of 0.01 — a remarkable
advancement in performance from the competition held at
FG 2015.

1. Introduction

Recognizing people in videos is challenging, and to a
large extent current approaches focus on finding and rec-
ognizing the faces of the people in the videos. To better
capture and share how current methods perform on video
face recognition, we present the results from the BTAS 2016
Video Person Recognition Evaluation. In this evaluation,
four groups (three competitors and one group establishing a
new baseline for the evaluation) participated by developing
algorithms and contributing results on three experiments:

Figure 1. Clips of two people sampled from four PaSC handheld
videos: files 06599d91.mp4, 06599d451.mp4, 05450d1359.mp4
and 05450d1759.mp4.

high-quality (control) video, handheld video and video of
moving faces and people. There are two innovations over
previous evaluations in this series. The first measures algo-
rithm performance on two video datasets collected at differ-
ent institutions. By incorporating two qualitatively different
datasets, the competition measured the ability of algorithms
to generalize across datasets. The second compared human
and algorithm performance on videos from two datasets.

By design, many of the complications that arise in video
face recognition are amply represented in the Point-and-
Shoot Challenge Face Recognition Challenge (PaSC) [3];
the BTAS 2016 Video Person Recognition Evaluation con-



sists of two experiments from the PaSC. The videos in the
PaSC data set show people in motion carrying out actions;
the goal is to recognize the people performing the actions,
not to recognize the actions. In addition, the videos are ac-
quired using several different grades of cameras in a vari-
ety of settings both indoors and outdoors. The result is a
set of video-to-video person recognition instances ranging
from relatively easy to extremely challenging. Four sample
frames from the PaSC video data appear in Figure 1.

The Video Database of Moving Faces and People
(VDMFP) [16] was developed for evaluating the effects of
motion on human memory for faces and people, but was
also found to be useful for testing recognition algorithms.
The VDMFP videos were collected in two scenarios. In the
first a subject walks towards the camera. In the second, the
subject to be recognized is talking with another person. The
camera is looking down on conversation. Importantly, ex-
tensive human performance data on the VDMFP videos is
available [17]. VDMFP videos were included in the Multi-
ple Biometric Grand Challenge (MBGC) [19].

The BTAS 2016 Video Person Recognition Evaluation
builds upon the International Conference on Automatic
Face and Gesture Recognition (FG) 2015 and International
Joint Conference on Biometrics (IJCB) 2014 evaluations in
this same series [5, 4]. In particular, the first and second
experiments presented here for high-quality and handheld
video recognition are identical to the experiments in the FG
2015 competition. The top verification rate at FAR=0.01
for this evaluation is a remarkable leap beyond the top per-
former in the prior competition, a jump from 0.58 to 0.98.
These results demonstrate a major advance in algorithm de-
sign since the last evaluation, and it is now evident that the
PaSC video no longer represents a significant challenge for
deep learning-based approaches. However, reported results
for VDMFP are not nearly as strong, raising the question of
the ability of learning-based algorithms to generalize across
datasets [24].

2. Related Work
The YouTube Faces dataset is a popular dataset that

consists of 3, 425 videos of 1, 595 people collected from
YouTube [26]. Since the videos are from YouTube, they
were taken using a variety of settings and sensors. On this
data set, performance is measure on a verification task and
the measure of accuracy is 1 − EER, where EER is the
equal error rate. At the time this paper was written, the
highest reported accuracy was 91.4% for the DeepFace al-
gorithm [23].

The IJCB 2014 PaSC Video Face and Person Recog-
nition Competition [5] reported the performance in a still
image-to-video experiment and a handheld video experi-
ment, the latter being the same as the handheld experiment
reported here.

(a) (b)
Figure 2. Example frames from video sequences in the VDMFP.
The image in (a) is from a video sequence of a subject walking
towards the cameras in an atrium. The image in (b) is acquired
from a video camera looking down on a conversation. In (b), the
subject whose face can be seen is the subject to be recognized.

The FG 2015 Video Person Recognition Evaluation [4]
reported performance for two video-to-video matching
problems from the PaSC dataset. The first consisted of
videos from a tripod mounted high quality video camera
(control). The second contained videos acquired from 5 dif-
ferent handheld video cameras. Both of these experiments
are included in the 2016 evaluation described here.

3. Data, Experiments and Protocol

3.1. Video Data–PaSC

The videos in the PaSC dataset were acquired in seven
weeks during the Spring 2011 academic semester at the
University of Notre Dame. During each week, all subjects
performed the same scripted action (out of seven total ac-
tions), which changed from week to week. A handheld and
control video was acquired at the same time for each sub-
ject. Thus, there is a one-to-one correspondence in terms
of subject and action between handheld and control videos.
Handheld videos were acquired by five cameras (one model
per week) and the control videos from the same week were
acquired by the same camera.

