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System identification refers to the process of building or improving mathematical models of dynamical 
systems from the observed experimental input–output data. In the area of civil engineering, the 
estimation of the integrity of a structure under dynamic loadings and during service condition has 
become a challenge for the engineering community. Therefore, there has been a great deal of attention 
paid to online and real-time structural identification, especially when input-output measurement data are 
contaminated by high-level noise. Among real-time identification methods, one of the most successful 
and widely used algorithms for estimation of system states and parameters is the Kalman filter and its 
various nonlinear extensions such as Extended Kalman Filter (EKF), Iterated Extended Kalman Filter 
(IEKF), the recently developed Unscented Kalman Filter (UKF) and Iterated Unscented Kalman Filter 
(IUKF). In this paper, an investigation has been carried out on the aforementioned techniques for their 
effectiveness and efficiencies through a highly nonlinear SDOF structure as well as a two-storey linear 
structure. Although IEKF is an improved version of EKF, results show that IUKF generally produces 
better results in terms of structural parameters and state estimation than UKF and IEKF. Also IUKF is 
more robust to noise levels compared to the other approaches.

Keywords: Online system identification, structural identification, extended Kalman filter, iterated 
extended Kalman filter, unscented Kalman filter, iterated unscented Kalman filter.

1. Introduction

Our buildings and infrastructure have been always susceptible to natural or man-made hazards. Therefore, it has
prompted governments and the research community to find a realistic way for protecting civil infrastructure and
community from hazards such as earthquakes, winds, aging, deterioration, and poor quality construction.
Consequently, many works have been done by engineers in the past decades to find practical solutions to this 
problem. This has led to two main areas of research, i.e. structural control and structural health monitoring 
(SHM).

SHM is defined as identification of the existence, location and severity of likely damage in a structure by
comparing the current state of the structure relative to the intact structure’s baseline state. The traditional 
experimental based damage detection methods need subjective visual inspection of the structure. On the other 
hand, SHM does not require this and therefore, it can provide valuable information for post-event safety 
assessments of the structure.

Farrar and Worden1 described SHM as a four-part process: operational evaluation, data acquisition, feature 
extraction, and statistical model development. Operational evaluation determines economic and/or life safety 
issues, damage definitions, conditions, both operational and environmental, under which the system functions, 
and, finally, limitations on data acquisition in the operational environment. Data acquisition includes
determination and measurements of required quantities, type of sensors, location, number, resolution, and 
bandwidth, and also finding the right sampling time for data collection. The third part in SHM is feature 
extraction, which is the process of parameters identification from collected data to determine existence, location, 
type, and the extent of damage. Most traditional identification techniques, however, require measurements of 
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excitation (input) and response (output) in order to produce the required data for model identification. In order to 
obtain such measurement data, controlled tests are needed to be conducted on the structure under investigation. 
For instance, in multi-input-multi-output (MIMO) modal testing, a common way to collect the required data is to 
excite a testing structure by applying known excitations at several points and measure the response of structure at 
the sensor locations 2. However, for many civil engineering structures, it may be difficult or not feasible to 
provide such artificial excitations because of their sheer size, geometry and location or simply due to interruption 
to normal service such as in case of bridges. Moreover, providing such an external energy to excite a large civil 
structure to gain the proposed level of vibration may not be practical.

On the other hand, civil structures in their operational condition inevitably experience various unmeasurable 
dynamic loadings such as wind, earthquake and traffic. Measurements of structural responses under such loadings 
can be used for identification of structural parameters or structural models. If such identification is carried out 
after collection of the entire data sets, the identification techniques is called off-line method which is useful when 
the final state of the structure at the end of loading is important. The off-line algorithms have been used widely in 
engineering problems in the last decades. 3 , 4 , 5 However, in some cases, real-time system identification is 
absolutely necessary. For example, in structural control, during severe loadings such as earthquakes, access to the 
updated structural model in order to produce optimal control actions requires real-time structural identification.

Among many proposed SHM techniques in the literature, only a few, such as adaptive H filter techniques 6,
bootstrap filtering approaches 7 , Artificial Neural Networks (ANNs) based methods 8 , 9 , 10 , 11 , wavelet 
approaches 12, are suitable for real-time problems. However, they are associated with significant computational 
cost and complexity, or are incapable of locating and quantifying the damage detected. Therefore, developing on-
line SHM techniques with simpler and more suitable algorithms is still a challenge.

