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Abstract. We show that, given an equation over a finitely generated free
group, the set of all solutions in reduced words forms an effectively con-
structible EDT0L language. In particular, the set of all solutions in reduced
words is an indexed language in the sense of Aho. The language characteri-
zation we give, as well as further questions about the existence or finiteness
of solutions, follow from our explicit construction of a finite directed graph
which encodes all the solutions. Our result incorporates the recently invented
recompression technique of Jeż, and a new way to integrate solutions of linear
Diophantine equations into the process.

As a byproduct of our techniques, we improve the complexity from qua-
dratic nondeterministic space in previous works to NSPACE(n logn) here.

Introduction. In this paper we prove that the set of all solutions, as reduced
words, to an equation in a finitely generated free group or free monoid with in-
volution, has a description as an EDT0L language. Furthermore, we show that
this description can be computed in NSPACE(n logn), where n is the length of the
equation plus the number of generators of the group or monoid.

We construct a finite graph, of singly exponential size 2O(n logn), with nodes
labeled by equations of bounded size plus some additional data, and directed edges
corresponding to transformations applied to the equations. More precisely, the
edges are labeled by endomorphisms of a free monoid C∗, where C is a finite
alphabet which includes the group or monoid generators. The graph, viewed as a
nondeterministic finite automaton, produces a rational language of endomorphisms
of C∗. We show that the set of all such endomorphisms applied to a particular
‘seed’ word gives the full set of solutions to the input equation as reduced words.
Thus, by the definition of Asveld [2], we obtain that the solution set is an EDT0L
language, and therefore an indexed language. Moreover, one can decide if there
are zero, infinitely or finitely many solutions simply by checking if the graph is
empty, has directed cycles or not. Our complexity results concerning these decision
problems are the best known so far; and with respect to space complexity they
might be optimal.

The first algorithmic description of all solutions to a given equation over a free
group is due to Razborov [20, 21]. His description became known as a Makanin-
Razborov diagram, and this concept plays a major role in the positive solution
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of Tarski’s conjectures about the elementary theory in free groups [14, 24]. While
Makanin-Razborov diagrams are also graphs whose edges are labeled by morphisms,
these morphisms are group homomorphisms, and it is unfeasible to use this ap-
proach to directly obtain solutions in freely reduced words, as the cancellation
within group elements after applying a homomorphism cannot be controlled. Also,
it is extremely complicated to explicitly produce a Makanin-Razborov diagram for
a given equation, and this has been done only in very few cases ([25]).

A description of solution sets as EDT0L languages was known before only for
quadratic word equations over a free monoid by [10]; the recent paper [6] did not
aim at giving such a structural result. The present paper builds on the techniques
in [6], in particular we make use of Jeż’s recompression method [12]. There is also
a description of all solutions for a word equation over free monoids by Plandowski
in [19]. His description is given by some graph which can be computed in singly
exponential time, but without the aim to give any formal language characterization.

In this paper we restrict ourselves to equations in free groups or free monoids with
involution, and their solution sets in reduced words. It is possible to generalize our
construction in several directions. First, we can replace the free group by any finitely
generated free product P = ?1≤i≤sFi where each Fi is either a free or finite group,
or a free monoid with arbitrary involutions. Second, we can allow arbitrary rational
constraints for free products. We consider Boolean formulae Φ, where each atomic
formula is either an equation or a rational constraint, written asX ∈ L, where L ⊆ P
is a rational subset. More concretely, let P be a free product as above, Φ a Boolean
formula over equations and rational constraints, and {X1, · · · , Xk} any subset of
variables. Then the techniques developed in this paper allow us to prove that
Sol(Φ) = {σ(X1)# · · ·#σ(Xk) | σ solves Φ in reduced words} is EDT0L. More-
over, there is an algorithm which takes Φ as input and produces an NFA A such
that Sol(Φ) = {ϕ(#) | ϕ ∈ L(A)}. The algorithm is nondeterministic and uses
quasi-linear space in the input size of Φ. However, these more technical results
are not the scope of the present paper. They follow from standard results in the
literature and they have been announced in the conference version of this paper
which was presented at ICALP 2015, Kyoto (Japan), July 4 – 10, 2015 [3]. Full
proofs are in the corresponding paper on arXiv [4].

Article organisation. In Section 1 we give preliminary definitions and notations.
In Section 2 we state the main result, Theorem 4, that solutions in reduced words to
equations in either a free group or a free monoid with involution are described by a
finite graph or nondeterministic finite automaton (NFA) which can be constructed
in nondeterministic quasi-linear space. The main work of the paper is in Section 3
which treats the monoid case. We define the NFA in subsection 3.6, and present the
proofs that the NFA encodes only correct solutions (soundness), and all solutions
(completeness), in subsections 3.9 and 3.10, respectively. The most complicated
part is the completeness proof, which involves producing a path for a given solution
from initial to final node by alternatively expanding and compressing the equation,
ensuring that at all times the size of the equation is bounded so that we stay within
the graph.

Once the monoid case is proved, in Section 4 we follow relatively standard meth-
ods to reduce the problem of finding solutions in reduced words in a free group to
the monoid case. In the final section we give an explicit example of the alternating
expansion-compression procedure.
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We stress that the complicated part of the paper is to prove that the NFA we
construct encodes exactly all solutions; the specification and construction of the
NFA, and hence the EDT0L language description, is extremely simple by contrast.

1. Preliminaries

1.1. Monoids with involution. An alphabet is a finite set whose elements are
called letters. By Γ∗ we denote the free monoid over the finite set Γ. The elements
of a free monoid are called words, and the empty word is denoted by 1. The length
of a word w is denoted by |w|, and |w|x counts how often a symbol x appears in w.
Let M be any monoid and u, v ∈ M . We write u ≤ v if u is a factor of v, which
means we can write v = xuy for some x, y ∈ M . We denote the neutral element
in M by 1, and use the notation idC∗ for the neutral element in the monoid of
endomorphisms over a free monoid C∗.

An involution on a set Γ is a mapping x 7→ x such that x = x for all x ∈ Γ. For
example, the identity map is an involution. An involution on a monoid must also
satisfy xy = y x. Any involution on a set Γ extends to Γ∗: for a word w = a1 · · · am
we let w = am · · · a1; then Γ∗ endowed with the involution is called a free monoid
with involution. If a = a for all a ∈ Γ then w is simply the word w read from
right-to-left.