3.2. Video Data–VDMFP

The Video Database of Moving Faces and People
(VDMFP) was collected at the University of Texas at Dal-
las, in hallways and atria with unconstrained pose and illu-
mination, as shown in Figure 2. The dataset contains two
types of video sequences: walking and conversation. In the
walking sequences, the subjects walked towards the camera.
In the conversation sequences, a camera is looking down on
a conversation between two subjects. One subject’s back is
to the camera and this subject is to be ignored in the exper-
iments. The other subject’s face is facing the camera at an
off angle. This is the subject to be recognized.



3.3. Experiments and Protocol

The protocol for this evaluation asked participants to
deliver to the organizers three similarity matrices. These
matrices contain similarity scores generated by the partici-
pants’ matching algorithms. Each entry in the matrix con-
tains a score s(q, t) that is the similarity between videos q
and t as generated by the participants’ matching algorithm.
These matrices are in a format originally developed by the
National Institute of Standards and Technology, and support
code to help work with these matrices and is included in the
PaSC Software Support Package1. Participants delivered
these matrices and receiver operating characteristics (ROC)
curves to the organizers. The organizers worked with the
participants to confirm the matrices were in the correct for-
mat and that the organizers could reproduce the ROC curves
from the similarity matrices.

The three similarity matrices correspond to these three
experiments in the evaluation:

1 Control: Compare all 1, 401 control videos to each
other and generate the complete set of possible simi-
larity scores (1, 962, 801 similarity scores).

2 Handheld: Compare all 1, 401 handheld videos to
each other and generate the complete set of possible
similarity scores.

3 VDMFP: Compare all 958 videos to each other
and generate a similarity score matrix containing all
917, 764 possible similarity scores.

In all three experiments, all videos are compared to all
videos; this maximizes the number of comparisons possi-
ble. The protocol includes the degenerate case along the
diagonal of the matrix where videos are compared to them-
selves, which were ignored in our analysis. A video-pair is
a match pair if the person in both videos is the same and a
video-pair is a non-match pair if the people are different.

This evaluation followed the PaSC protocol. The PaSC
protocol placed limitations on the training set and the use
of cohort or gallery normalization. Algorithm training sets
cannot include videos in the evaluation data set, imagery of
subjects included in the PaSC dataset, or data collected at
the University of Notre Dame in the Spring 2011 semester.
The last restriction prevents training algorithms on envi-
ronments in the PaSC dataset. The imagery for cohort or
gallery normalized sets have the same restrictions.

A modest training set, 280 videos, is available with the
PaSC data that follows the PaSC protocol for training sets.
However, because this is data collected in other semesters
at the University of Notre Dame under somewhat different
circumstances, it is similar to the PaSC evaluation data in
some ways and different in others. In general the organizers

1http://www.pasc-eval.org/support.html

are assuming that many groups are training the algorithms
on imagery not included the PaSC distribution.

In this evaluation, the relative performance of algorithms
is compared first in terms of ROC curves and second in
terms of the verification rate, also known as the true positive
rate, at a false accept rate (FAR) of 0.01. The FAR=0.01 is
chosen to be the best tradeoff between two opposing con-
straints.

4. Summary of Approaches
Four groups submitted results for this evaluation: one

produced a baseline algorithm, and three competed in the
challenge. Results were provided in the form of similar-
ity matrices and the performance summary appears in Sec-
tion 5. In addition to submitted results, groups were asked
to provide brief descriptions of the approach they took.
What appears below is based upon these participant pro-
vided descriptions.

4.1. University of Technology of Sydney (UTS)

UTS made multiple contributions to overcome chal-
lenges in video-based face recognition (VFR). For exam-
ple, to enhance robustness of CNN features to pose varia-
tions and occlusion, a Trunk-Branch Ensemble CNN model
(TBE-CNN) is proposed, which efficiently extracts comple-
mentary information from holistic face images and patches
cropped around facial components. Moreover, to further
promote the discriminative power of the representations
learnt by TBE-CNN, a novel loss function called Mean
Distance Regularized Triplet Loss (MDR-TL) is proposed.
And beyond this, a tracking-based algorithm to automat-
ically remove the irrelevant faces appearing in the back-
ground of each video clip is used. In the following, the key
modules of the approach are briefly introduced.