Kalman filtering methods is one of the groups of parametric methods which have been widely used in 
engineering online identification problems. A variety of Kalman filtering techniques, including extended Kalman 
filter (EKF) and unscented Kalman filter (UKF) have been proposed to estimate both response and parameters of 
the mechanical models 13.

Hoshiya and Saito14 utilised an extended Kalman filter for system identification of a structure subjected to 
seismic excitation. Yang et al. 15 also proposed an adaptive EKF approach which is capable of tracking the 
structural parameters, such as the stiffness and damping as well as unknown inputs. The adaptive technique 
enables the algorithm to identify the variations of structural parameters due to damage. The accuracy of EKF 
depends on the simplicity of the linear system contaminated by Gaussian noise. However, when either the under-
study dynamical system is highly nonlinear or the noise is considerably non-Gaussian, the EKF may not be able to 
perform well. Therefore, in order to address the above challenges, a combination of the non-parametric modelling 
techniques and the ensemble Kalman filter (EnKF) has been introduced by Ghanem et.al 16. EnKF uses the same
corrector equation as the original Kalman filter, except that the gain is calculated from the error covariance 
provided by the ensemble of model states. The algorithm was able to detect both damage location and time of 
occurrence despite of measurement and modelling noise. Also, a comparison between ensemble and extended 
Kalman filters was presented.

Another approach to tackle the aforementioned problem is the Unscented Kalman Filter (UKF). UKF first is 
introduced by Julier et.al 17 and it utilises a deterministic “sampling” technique to measure the mean and 
covariance terms. First 2L+1 sigma points (L is the state dimension), need to be chosen based on a square-root 
decomposition of the prior covariance. Then a weighted mean and covariance is recovered by propagation of these 
sigma points through the true non-linear functions without approximation. Figure 1 shows a simple illustration of 
the technique for a 2-dimensional system which will be explained in details later.

Ungarala 18 developed the iterated forms of EKF and UKF (IEKF, IUKF), which can be thought as an 
estimator of the conditional mode that employs an approximate Newton–Raphson iterative scheme to determine
the maximum value of the probability density function (pdf).
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Fig. 1. Example of mean and covariance propagation 17.

In this study, the capability of four aforementioned algorithms, i.e. EKF, IEKF, UKF and IUKF in identifying 
the structural parameters, are compared by considering some numerical examples, including one nonlinear 
structural system with complex Jacobian matrix. The robustness and sensitivity of the methods to the 
measurement noise level and initial guesses of state vector will also be examined.  To the authors’ best 
knowledge, such an investigation has hitherto not been reported in the open literature.

2. Principles of EKF, IEKF, UKF and IUKF

To explain the principles of the aforementioned algorithms, we first consider a general dynamical system whose 
nonlinear state space equation with added noise is described by = ( ) + (t) (1)

where (t) represents the process noise with covariance matrix Q(t). The nonlinear observation equation at time = can also be expressed as: = ( ) + (2)
where shows the measurement noise with Rk. Equation (1) can be rewritten in a discrete form as follows= ( ) += ( ) + (3)

where is the process noise vector with corresponding covariance matrix Qk. By integrating Eq. (1), one obtains 
the function ( ) = + ( ( ))( ) . (4)

To obtain a recursive estimation of x , one of the algorithms described below may be used.

2.1. Extended Kalman Filter (EKF)

In the extended Kalman filter method, an initial estimate of the system’s state is first predicted and then modified
using observed and collected measurements (‘measurement update’ step). The state prediction and 
corresponding covariance can be calculated as:
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= + ( ( ))( )
( ) (5)

= + (6)

In Eq. (6), is the state transition matrix and is found from:

= + ( ( ))( ) ( ) (7)

The predicted measurement is estimated as = ( ) (8)

Thus, in the measurement update step, = + ( )= [ ] [ ] += [ + ] (9)

where is the Kalman gain matrix at time step k and is the linearised coefficient matrix of the observation 
equation given as:

= h(x) (10)

2.2. Iterated Extended Kalman Filter (IEKF)

In order to make the EKF more robust to the noise level and initial estimate of the state vector, the following 
iteration process is considered to be added to the standard EKF algorithm after the state prediction and the 
corresponding covariance are estimated:

, = ,      , =
, = + , [ , , , ]

, = ( , , ) ,

(11)

where

, = ( ) | ,
, = , ( , , + ) .