A morphism between sets with involution is a mapping respecting the involution,
and a morphism between monoids with involution is a homomorphism ϕ : M → N
such that ϕ(x) = ϕ(x). A morphism is a ∆-morphism if ϕ(x) = x for all x ∈ ∆
where ∆ ⊆ M . In this paper, whenever the term “morphism” is used, it refers to
a mapping which respects the underlying structure, including the involution. All
groups are monoids with involution given by x = x−1; and all group homomor-
phisms are morphisms.

1.2. Free partially commutative monoids. Let ∆ be a finite set with invo-
lution. An independence relation is an irreflexive relation θ ⊆ ∆ × ∆ such that
(x, y) ∈ θ ⇐⇒ (x, y) ∈ θ. Every independence relation defines a free partially
commutative monoid with involution M(∆, θ) by

M(∆, θ) = ∆∗/ {xy = yx | (x, y) ∈ θ} .
These monoids are well-studied in computer science as they form the basic algebraic
model for concurrency, see [7, 13, 15]. In mathematics free partially commutative
groups are commonly referred to as right-angled Artin groups (RAAGs). Their
study has a long history with strong connections to topology and geometric group
theory, see for example [26].

In this paper we will need algorithms for equality and factor testing in free
partially commutative monoids. This can be done very efficiently: for example,
there is a linear time algorithm ([16]) to decide on input u,w ∈ ∆∗ whether u ≤ w
in M(∆, θ). Here we need the uniform version, as follows: the input is a tuple
(∆, θ, u, w) with u,w ∈ ∆∗, and the question is whether u is a factor of w inM(∆, θ).
This problem can easily be solved in nondeterministic linear space (which suffices
for our purposes) by the following argument: first find words p, q ∈ ∆∗ by scanning
w from left to right and for each position guessing (nondeterministically) whether
each corresponding letter belongs to p, u or q, requiring that |puq| = |w| (we do this
by marking each letter of the input, which requires linear space). Second, check
that the choice of positions assigned to u produces a word that is indeed equal to
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u. Third, check whether puq is equal to w in M(∆, θ). For both the second and
third steps we use the “projection lemma” of [13, 5]: for example, in the third step
we check that |puq|a = |w|a for all a ∈ ∆, then we check that the projections of puq
and w to {a, b}∗ yield identical words for all a, b ∈ ∆ such that ab 6= ba in M(∆, θ).
The projections are obtained by ignoring all letters in puq and w which are not in
{a, b}.

Another fact about partially commutative monoids that we use later is that for
u ∈ M(∆, θ) the values |u| and |u|a are well-defined since |xy|a = |yx|a for all
x, y ∈ ∆∗, a ∈ ∆.

We will define free partially commutative monoids through “types” in Subsec-
tion 3.3, which for simplicity of notation are also denoted by θ.

1.3. Languages. Languages refer traditionally to subsets of finitely generated free
monoids; the class of regular languages can be defined via rational expressions,
nondeterministic finite automata, or recognizability via homomorphisms to finite
monoids, to mention just a few of the possible definitions [18]. These notions
generalize to arbitrary monoids, but lead to different classes, in general.

We define a rational subset in any monoid M by means of nondeterministic
finite automaton, NFA for short. An NFA is a directed finite graph A with
initial and final states, where the transitions between states are labeled by ele-
ments of the monoid M . We say that m ∈ M is accepted by the automaton A
if there exists a path from some initial to some final state such that multiply-
ing the edge labels together in M yields m. This defines the accepted language
L(A) = {m ∈M | m is accepted by A}. Then L ⊆ M is rational if and only if L
is accepted by some NFA over M (see [9]). An NFA is called trim if every state is
on some path from an initial to a final state. For a trim NFA A we have L(A) 6= ∅
if and only if A 6= ∅.

We say that L ⊆ M is recognizable if there is a homomorphism ν : M → N to
a finite monoid N such that L = ν−1(ν(L)). The family of recognizable subsets
is closed under finite union and complementation (and therefore also under finite
intersection), and therefore forms a Boolean algebra. For finitely generated free
monoids Kleene’s Theorem asserts that a subset is recognizable if and only if it is
rational; and in this context a rational subset is also called regular.

In this paper we are mainly interested in rational subsets of free groups F (A+),
free monoids A∗, and monoids End(C∗) of endomorphisms over a free monoid C∗.
If |C| ≥ 2, then End(C∗) is neither free nor finitely generated and it contains
non-trivial finite subgroups.

Suppose we have an NFA where each transition label is an endomorphism in
End(C∗) which is applied in the opposite direction of the transition. If a path
is labelled by the sequence h1, . . . , ht, then we can apply the endomorphism h =
h1 · · ·ht to an element u ∈ C∗ and the result is a word h(u) = h1 · · ·ht(u) ∈ C∗.
Thus, {h(u) | h ∈ L(A)} defines a language in C∗. This leads to the notion of
EDT0L, defined next.

1.3.1. EDT0L Languages. The acronym EDT0L refers to Extended, Deterministic,
Table, 0 interaction, and Lindenmayer. There is a vast literature on Lindenmayer
systems, see [22], with various acronyms such as D0L, DT0L, ET0L, HDT0L and
so forth. For more background on Lindenmayer systems we refer to [23]. The
subclass EDT0L is equal to HDT0L (see for example [23, Thm. 2.6]), and has
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received particular attention. It is a subclass of indexed languages in the sense
of Aho [1], see for example [8]. Indexed languages are context-sensitive, and they
strictly contain all context-free languages. The classes of EDT0L and context-free
languages are incomparable [8] and therefore the inclusion of EDT0L into indexed
languages is proper.

regular EDT0L

context-free

ET0L indexed context-sensitive

Figure 1. Containments of formal language classes. Each edge
from left to right represents strict containment.

We define EDT0L languages in A∗ through a characterization (using rational
control) due to Asveld [2], which is the analogue of Ginsburg and Rozenberg’s
result for ET0L languages ([11, Lem. 4.1]). We start with some alphabet C such
that A ⊆ C, and a rational set of endomorphisms R ⊆ End(C∗). Note that if
R ⊆ End(C∗) is any subset of endomorphisms, then we can apply R to any word
u ∈ C∗ and we obtain a subset {h(u) | h ∈ R} ⊆ C∗.