Face Tracking Module: In real-world VFR applica-
tions, some irrelevant faces may appear in the background
of a video clip. Both the irrelevant faces and the faces of in-
terest are detected by face detection algorithms. A tracking-
based algorithm is proposed to distinguish these irrelevant
faces from the faces of interest. First, the detected facial
bounding boxes are fed to a tracker [11]. As the face de-
tection results are discontinuous, the tracker usually returns
many tracklets from a video. The following key point is
to select the tracklets that incorporate faces of interest from
all tracklets. To achieve this goal, an assumption that the
tracklet that includes the largest face in the video belongs
to the subject of interest is made. Then, the cosine distance
of this tracklet and each of the remaining tracklets is calcu-
lated, based on the CNN features returned by TBE-CNN. A
safe threshold is set such that we exclude irrelevant track-
lets with high confidence. Tracklets whose representations
are close to that of the ground truth tracklet are saved for
recognition.



TBE-CNN Module: To learn pose- and occlusion-
robust face representations, previous approaches train mod-
els separately for the holistic face and image patches
cropped around facial components [7, 9]. Although this
strategy promotes performance, it significantly reduces the
efficiency for VFR. The TBE-CNN model efficiently ex-
tracts complementary information from the holistic face im-
age and facial components. TBE-CNN incorporates one
trunk network and several branch networks. The trunk net-
work is trained to learn face representations for holistic face
images, and each branch network is trained to learn face
representations for image patches cropped from one facial
component. The trunk network implementation is based on
GoogLeNet [22]. The GoogLeNet layers are divided into
three levels: the low-level layers, middle-level layers, and
high-level layers. The three layer levels successively ex-
tract features from the low to the high-level. Since low- and
middle-level features represent local information, the trunk
network and branch networks can share low- and middle-
level layers. In comparison, high-level features represent
abstract and global information; therefore, different mod-
els should have separate high-level layers. The trunk and
branch networks are fused by concatenating their last con-
volutional layers. TBE-CNN outperforms the trunk net-
work with only marginal increases in time and memory
costs.

MDR-TL Module: Existing deep metric learning meth-
ods for face recognition include pairwise loss and triplet
loss. Both methods rely on sampling effective image pairs
or triplets from all possibilities. Since the optimization is
based on each individual image pair or triplet, the global
distribution of training samples is neglected, which has a
negative impact on face recognition. To overcome this prob-
lem, the MDR-TL loss function is proposed, which regu-
larizes the triplet loss by taking the global distribution of
training samples within each batch into consideration.

Next, the training of TBE-CNN is briefly introduced.
The publicly available CASIA-WebFace database [28] is
adopted for CNN training. A similar training strategy to [8]
is utilized. First, TBE-CNN is trained with softmax loss in
a stage-wise manner. Then, TBE-CNN is fine-tuned with
MDR-TL for one more epoch with a small learning rate of
0.001 to enhance its discriminative power.

The performance of the proposed approach is evaluated
on the PaSC control and handheld sets. For VFR, the out-
put of the 512-dimension bottleneck layer of TBE-CNN is
adopted as the representation of each video frame. The
representations of all video frames are fused by average
pooling as the compact representation of the video. For
video-to-video matching, the simple cosine distance metric
is adopted to calculate the similarity score. Furthermore,
another three models are trained with different input image
resolution, depth, and structure. The similarity scores cal-

culated by all models are fused by averaging. Results are
provided under two protocols:

First, the face detection results provided by the database
are directly employed for both tracking and recognition.
Note that there are 60 videos where no faces were detected
by the database. For all the similarity scores related to these
60 videos, a constant value of −5.0 is set. Second, a strong
face detector is employed to detect the faces appearing in
the 60 videos mentioned above. For the other videos, the
face detection results provided by the database are still em-
ployed.

4.2. West Virginia University (WVU)

The approach by WVU has several steps. First, face
detection is executed, which is done with different tech-
niques for the two video databases, separately. For the PaSC
database, a commercial face detection software was used,
which works better than others based on conducted testing.
In addition to the commercial software, some other face de-
tectors were tested, such as Haar cascades from OpenCV [6]
and the Constrained Local Model (CLM) face tracker [1] to
get more detection results. For the VDMFP video database,
a CLM based face detection/tracking approach can do better
than others, thus it was adopted for the VDMFP videos. In
addition to face detection, the algorithms also detected some
facial landmarks, such as eye locations, which are used for
face alignment. All detected faces are aligned and cropped,
and resized to 256× 256 pixels for further processing.

For person recognition, deep convolutional neural net-
works are used. A deep network with more than 20 layers
is trained with a large number of face images. After train-
ing, the deep model is learned and used to extract deep fea-
tures from all cropped face images in PaSC and VDMFP
databases, respectively. Furthermore, another deep model
called VGG [18] was utilized to extract different deep fea-
tures from the faces in the two video databases as well. For
the VDMFP video database, the MPI Person Body Recogni-
tion deep model has been used to extract the body features.
Then those features were incorporated to calculate the final
similarity matrix.