(12)

This process will be terminated if the inequality x , x , V h is satisfied, where V h is the 
predetermined threshold. After N iterations (N should be chosen by user), the ultimate estimated state and 
corresponding covariance matrix are: = , , = , (13)

2.3. Unscented Kalman Filter (UKF)

The level of computational complexity of UKF is the same as EKF. However, it does not require the calculation of 
Jacobians or Hessians, and its accuracy is of second-order, whereas EKF can only reach a first order accuracy. 
The UKF estimation algorithm is explained in the following steps:
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Step 1: Sigma Point Calculation

At time k-1, a set of deterministic sample points with related weights are calculated as;

, =
, = + ( ( + ) ) , = 1,2, . . ,

, = ( ( + ) ) , = + 1, + 2, … ,2 (14)

( ) = ( + )( ) = ( + ) + (1 + )( ) = ( ) = 1 {2( + )} ,    = 1,2, … ,2
(15)

where L is the dimension of x; and denote sigma point and corresponding weight, respectively; =( + ) identifies the spread of the sigma points around , and usually it is a small
is a secondary scaling parameter which is usually set to 0; is used to 

incorporate the prior distribution of x (for a Gaussian distribution =2 is optimal); ( ) denotes the ith row of 
the matrix square root.

Step 2: Time Update

After the sample points are transmitted through the nonlinear equations, the mean and covariance are predicted as 
follows:

| = ( )
= ( ) , |

= ( ) , | , | +
| = : , | , , | + , , |

| = |
= ( ) , |

, = ( ) , | , | +
, = ( ) , | , | ,

(16)

where L =2L, = L + ; w ( )i  and w ( )are computed in the same way as Eq. (15) by replacing L with L . It 
should be mentioned that in Eq. (16), additional points derived from the matrix square root of the process noise 
covariance are added to the sigma points. The idea behind this is to consider the effect of the process noise to
the observed sigma points Y. More details can be found in the paper by Van Der Merwe 19.

Step 3: Measurement Update

The Kalman gain is computed to update the state and covariance as follow,



6 
 = , ,= + ( )= ,

(17)

The abovementioned three steps summarise the procedure of UKF algorithm. By using an initial condition = [ ] and = [( )( ) ], the filtering approach can be recursively implemented.

2.4. Iterated Unscented Kalman Filter (IUKF)

In view of the development of IEKF and the desire to improve the accuracy of UKF, a natural idea is to 
implement the iterations in UKF. However, special steps should be taken to make the iterated filter perform as 
good as possible. In following steps, the IUKF is explained in detail.

Step 1: for each instant, when 1, evaluate the state estimate , and corresponding covariance matrix 
through Eq. (2.14 to 2.17),

Step 2: Let , = , , =  and , = , , =  . Also let = 1 and = 2.

Step 3: Sigma points generation:

, = ,  , , + ( + ) , , , ( + ) , (18)

Step 4: Recalculate Eqs. (16) and (17) as follows:

, = ( ) ,
, = ( , )

, = ( ) ,
, , = ( ) , , , , +

, , = ( ) , , , ,
, = , , , ,

, = , + . , ( , )
, = , , , , ,

(19)

where index j indicates the jth iteration; , denotes the ith component of .

Step 5: Define the following three equations: (i) , = , , (ii) , = , , , and (iii) , = ,
Step 6: if the following inequality holds:

, , , + , , < , , , (20)

and if , then set = .  , = + 1 and return to Step 3; otherwise proceed to Step 7.
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Step 7: stop if the inequality (20) is not satisfied or if  is too large (j>N) and set = ,  , = , .
For positive definite matrices , , , and , , assume that lim , 0, then according to Eq. (19), 

we have , < , for any = 1,2, . . < . Based on the fact that each element of the matrix , is bounded, it 
is easy to know that lim , = lim , . With this premise, it can be inferred from Eq. (19) that lim , = 0, which violates the assumption that lim , 0. However, the assumption is not true and the
only possibility is that lim , = 0. Now suppose that , 0 when > , then from Eq. (19), we have , , = , and , , , which shows the convergence of the under-study algorithm as the iteration 
process proceeds.

From Eq. (19), we can find out the state estimate after N iterations is x , = x , +  K , (y y , ).
Since for a large N, 0, therefore x , x , = x , if N is large enough and the decaying factor is 
between 0 and 1. One can also conclude that iteration process will converge to a solution; although, the 
convergence speed is influenced by the factor .