Definition 1. Let A be an alphabet and L ⊆ A∗. We say that L is an EDT0L
language if there is an alphabet C with A ⊆ C, a rational set of endomorphisms
R ⊆ End(C∗), and a letter c ∈ C such that L = {h(c) | h ∈ R} .

The set R is called the rational control, and C the extended alphabet.
Note that for an arbitrary setR of endomorphisms of C∗ we have {h(c) | h ∈ R} ⊆

C∗, but the definition implies that R must guarantee h(c) ∈ A∗ for all h ∈ R.

Example 2. Let A = {a, b} and C = {a, b,#}. Consider four endomorphisms
f, ga, gb, h defined as f(#) = ##, ga(#) = a#, gb(#) = b#, and h(#) = 1,
and on all other letters f, ga, gb, h behave like the identity. Consider the rational
language R = h {ga, gb}∗ f (where endomorphisms are applied right-to-left). A
simple inspection shows that {ϕ(#) | ϕ ∈ R} = {vv | v ∈ A∗}, which is not context-
free.

1.4. Complexity. We use the standard O-notation for functions from N to R≥0.
A function f is called quasi-linear if f(n) ∈ O(n logn). We say that f is singly
exponential if f(n) ∈ 2O(p(n)) where p(n) is a polynomial. We also use the standard
meaning of complexity classes like NP, NSPACE(f), DSPACE(f) and DTIME(f) as
in [17].

Let C and D two domains and for each x ∈ C ∪ D we let 〈x〉 ∈ {0, 1}∗ denote
some binary encoding. We assume that for every x ∈ C its input size is defined
as a natural number which might be different from the binary length of 〈x〉. For
example, in our case we define the input size of an equation over a free group or
monoid to be the length of the equation plus the number of generators of the group
or monoid. As usual, we omit details on the specific encoding and how to check
that a binary string y is of the form y = 〈x〉 for some x ∈ C. In our case, we content
ourselves that the encoding of a word of length n over some alphabet Γ uses at
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most O(n log |Γ|) bits and that the check y = 〈x〉 can be done deterministically in
linear space with respect to the binary length of y.

A function t : C → D is computable in NSPACE(f) if there is a nondeterministic
Turing machine M with a two-way read-only input tape, a work tape, and a write-
only output tape. The input x ∈ C is given as the binary string 〈x〉. During the
computation the machine writes some binary string on the output tape from left
to right such that for the entire computation the size of M ’s work tape is bounded
by O(f(n)) where n is the input size of x. There must be at least one run of the
machine where M stops and if M stops, then output must be the correct value
〈f(x)〉. We rely on a result by Immerman and Szelepcsényi which implies that
NSPACE(f) is (effectively) closed under complementation for functions f satisfying
logn ∈ O(f(n)) [17, Theorem 7.6]). As a consequence, “trimming” an automa-
ton will become possible in NSPACE(n logn) in Subsection 3.8. Recall that every
NSPACE(n logn)-computable function can also be simulated by some deterministic
algorithm in time 2O(n logn) (see [17, Theorem 3.3]).

1.5. Word equations over monoids with rational constraints. Let A be an
alphabet of constants with involution and let π : A∗ →M be a surjective morphism
onto a monoid with involution M . Furthermore, let X be a set of variables. We
may assume that X is endowed with an involution without fixed points. Thus,
X 6= X for all X ∈ X .

Definition 3. A word equation with rational constraint over M is a pair (U, V ) of
words U, V ∈ (A ∪ X )∗ which has the following attributes.

• The input size of the equation is defined as |A|+ |UV |.
• The rational constraint is given by a homomorphism ν : (A ∪ X )∗ → N ,

where N is a finite monoid.
• A solution of the equation (U, V ) with constraint ν is given by a map

σ : X → A∗

which extends to a homomorphism σ : (A ∪ X )∗ → A∗ that fixes the
constants, such that for all X ∈ X :
(1) σ(X) = σ(X), i.e. σ : X → A∗ is a morphism,
(2) ν(X) = νσ(X), i.e. the solution respects the constraint on X,
(3) πσ(U) = πσ(V ), i.e. σ(U) and σ(V ) are equal in the monoid M .

Note that we constrain the solutions to be in a recognizable set (see the definitions
in Subsection 1.3), but in this case the notions of recognisable and rational sets are
the same, since we are in the free monoid (A ∪X)∗.

2. Solution sets for equations over free monoids with involution
and free groups: the main results

Let A± = A+ ∪ {a | a ∈ A+} be a finite alphabet with involution and assume
that the involution is without fixed points: a 6= a for all a ∈ A±. We let F(A+)
be the free group over A+ and we realize the involution inside F(A+) by a = a−1.
Thus

A± = A+ ∪
{
a−1 ∣∣ a ∈ A+

}
⊆ F(A+) ⊆ A∗±.

Following standard terminology, a word w ∈ A∗± is reduced if it does not contain
any factor aa where a ∈ A±. The set of reduced words is a regular subset F ⊆ A∗±
which is closed under involution. We fix F as a set of normal forms for F(A+);
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thus, as a set, we identify F(A+) with F. The inclusion A± ⊆ F(A+) induces
the canonical projection π : A∗± → F(A+). Given a word w we obtain π(w) by a
repeated cancellation of all factors aa; and w is reduced if and only if π(w) = w.

We shall also use a special symbol # which is not in A± and serves as “marker”.
For example, we will encode a system of equations {(Ui, Vi) | 1 ≤ i ≤ s} as a single
equation
(1) (U1# · · ·#Us, V1# · · ·#Vs).
If we require that no σ(X) is allowed to use #, where X is a variable, then
(2) ∀i : πσ(Ui) = πσ(Vi) ⇐⇒ πσ(U1# · · ·#Us) = πσ(V1# · · ·#Vs)
since positions of the # letters must be the same on both sides. In our context,
rational constraints are the most convenient way to ensure that no # appears in
σ(X), see Subsection 3.2. We let

A = A± ∪ {#}
with # = #. Thus, {1,#} forms a group which is isomorphic to Z/2Z if we let
#−1 = #.