Given the extracted deep features, face matching is done
based on distance measures between the deep features. Dif-
ferent distance measures including the cosine distance are
used for distance/similarity measures. For each video, deep
features from the detected frames are combined together to
represent the video faces. The final similarity matrix is ob-
tained by a weighted sum of the similarity measures from
different deep features.

4.3. University of Ljubljana (Uni-Lj)

The approach of Uni-Lj used the provided PittPatt face
detections to crop the facial regions from the video clips of
the PaSC database. If no bounding box was provided for a



given video, the Viola-Jones face detector [25] was run and
the resulting detections were used to extract facial regions
from the videos. All detected faces were then rescaled to
a fixed size of 224 × 224 pixels and subjected to a feature
extraction procedure. No additional alignment step was per-
formed on the resized images.

For feature extraction, the pre-trained VGG-Face [18]
deep convolutional neural network was exploited and
4, 096-dimensional vectors were extracted from each of the
detected faces. At this point of the processing pipeline each
video clip was represented with a number of feature vec-
tors. Here, the number of feature vectors varied from video
to video depending on the performance of the face detector.

To compare two videos and compute a matching score
for the comparison the following steps were taken:

1. The feature vectors extracted from a given video were
grouped into 3 clusters using k-means clustering (with
the cosine similarity measure). The similarity score
between two videos was then computed by matching
each of the 3 centroids of the first video against the 3
centroids of the second and computing the mean value
of all valid centroid comparisons. The cosine similar-
ity was used here for centroid matching.

2. An orthogonal subspace was computed from the fea-
ture vectors belonging to a given video. In line with
the idea of the Mutual Subspace Method [27], [10] the
similarity of two subspaces (representing two videos)
was measured using canonical correlations. The mean
value of all computed canonical correlations was taken
as the final similarity score for the given comparison.

The similarity scores produced by the above procedures
were ultimately combined using a weighted-sum fusion
rule. For the VDMFP database the same procedure as de-
scribed above was adopted. However, as no bounding boxes
were provided, the Viola-Jones face detector was used with
all videos of this database.

4.4. University of Notre Dame Baseline (ND)

Previous Video Person Recognition Evaluations made
use of the Local Region Principal Components Analysis
(LRPCA) algorithm [3], a basic subspace approach to lo-
cal facial patch matching. Since the initial publication of
the PaSC data set, progress in face recognition has acceler-
ated through the use of artificial neural networks for repre-
sentation learning, which far surpass basic subspace-based
algorithms. For the 2016 competition, a new baseline al-
gorithm was developed by ND that incorporated two con-
volutional neural networks. The motivation for the baseline
algorithm’s design stemmed from the need to incorporate
out-of-the-box feature extraction from a popular public net-
work (VGG-Face) that is a natural choice for this task (and

indeed was used by two of the three competitors), as well as
a few enhancements to account for the difficulty of both the
PaSC and VDMFP datasets. Each component of the base-
line algorithm is described below2.

VGG-Face: VGG-Face is a 16-layer convolutional neu-
ral network trained on 2.6 million faces images collected
from the web [18]. Eschewing decision making within the
network via the softmax function, the network was instead
applied as a feature extractor for the images in the challenge
data sets. 4, 096 dimensional feature vectors were extracted
for each face image from the fc7 layer of the network, which
is located just before the final fully connected layer.

NDnet: Using the well-known AlexNet architec-
ture [15], a feedforward convolutional neural network was
trained on 175, 000 images (7, 574 unique individuals) from
the Casia-WebFace data set [28] (frontalized via the method
described by Hassner et al. [13]), whose hyperparameters
for training were chosen based on the HyperOpt package’s
random search method for hyperparameter optimization [2].
Instead of random initialization for training, all the layers of
the model were fine-tuned, except the last fully connected
layer (fc8), from a saved state of the same model pre-trained
on ImageNet [21]. After completion of training, 4, 096 di-
mensional feature vectors were extracted for each face im-
age in the challenge data sets from the fc7 layer of the net-
work, which is located just before the final fully connected
layer. These features are used as a supplement to the VGG-
Face features.

Face Detection: Faces that were used as training data for
NDnet were collected and annotated for facial landmarks
using the method proposed by Zhu and Ramanan [29]. For
the PaSC data set, the provided face coordinates were uti-
lized. For the VDMFP data set, faces were collected and
annotated for facial landmarks using the Dlib library [14].
“Bad” detections were removed in all cases by taking a slid-
ing window over the x, y coordinates of each detection from
each frame, and eliminating detections that were outside of
the 1.5 sigma range (assuming “discontinuous” detections
that had sporadic coordinates which were incorrect). The
video frames were 2D aligned for PaSC and VDMFP after
the faces were cropped out.