Compared with UKF, the IUKF, through corrections of the measurement, can adjust the state estimate to 
converge to the true value through corrections of the measurement. Therefore, a smaller state error can be 
expected, after the iteration stops. Moreover, the response of the proposed filter to new measurements is as quick 
as possible with the adjustment of state and covariance matrix. This feature can help in making a faster 
convergence speed where the initial error is large 20,21.

3. Numerical Simulations

3.1. SDOF nonlinear hysteretic structure

As first case study, a single degree of freedom (SDOF) nonlinear hysteretic Bouc-Wen structure, is considered 
here and is subjected to earthquake acceleration (Figure 2). The governing equation of motion is given by( ) + + ( ) = ( ) (21)

where  ( , ) represents the Bouc-Wen model and it is expressed by= | || | | | (22)

In Eq. (22), c is the damping coefficient, k is the stiffness, and , and are the hysteretic parameters. The
parametric values used here for the simulation purpose are as follows: m=1 kg, c=0.3 Ns/m, k=9 N/m, =2, = 1
and = 2. Also the ground excitation, , which is considered here is the El-Centro earthquake of 1940 with a 
peak ground acceleration of 0.15 g (PGA=0.15g). The acceleration of the mass, , and ground,  , is measured 
using the installed sensors and the unknown parameters are taken as c, k, , and . Moreover, in order to check 
the robustness of the algorithm to noise, a white noise process with different root mean square (RMS) noise-to-
signal ratios is added to both the structural acceleration response and the earthquake ground acceleration. The 
system responses of the displacement, velocity, and acceleration were obtained by solving differential Eq.
(21) using the fourth-order Runge–Kutta integration method.

The objective is to estimate the unknown parameters as well as the displacement, velocity and r(t) signals. 
Therefore, the state vector to be estimated is defined as:= [ ,  ,  ,  ,  ,  ,  ,   ] = [ , , , , , , , ].

Equations (21) and (22) may be rewritten in the form of state space as follows:
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( ), ( ) =
+| || | | |00000

(23)

The system equation, shown above, clearly demonstrates a strong nonlinear behaviour. If both acceleration 
response and excitation are measurable, then the observation equation, which is the absolute acceleration of the 
mass m, can be expressed as:

= + + = ++ = + + (24)

The simulation is carried out using 2% added root mean square (RMS) noise-to-signal ratio and initial guesses 
of = [0, 0, 0, 0.2, 5, 0, 0.5, 1]. The identification of the parameters during the earthquake is depicted in Fig. 3
while the estimated hysteretic loops between 4 to 8 seconds, using the four aforementioned algorithms are shown 
in Fig. 4.

Fig. 2. SDOF nonlinear hysteretic system

As can be observed from Fig. 3, the IEKF and IUKF have better convergence speed and accuracy compared to 
their standard forms and IUKF shows the best performance among all methods in terms of both accuracy and 
convergence speed. It is worth noting that the former IEKF has not been applied to structural parameters 
identification before.  
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Fig. 3. Parameters estimation for SDOF nonlinear system, noise level 2% RMS.
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Fig. 4. Estimated hysteretic loops for the Bouc–Wen system, noise level 2% RMS

3.2. 2DOF linear structural system

Next, consider a two-degree of freedom (2DOF) structural system subjected to an earthquake excitation as shown 
in Fig. 5.  The governing equations of motion are given by+ + ( ) + + ( ) =+ ( ) + ( ) = ,

(25)

in which  = = 1 , = 0.6 / , = 0.5 / , = 12 / , and = 10 / . Although the 
system is linear; the estimation of the unknown parameters together with the states of the system is a nonlinear 
identification problem. The same earthquake signal as in the previous case study is used as the excitation to the 
structure. Here, the acceleration response of structure and the earthquake signal are considered to be known. The 
purpose here is to also predict the stiffness and damping of different storeys and estimate the velocity and 
displacement signals of different floors. Thus, the state vector to be tracked is defined as:= [ , , , , , , ,  ] = [ , , , , , , , ].
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Fig. 5. 2DOF linear system