In order to have a uniform statement we let M(A) be either the free monoid with
involution A∗ or the free product of the free group F(A+) with the cyclic group
{1,#} of order 2. Thus, henceforth:

M(A) = A∗ or M(A) = A∗/ {aa = 1 | a ∈ A} ,
and π : A∗ →M(A) is the canonical projection induced by the inclusion A ⊆M(A).
In both cases π is injective on F ⊆ A∗, and ifM(A) = A∗, then π is just the identity.

Given a word equation (U, V ) with UV ∈ (A± ∪ X )∗ over M(A), we say that a
solution σ is a solution in reduced words if σ(X) ∈ F for all X ∈ X . We will realize
this condition as a rational constraint µ into a finite monoid N with a zero element
0 ∈ N such that µ(w) 6= 0 if and only if w ∈ F.
Theorem 4. Let (U, V ) be an equation over M(A) of input size n = |A| + |UV |
(according to Definition 3) and in variables X1, X1, . . . , Xm, Xm. Then there is an
NSPACE(n logn) algorithm which computes c1, . . . , cm ∈ C, where C ⊇ A is an
extended alphabet of size |C| ∈ O(n), and a trim NFA A which produces the set of
solutions in reduced words. That is,

{(σ(X1), . . . , σ(Xm)) ∈ F× · · · × F | πσ(U) = πσ(V )}
= {(h(c1), . . . , h(cm)) ∈ C∗ × · · · × C∗ | h ∈ L(A)}.

(3)

The NFA has the following properties.
(1) It is nonempty if and only if the equation (U, V ) has some solution.
(2) It has a directed cycle if and only if (U, V ) has infinitely many solutions.

These properties can also be decided in NSPACE(n logn).
Recall that the input size n used in the statement of the theorem might be

smaller than the length of some binary encoding for the input. If the number of
distinct symbols used in the equation is constant, then our algorithm is quasilinear
in the input size; if, on the other hand, the number of distinct symbols used in the
equation is linear, then we need linear space, only.

Theorem 4 yields the characterization of solutions sets as EDT0L languages.
To do so, we identify a tuple of words (w1, . . . , wk) ∈ F with the single word
w1# · · ·#wk ∈ A∗.
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Let (U, V ) be an equation as in Theorem 4. For any subset {Z1, . . . , Zk} of
variables appearing in UV we define the solution set as

(4) SolZ(U, V ) = {σ(Z1)# · · ·#σ(Zk) | σ solves (U, V ) in reduced words} .

Note that for k = 0 we have Sol∅(U, V ) = ∅ if the equation (U, V ) has no solution
and Sol∅(U, V ) = {1} otherwise. Considering subsets of variables allows for some
flexibility. In particular, we can introduce auxiliary variables which do not impact
the solution set. If, however, every variable occurring in UV is either of the form
Zi or Zi for some 1 ≤ i ≤ k, then we say that SolZ(U, V ) is a full solution set.

Corollary 5. Let (U, V ) be an equation as in Theorem 4 and let {Z1, . . . , Zk} be
any subset of variables appearing in UV . Then SolZ(U, V ) is an EDT0L language.
More precisely, if A is the trim NFA constructed in Theorem 4, then we can find
c′1, . . . , c

′
k ∈ C such that

SolZ(U, V ) = {h(c′1# · · ·#c′k) | h ∈ L(A)} .

In particular, the full solution set is EDT0L.

Proof. The language characterization follows from the Definition 1 of an EDT0L
language, given that each Zj corresponds to some Xi in Theorem 4. �

Note that Theorem 4 shifts the traditional perspective from solving an equation
to an effective construction of some NFA producing an EDT0L set. Once the NFA
is constructed, the existence of a solution, or whether the number of solutions
in reduced words is zero, finite or infinite, become graph properties of the NFA.
Thus, the algorithmic difficulty of solving equations and describing their solution
set reduces to the complexity of building a nondeterministic finite automaton for a
given input.

3. Proof of Theorem 4 in the monoid case: M(A) = A∗

In this section we prove Theorem 4 in the monoid case. Before delving into
the proof, we introduce in Subsections 3.1–3.7 further necessary terminology and
notation.

Let M(A) = A∗. In this case π = idA∗ and so π is not needed in the rest of this
section. Without restriction, we may assume |A+| ≥ 1.

Let Xinit =
{
X1, X1, . . . , Xm, Xm

}
be the initial set of variables, that is, for each

1 ≤ i ≤ m either Xi or Xi occur in UV .
Let κ ∈ O(1) be some “large enough” constant, whose exact value will be dis-

cussed in Subsection 3.10.4, and choose an alphabet C of constants and an alphabet
Ω of variables such that

C ⊇ A, |C| = κ · n and Ω ⊇ Xinit , |Ω| = 6n.

Fix Γ = C ∪Ω. We assume that C and Ω are sets with involution and that, inside
Γ = C ∪ Ω, the marker # is the only self-involuting symbol. Thus, # = # and
x 6= x for all x ∈ Γ \ {#}.

By Σ we denote the set of C-morphisms σ : Γ∗ → C∗. Every solution will be
drawn from Σ.
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3.1. The initial word equation Winit. For technical reasons we need that for
every variable Xi which appears in UV there is some factor #Xi# appearing in
the initial equation. Instead of viewing equations as equalities between two words
U and V , we will treat equations as a statement about a single word W ∈ Γ∗, as
follows. This will require us to redefine the notion of solution as well.

We define the initial equation Winit ∈ (A ∪ Xinit)∗ as:

(5) Winit = #X1# · · ·#Xm#U#V#U#V#Xm# · · ·#X1#.

Then for every σ ∈ Σ we have

σ(U) = σ(V ) ⇐⇒ σ(Winit) = σ(Winit)

and

{(σ(X1), . . . , σ(Xm)) ∈ F× · · · × F | σ ∈ Σ ∧ σ(U) = σ(V )}
= {(σ(X1), . . . , σ(Xm)) ∈ F× · · · × F | σ ∈ Σ ∧ σ(Winit) = σ(Winit)}.

We have the following symmetry: if w ≤ Winit is a factor and no # appears in
w, then w ≤ Winit, too. The number of # letters in Winit is odd, and there is a
distinguished # exactly in the middle of Winit.