Video-to-Video Comparison: To prepare data for
matching, features from all frames for a single video were
combined via element-wise averaging. This was done for
all videos in each data set. To generate matching scores,
cosine similarity was computed between averaged feature
vectors from VGG-Face and NDnet separately. The scores
from both networks were then combined via score-level fu-
sion. This was a weighted average of the scores from both
networks, which placed most emphasis on VGG-Face (0.95
for VGG-Face, and 0.05 for NDnet).

2Baseline code and extracted feature vectors will be released after this
work is published



5. Results

The results for the PaSC and VDMFP experiments were
scored separately. UTS submitted results for the PaSC ex-
periments and one group submitted results for two algo-
rithms (UTS-S and UTS-P). Three groups submitted results
for the VDMFP experiments.

The ROC curves for the PaSC control and handheld ex-
periments are presented in Figure 3. The verification rates
at FAR=0.01 for the five algorithms on the control and
handheld videos are noted on the ROC plot. There is a
wide range of performance for both experiments, with a
larger range on the handheld experiment. In both experi-
ments, the top performing algorithm had verification rates
at FAR=0.01 of 0.98 to 0.97 on the control and handheld
experiments respectively.

The ROC curves for the VDMFP experiment are pre-
sented in Figure 4. The subjects in the VDMFP videos fol-
low two scripts: walking towards a camera or engaging in
a conversation (see Figure 2). In the VDMFP experiment,
algorithms compare videos under three conditions: walk-
ing to walking, conversation to conversation, and walking
to conversation. The plot on the top shows ROCs for all
three conditions. Here VR at FAR=0.01 varies from 0.02
to 0.32. The bottom plot reports results for only the walk-
ing to walking condition and VR at FAR=0.01 varies from
0.20 to 0.72. For the three algorithms in both the PaSC and
VDMFP experiments, performance is comparable for the
PaSC control and the VDMFP walking-to-walking experi-
ment. This suggests that processing the conversation video
is challenging. This includes detection and recognition.

6. Comparison with Human Performance

Phillips et al. [20] compared humans and algorithms on
the PaSC handheld videos. Human performance was bench-
marked at two levels: challenging and extremely difficult.
For the extremely difficult level, 100 pairs of videos were
selected so that the accuracy of the PittPatt baseline algo-
rithm was 100% incorrect. For the challenging level, 100
video-pairs were selected so performance was roughly at
chance. Human performance is reported for aggregate scor-
ing and fusing of the ratings of 16 subjects. Accuracy of fus-
ing human ratings is superior to aggregate scoring. Figure 5
shows ROC curves for human and algorithm performance
on the two PaSC experiments. For the challenging level,
algorithm Uni-Lj is comparable to aggregate human perfor-
mance, UTS and WVU are superior, and UTS is compara-
ble to fused human performance. For the extremely difficult
level, algorithm WVU and Uni-Lj’s performance is worse
than random, which is to be expected from the video-pair
selection method. UTS is comparable to aggregate human
performance. Prior to this evaluation, all algorithms were
worse than random for the extremely difficult level [20].
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Figure 3. ROC curves for the PaSC control and handheld video
experiments.

7. Analysis and Conclusion

A summary of PaSC performance from June 2013
through May 2016 is given in Figure 6. Performance is from
the IJCB 2014 and Face & Gesture 2015 competitions. The
initial performance of VR of 0.38 at a FAR = 0.01 was from
for the PittPatt-based baseline algorithm that was reported
when the PaSC dataset was release in June 2013. Perfor-
mance has steadily improved since 2013. Performance is
now consistently above the original PittPatt-based baseline
algorithm and three algorithms from two groups have a VR
at a FAR of 0.01 greater than 0.85. The inclusion of the
VDMSP experiment has added a new depth to the Video
Person Recognition Evaluation series of evaluations. The
conversation videos in the VDMSP experiments present a
new challenge for researchers, and there is still room to
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Figure 4. ROC curves for the VDMFP experiments. The ROC
curves in the top plot are for the complete VDMFP videos. The
bottom ROC plot is restricted to walking to walking videos.

grow for even the best convolutional neural networks. The
performance on the PaSC handheld and VDMSP walking
to walking experiments are comparable. This suggests that
advances in algorithms for the PaSC experiments transfer to
similar conditions in new data sets, even though limitations
with respect to generalization persist.
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