In the first run, a noise level of 1% RMS is added to both measured signals and ground acceleration. The initial 
state vector is also thought to be = [0.0001, 0.0001, 0.0001, 0.0001, 5, 5, 0.3, 0.3]. The identified parameters 
during the first 8 seconds of the earthquake are illustrated in Fig. 6. As it can be seen, UKF and IUKF have better 
performances than EKF and IEKF in the beginning of the process. However, all the methods converge to almost 
the same values after 4 seconds. It is interesting to note that although the performance of IEKF was expected to be 
always better than EKF, the results show that EKF can track the damping values with less fluctuations than IEKF. 
The reason is that when the local linearization condition is unconditionally met 22,23, i.e., the estimated state of the 
system is close enough to the actual value, then IEKF performs better than EKF. However, this assumption is not 
always true as in many applications, the initial estimate errors is large. Also, from the updated equations, it is clear 
that the state correction in each iteration related to the measurement error. However, since the measurement error 
cannot be zero as ideal cases, therefore, the convergence of iterations depends on the accuracy of measurements. 
Moreover, a proper choice of the threshold Vth is another important factor which affects the performance of 
iterated algorithm. In this study, a threshold of 0.08 has been used to simulate the IEKF.

To check the robustness and sensitivity of the algorithms to noise level and the initial state vector, a second 
simulation is performed using a noise level of 5% RMS and initial state vector of = [0.0001, 0.0001, 0.0001, 0.0001, 2.8, 2.8, 0.15, 0.15] . Results are shown in Fig. 7 in which, the 
performances of the four identification techniques are compared with one another.

As can be found from Fig. 7, although IEKF is an improved version of EKF, it still cannot perform well when 
the initial values of the unknown parameters are far from the real ones. IUKF, on the other hand, tracks the 
parameters with good accuracy, which is even better than UKF. 

Table 1 shows the final identified parameters of the structure with different noise levels and initial state vector. 
The best result in each section is bold faced. From the results, the superiority of IUKF over the other methods is 
clearer when more noise level is superimposed to the signals and the initial state vector is far from the real values.

4. Conclusion

A comparison study have been carried out on application of four different Kalman Filtering methods, i.e EKF, 
IEKF, UKF and IUKF for estimating the states and parameters of  linear and nonlinear civil structures in real-
time. The governing equation in both numerical examples, was nonlinear and in one of the cases, the structure also 
exhibited highly hysterical structural nonlinearity. The numerical results showed that, the performance of EKF 
and UKF are improved by their corresponding iterated versions, i.e. IEKF and IUKF. However, when the initial 
state estimate of the system is not close to the target value and consequently the initial measurement error is large 
or if threshold value Vth is not chosen properly, IEKF shows a weaker performance as compared to the standard 
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EKF. The UKF method, on the other hand, has shown to be superior to EKF and IEKF in the structural 
identification applications.  However, when the structure is highly nonlinear or the initial estimate of the 
unknown parameters are not close to actual values, and also if the measurement signals are contaminated with 
high noise level, IUKF is the best one among the four algorithms considered, in terms of robustness, convergence 
speed and tracking accuracy.

It is also worth noting that no paper has been found in the open literature on the application of IEKF to 
structural parameters identification. Also, such comparison between these four aforementioned algorithms in 
finding the structural parameters has not been studied before.

Fig. 6. Parameters estimation for 2-DOF linear system, noise level 1% RMS and = [ . , . , . , . , , , . , . ].
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Fig. 7. Parameters estimation for 2-DOF linear system, noise level 5% RMS, and = [ . , . , . , . , . , . , . , . ].
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Table 1. Estimation results for 2DOF linear system.
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Le
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l

Identification Method
K1(N/m) K2(N/m) C1(N s/m) C2 (N s/m)

Exact: 12 10 0.6 0.5

=[0,0,
0,0,5,5

,0.3,0.3
]

1%

EKF
Estimated: 11.9553 10.0033 0.5595 0.4912

Error  (%): 0.37 0.03 6.75 1.76

IEKF
Estimated: 11.9688 9.9974 0.5855 0.4852

Error  (%): 0.26 0.026 2.42 2.96

UKF
Estimated: 11.9916 10.0010 0.5808 0.4900

Error  (%): 0.07 0.01 3.2 2

IUKF
Estimated: 11.9917 10.0024 0.5812 0.4914

Error  (%): 0.069 0.024 3.13 1.74

=[0,0,
0,0,2.8

,2.8,0.1
5,0.15]

5%

EKF
Estimated 1: 0.159 -0.1226 1.18 0.73

Error  (%): 98.66 101 96.67 46.00

IEKF
Estimated: 11.518 0.123 0.76 0.458

Error  (%): 4.017 98.77 26.67 8.4

UKF
Estimated: 11.957 10.049 0.581 0.490

Error  (%): 0.358 0.49 3.16 2

IUKF
Estimated: 11.977 10.047 0.592 0.485

Error  (%): 0.192 0.47 1.33 3
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