Observe that Winit is longer than UV , but clearly linear in n. More concretely,
since m ≤ |UV | and n = |UV |+ |A| > |UV |+ 1, we get the bound:

(6) |Winit| ≤ 4m+ 5 + 2 · |UV | ≤ 6 · |UV |+ 5 < 6(|UV |+ 1) < 6n.

Also observe that
∑
X∈Xinit

|Winit|X ≤ 2m+ 2 |UV | ≤ 4n.

3.2. The finite monoid NF. In order to ensure that solutions are in reduced
words which do not contain the symbol #, we introduce a morphism to a fixed
finite monoid NF which plays the role of (a specific) rational constraint. We define
NF as follows: NF = {1, 0}∪(A±×A±) with multiplication given by 1·x = x·1 = x,
0 · x = x · 0 = 0, and

(a, b) · (c, d) =
{

(a, d) if b 6= c
0 otherwise.

The monoid NF has a natural involution given by 1 = 1, 0 = 0, and (a, b) = (b, a).
The morphisms to NF are defined on subsets of Γ, and although they change

during the algorithm, they always extend the following fixed morphism

µ0 : A∗ → NF

which is defined by
µ0(#) = 0, µ0(a) = (a, a)

for a ∈ A±. It is clear that µ0 respects the involution and µ0(w) = 0 if and only
if either w contains # or w is not reduced. If, on the other hand, 1 6= w ∈ A∗± is
reduced, then µ0(w) = (a, b), where a is the first and b the last letter of w. An
additional feature is that µ(w) = 1 if and only if w is the empty word.

Defining µ(X) for a variable X has the following meaning for a solution σ with
σ(X) ∈ A∗±: the value µ(X) = 0 is not possible in any solution, µ(X) = 1 implies
σ(X) = 1, and µ(X) = (a, b) ⇐⇒ σ(X) ∈ F ∩ aF ∩ Fb.
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3.3. Types. Later in the proof we will need to perform compression of large blocks
of letters in an efficient manner. This will be achieved by putting a partially
commutative structure on the monoid we work with. The partial commutativity
will be induced by types, which we introduce below. The basic idea is that we assign
a variable X the “type” θ(X) = c when we predict that in some solution σ(X) ∈ c∗
(so X and c commute), and we assign a constant b the “type” θ(b) = c when we
rename some letters b as c.

Besides the initial alphabet A and the global alphabet C, we also need a current
alphabet of constants B, where A ⊆ B = B ⊆ C, and a current set of variables
X = X ⊆ Ω. Let ∆ = B ∪ X . A type is a partially defined function θ : (∆ \
A) → (B \ A) which respects the involution. We identify θ with the relation
{(θ(x), x) ∈ ∆×∆ | θ(x) is defined}. We obtain an independence relation

θ = {(θ(x), x) ∈ ∆×∆ | θ(x) is defined for x}

and hence a free partially commutative monoid

M(∆, θ) = ∆∗/ {xθ(x) = θ(x)x | θ(x) is defined for x} .

If the domain where θ is defined is empty, then M(∆, θ) = M(∆, ∅) is the free
monoid ∆∗.

Remark 6. By definition, the size |θ| is bounded by |∆|. Hence, it is linear in n
and the specification of θ needs O(n logn) bits.

Definition 7. Let B satisfy A ⊆ B = B ⊆ C, X = X ⊆ Ω, and θ be a type. The
notation

M(B,X , θ, µ)

denotes the free partially commutative monoid with involutionM(B∪X , θ), equipped
with a morphism µ : M(B∪X , θ)→ NF such that µ(a) = µ0(a) for all a ∈ A, where
µ0 : A∗ → NF is the morphism specified in Subsection 3.2. We call M(B,X , θ, µ) a
structured monoid.

A morphism ϕ from M(B,X , θ, µ) to M(B′,X ′, θ′, µ′) is a morphism of monoids
with involution ϕ : M(B,X , θ, µ)→M(B′,X ′, θ′, µ′) such that µ′ϕ = µ.

Definition 7 implies that whenever θ(x) is defined, then µ(xθ(x)) = µ(θ(x)x)
(because µ is a homomorphism). Henceforth we use the following conventions.
If B′ ⊆ B and X ′ ⊆ X with A ⊆ B′ = B′ and X ′ = X ′, then M(B′,X ′, θ, µ)
denotes the structured monoid M(B′,X ′, θ′, µ′) where θ′ and µ′ are induced by
the restrictions of θ and µ to B′ ∪ X ′. Moreover, if M(B,X , θ, µ) is known from
the context, then we abbreviate M(B, ∅, θ, µ) as M(B). Since no letter from A is
involved in a type, M(A) is the free monoid with involution A∗ together with the
morphism µ0 : A∗ → NF, and

M(A) = M(A, ∅, ∅, µ0) ⊆M(B) ⊆M(B,X , θ, µ) µ−→ NF.

3.4. Reference list of symbols. In Table 1 we summarise notations introduced
so far for easy reference. These conventions hold unless stated otherwise. They
also apply to “primed” symbols such as B′, where B′ denotes a set with A ⊆ B′ =
B′ ⊆ C.
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A+ ⊆ A±, the initial alphabets without self-involuting letters.
A± ∪ {#} = A ⊆ B = B ⊆ C.
Γ = C ∪ Ω and x = x ∈ Γ implies x = #.
X = X ⊆ Ω, the current set of variables.
n = |A|+ |UV |, |C| = κn and |Ω| = 6n.
∆ = B ∪ X .
µ : ∆→ NF, a morphism with µ(a) = µ0(a) for a ∈ A.
θ : (∆ \A)→ (B \A), the type defining an independence relation.
M(∆, θ), free partially commutative monoid defined by ∆ and θ.
M(B,X , θ, µ) = M(∆, θ) together with µ which extends µ0 : A∗ → NF.
M(B), submonoid of M(B,X , θ, µ) together with the restriction of θ, µ.
a, b, c, . . . refer to letters in C.
u, v, w, . . . refer to words in C∗.
X,Y, Z, . . . refer to variables in Ω.
x, y, z, . . . refer to words in Γ∗.

Table 1. Reference list of symbols.

3.5. Extended equations and their solutions. The states of the NFA we are
going to construct correspond to equations derived from our initial equation. Each
state contains such an equation, together with the specification of which set of
constants, variables and types are used. Moreover, we keep track of the morphism µ
which represents the constraint. Formally, we use the notion of extended equation.
The notions we introduce now are quite technical, but the reader should keep
in mind that the most important fact is that an extended equation contains an
equation which is a modification of the initial equation, and this equation has
bounded length. When types are present, this equation is an element in a free
partially commutative monoid rather than simply a word in a free monoid.

Definition 8. An extended equation is a tuple (W,B,X , θ, µ), where W is a word
in (B ∪ X )∗ such that:

(1) |W | ≤ 204n.
(2) If θ = ∅, then

∑
X∈X |W |X ≤ 4n. Otherwise

∑
X∈X |W |X ≤ 12n.

(3) |W |# = |Winit|# and W ∈ #(B ∪ X )∗#.
(4) Every x with # 6= x ∈ B ∪ X satisfies µ(x) 6= 0.
(5) Every X ∈ X appears in W .
(6) If x ≤W is a factor with |x|# = 0, then x ≤W , too.

Remark 9. As noted above, the word W (including the notion of factor) is
to be seen as representing an element in the free partially commutative monoid
M(B,X , θ, µ) = M(B∪X , θ). Note that by definition |θ| ≤ |B ∪ X | (see Remark 6).
The bounds on the length of W , and on the number of variables appearing in W ,
will be explained in later sections (Subsection 3.10.3), where we will show that we
can find all solutions to an input equation by considering modified equations that
satisfy these restrictions. What is important for now is that |W | ∈ O(n) which
means the number of extended equations is finite.
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Definition 10. Let V = (W,B,X , θ, µ) be an extended equation. The weight ‖V ‖
of V is a 4-tuple of natural numbers, ‖V ‖ = (ω1, ω2, ω3, ω4), where

ω1 = |W | ,
ω2 = |W | − |{a ∈ B | |W |a ≥ 1}| ,
ω3 = |W | − |θ| ,
ω4 = |B| .

Remark 11. We order tuples in N` lexicographically. The lexicographic ordering
is chosen to function as follows. If we start at an equation of high weight, then the
weight of the equation reduces by “compression”. The first component gives more
weight to longer equations. If two equations have the same length, then we declare
the equation in which more distinct constants appear to be smaller because the
term |{a ∈ B | |W |a ≥ 1}| appears with a negative sign. If two equations have the
same length and use the same number of distinct constants, we declare the equation
in which more symbols are typed to be smaller. Finally, if both equations have the
same length, the same number of distinct letters in use, and the same number of
typed symbols, then we declare the equation defined over the smaller set B to be
smaller.

Since for every extended equation we have a current alphabet B, we need the
notion of a B-solution, which can then be extended to a solution over the desired
alphabet A. The next few pages are somewhat technical, but will be used to justify
that when we modify extended equations in certain ways, solutions are preserved.

Definition 12. Let V = (W,B,X , θ, µ) be an extended equation.
• A B-solution at V is a B-morphism σ : M(B,X , θ, µ)→M(B, ∅, θ, µ) such

that σ(W ) = σ(W ) and σ(X) ∈ y∗ whenever (X, y) ∈ θ.
• A solution at V is a pair (α, σ) where σ is aB-solution and α : M(B, ∅, θ, µ)→
A∗ is an A-morphism (which implies µ = µ0α). Moreover, if the set X in
V is nonempty, then we require that α is nonerasing, that is, α(a) 6= 1 for
all a ∈ B.

The weights ‖α, σ‖ and ‖α, σ, V ‖ of a solution (α, σ) at V are defined as

‖α, σ‖ =
∑
X∈X

|ασ(X)| ∈ N(7)

‖α, σ, V ‖ = (‖α, σ‖ , ‖V ‖) ∈ N5.(8)

Remark 13. Let V = (W,B,X , θ, µ) be an extended equation with a solution
(α, σ). Then σ(X) cannot have any factor of the form # or aa with a ∈ B because
0 6= µ(X) = µ0ασ(X). In particular, ασ(X) is a reduced word in A∗±. Hence,
ασ satisfies the constraint ασ(X) ∈ F. Note that a priori we don’t exclude the
possibility that factors aa appear in W , since for example it could be that Winit
contains a factor aX and some solution σ(X) begins with a.

The next two lemmas show how morphisms between structured monoids trans-
form solutions of extended equations. These two lemmas will play an important
role in the proof of the algorithm “soundness”.
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In the first lemma we consider the morphisms which leave all constants invariant,
and conclude that such a morphism decreases the weight of a solution. In addition,
this lemma specifies a situation, in part (iv), when the weight strictly decreases.

Lemma 14. Let V = (W,B,X , θ, µ) and V ′ = (W ′, B,X ′, θ′, µ′) be extended equa-
tions such that θ(a) = θ′(a) and µ(a) = µ′(a) for all a ∈ B. In other words,
M(B) = M(B, ∅, θ, µ) = M(B, ∅, θ′, µ′).

Let τ : M(B,X , θ, µ)→M(B,X ′, θ′, µ′) be a B-morphism such that W ′ = τ(W )
and α : M(B)→M(A, ∅, ∅, µ0) be an A-morphism such that α(a) 6= 1 for all a ∈ B.

Given a B-solution σ′ at V ′, define a B-morphism σ : M(B,X , θ, µ) → M(B)
by σ(X) = σ′τ(X).

Then the following assertions hold.
(i) (α, σ) is a solution at V and (α, σ′) is a solution at V ′.

(ii) ασ(W ) = ασ′(W ′).
(iii) ‖α, σ‖ ≥ ‖α, σ′‖.
(iv) If there is some X with τ(X) ∈ X ′∗aX ′∗ where a ∈ B and α(a) 6= 1, then

‖α, σ‖ > ‖α, σ′‖.

Proof. (i) Since σ′ is a B-solution at V ′ we have

σ(W ) = σ′τ(W ) = σ′(τ(W )) = σ′τ(W ) = σ(W ) = σ(W ).
By hypothesis, α(a) 6= 1 for all a ∈ B. Hence, (α, σ) is a solution at V .
Since M(B) = M(B, ∅, θ, µ) = M(B, ∅, θ′, µ′), we have (α, σ′) is a solution
at V ′.

(ii) The assertion ασ(W ) = ασ′(W ′) is trivial since W ′ = τ(W ), σ = σ′τ .
(iii) For each X write τ(X) as a word

τ(X) = xX,1 · · ·xX,`X

with xX,i ∈ B ∪ X ′. Since every X ′ ∈ X ′ appears somewhere in τ(W ) (by
Definition 8(5)) we obtain: X ′ ⊆

⋃
{xX,i | X ∈ X ∧ 1 ≤ i ≤ `X} . Hence

‖α, σ‖ =
∑
X∈X

|ασ(X)| =
∑
X∈X

|ασ′τ(X)|(9)

=
∑
X∈X

|ασ′(xX,1 · · ·xX,`X
)| =

∑
X∈X ,1≤i≤`X

|ασ′(xX,i)|(10)

≥
∑
X′∈X ′

|ασ′(X ′)| = ‖α, σ′‖ .(11)

(iv) If there is some X with τ(X) ∈ X ′∗aX ′∗ where a ∈ B and α(a) 6= 1, then
some xX,i = a /∈ X ′ with ασ′(a) = α(a) 6= 1. Hence, |ασ′(xX,i)| ≥ 1; and
the ≥ in (11) becomes the inequality >.

�

In the second lemma we consider the morphisms which leave all variables invari-
ant, and conclude that such a morphism does not change the weight of a solution.

Lemma 15. Let V = (W,B,X , θ, µ) and V ′ = (W ′, B′,X , θ′, µ′) be extended
equations, h : M(B′,X , θ′, µ′) → M(B,X , θ, µ) be an (A ∪ X )-morphism, and
α : M(B) → M(A, ∅, ∅, µ0) be an A-morphism where M(B) = M(B, ∅, θ, µ) such
that the following conditions are satisfied.

• W = h(W ′).
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• α(a) 6= 1 for all a ∈ B.
• If X 6= ∅, then h(a′) 6= 1 for all a′ ∈ B′.
• If θ(X) = c ∈ B for some X ∈ X , then c ∈ B′, θ′(X) = c, and h(c) ∈ c∗.

Given a B′-solution σ′ at V ′, define a B-morphism σ : M(B,X , θ, µ) → M(B)
by σ(X) = hσ′(X). Then (α, σ) is a solution at V and (αh, σ′) is a solution at V ′.
Moreover, ασ(W ) = αhσ′(W ′) and

‖α, σ‖ = ‖αh, σ′‖ .

Proof. By definition, µh = µ′ and µ0α = µ. Hence (αh, σ′) is a solution at V ′.
Now, h(X) = X for all X ∈ X . Hence, σ(h(X)) = σ(X) = hσ′(X). For b′ ∈ B′
we obtain σh(b′) = h(b′) = hσ′(b′) since σ′ and σ are the identity on B′ and B
respectively. It follows that σh = hσ′ and hence, ασ(W ) = αhσ′(W ′). Next,

σ(W ) = σ(h(W ′)) = h(σ′(W ′)) = h(σ′(W ′)) = σ(h(W ′)) = σ(h(W ′)) = σ(W ).

Moreover, if X ∈ X and θ(X) is defined, then θ(X) = θ′(X) = c ∈ B ∩ B′, and
h(c) ∈ c∗ by hypothesis. Hence, σ′(X) ∈ c∗ and therefore σ(X) = hσ′(X) ∈ c∗,
too. Thus, σ is a B-solution at V and, consequently, (α, σ) a solution at V . Finally,
since σ(X) = hσ′(X) we obtain

‖α, σ‖ =
∑
X∈X

|ασ(X)| =
∑
X∈X

|αhσ′(X)| = ‖αh, σ′‖ .

�

During the process of finding a solution, the parameters W,B,X , θ, µ change. We
describe the possible changes in terms of a directed graph, which will be converted
into an NFA.

3.6. The NFA F and the trimmed NFA A. We are ready to define the NFA
A mentioned in Theorem 4 in the case where M(A) = A∗ is a free monoid with
involution.

3.6.1. States. We start by building an NFA F whose states are all the extended
equations (W,B,X , θ, µ) according to Definition 8. We will later obtain A by
trimming, that is, by removing all states which are not on accepting paths. Thus,
the only difference between F and A is that A doesn’t have superfluous states.

Lemma 16. An extended equation V = (W,B,X , θ, µ) can be specified using at
most O(n logn) bits, so F has not more than singly exponentially many states.

Proof. We claim that each component of V can be specified using O(|Γ|) = O(n)
letters from Γ plus a finite alphabet. Since |Γ| ∈ O(n), we can encode each letter
in Γ plus the finite alphabet as a binary number of length at most O(logn) bits.
Thus V can be encoded by a binary string of length in O(n logn). It follows that
the total number of extended equations is at most 2O(n logn).

To establish the claim, notice that W ∈ Γ∗ with |W | ≤ 204n, B ∪ X ⊆ Γ,
θ ⊂ Γ × Γ and |θ| ≤ |B ∪ X |. Since µ : B ∪ X −→ NF and NF is finite, µ can
be encoded as a list {(c, µ(c)) | c ∈ B ∪ X}, using letters from Γ plus the finite
alphabet NF. �
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Initial states. An initial state is any state of the form (Winit, A,Xinit, ∅, µinit), where

µinit : (A ∪ Xinit)→ NF

is a morphism extending µ0 such that µinit(X) 6= 0 for all X ∈ Xinit.
If (α, σ) is a solution of (Winit, A,Xinit, ∅, µinit), then necessarily α = idA∗ since

α leaves the letters from A invariant. Moreover, we know that µinit(X) = µ0σ(X).
This means that the initial value of µinit(X) tells us whether σ(X) = 1; and if
σ(X) 6= 1, then µinit(X) = (a, b) and σ(X) ∈ aA∗ ∩ A∗b. Hence, µinit(X) specifies
the first and last letters of the reduced word σ(X) whenever σ(X) 6= 1. Moreover,
µinit(X) 6= 0 implies ασ(X) ∈ F. Hence, ασ(X) is a reduced word in A∗±.
Final states. We choose and fix “distinguished” letters c1, . . . , cm ∈ C \A such that
ci 6= cj 6= ci for all i 6= j. We say that a state (W,B, ∅, ∅, µ) is final if

(1) W = W ,
(2) The word W has a prefix of the form #c1# · · ·#cm#.

Every final state has the unique B-solution σ = idB because final states don’t
have any variables.

Remark 17. The names initial and final refer to the phase in the construction of
the graph at which a state is produced, rather than being start or accept states for
the NFA. That is, when we obtain the EDT0L language characterization, the start
states of the NFA recognising the rational language of endomorphisms correspond
to the final states defined here, and the accept states correspond to the initial states.

3.7. Transitions. We define two different forms of transitions, based on substi-
tutions and compressions. Both forms are labeled by an endomorphism of C∗
which induces a morphism between partially commutative monoids M(B, ∅, θ, µ)
and M(B′, ∅, θ′, µ′).

The direction of each transition is opposite to that of the morphism labelling
the transition. Suppose we have a path p from an initial to a final state. A very
important (and, perhaps, initially counterintuitive) fact is that in order to produce
solutions, our algorithm follows the path p backwards, that is, from the final to
the initial state; we compose the morphisms labeling the transformations in such a
directed path p from the last edge to the first one, in order to produce the solutions.
This is in agreement with our initial and final states being accept and start states
in the NFA, respectively.

3.7.1. Substitutions. A substitution transition transforms the variables and does
not affect the constants. Let V = (W,B,X , θ, µ) and V ′ = (W ′, B,X ′, θ′, µ′) be
states in F sharing the same set of constants B; and assume that V is not final and
that V ′ is not an initial state. Moreover, let θ(b) = θ′(b), and µ(b) = µ′(b) for all
b ∈ B. Therefore M(B) = M(B, ∅, θ, µ) = M(B, ∅, θ′, µ′).

Let τ : M(B,X , θ, µ)→M(B,X ′, θ′, µ′) be any B-morphism such that τ(W ) =
W ′, τ modifies only X and X for some variable X, leaves all x ∈ (B ∪X ) \

{
X,X

}
invariant, and

τ(X) ∈ (B ∪ X ′)∗ with |τ(X)| ≤ 3.
Furthermore, we only allow the following choices for τ(X), X and X ′:

(i) τ(X) = 1 and X ′ = X \
{
X,X

}
.

(ii) τ(X) = uX and X ′ = X with u ∈ B∗ and 1 ≤ |u| ≤ 2.
(iii) τ(X) = cX ′X and X = X ′ \

{
X ′, X ′

}
with c ∈ B and θ′(X ′) = c.



16 LAURA CIOBANU, VOLKER DIEKERT, AND MURRAY ELDER

In each of these three cases we define the substitution transition:

V = (W,B,X , θ, µ) ε−→ (τ(W ), B,X ′, θ′, µ′) = V ′.

Here, the label ε denotes the identity morphism idC∗ , it restricts to the identity
morphism from M(B, ∅, θ′, µ′) to M(B, ∅, θ, µ), and it will be applied in the opposite
direction from τ and the transition. Note that after having performed a substitution
transition we have ‖V ′‖ < ‖V ‖ if and only if τ is defined by τ(X) = 1 for some X.

3.7.2. Compressions. A compression transition affects the constants, but does not
change the variables. Let V = (W,B,X , θ, µ) and V ′ = (W ′, B′,X , θ′, µ′) be states
in F sharing the same set of variables X and assume V is not a final state, θ(X) =
θ′(X) and µ(X) = µ′(X) for all X ∈ X .

Let h : M(B′,X , θ′, µ′) → M(B,X , θ, µ) be any (A ∪ X )-morphism such that
W = h(W ′) and

(1) if V ′ is non-final, then 1 ≤ |h(c)| ≤ 2 for all c ∈ B′,
(2) if V ′ is final, then

∑
c∈B′ |h(c)| ≤ |W |.

In case that either ‖V ‖ > ‖V ′‖ or V ′ is final and h 6= idB∗ , we define a compres-
sion transition in F by

V = (h(W ′), B,X , θ, µ) h−→ (W ′, B′,X , θ′, µ′) = V ′,

where the transition label h is given by an endomorphism h ∈ End(C∗) which
induces the morphism h : M(B′,X , θ′, µ′) → M(B,X , θ, µ) and which leaves all
letters not in B′ invariant. The direction of the morphism h is again opposite to
that of the transition.

Remark 18. The reason that we have to treat transitions to final states differ-
ently is twofold. First, the coexistence of “singular” and “nonsingular” solutions is
possible. In the singular case we have σ(X) = 1 for some X and in the nonsingu-
lar case we have σ(X) 6= 1 for all X. Say there are solutions σ and σ′ such that
σ(X1) = 1 and σ′(X1) = a ∈ A±. Then for some h, h′ ∈ L(A) and some c1 we
must have h(c1) = 1 and h′(c1) = a. Thus in transformations to a final state we
must allow that h maps some letters to the empty word. In all other situations this
is forbidden. Thus, if V h−→ V ′ is a compression transition and V ′ is final, then we
allow ‖V ‖ < ‖V ′‖.

Second, if a state V = (W,B, ∅, θ, µ) has no variables, then W has prefix
#u1# · · ·#um# with ui ∈ C∗. In this case we wish to allow a compression transi-
tion h to a final state in one step. By imposing the condition

∑
c∈B′ |h(c)| ≤ |W |

we make sure the specification of h fits into our linear space bound, which is crucial
in our complexity analysis below.

Example 19. Let U = aX and V = aaab be an equation, for the purposes of
demonstrating how the graph or NFA works. We have

Winit = #X#aX#aab#Xa#baa#X#.

A path from initial to final states in the graph F for this equation is shown in
Figure 2, where for simplicity we label states by a prefix of W in each extended
equation.
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#X#aX#aaab# · · ·

#aX#aaX#aaab# · · ·

#aaX#aaaX#aaab# · · ·

#aabX#aaabX#aaab# · · ·

#aab#aaab#aaab# · · ·

#c1#ac1#ac1# · · ·

h1 τ1(X) = aX

h2 τ2(X) = aX

h3 τ3(X) = bX

h4 τ4(X) = 1

h5 h5(c1) = aab

Figure 2. A path in F from initial to final state for the equation
aX = aaab. The solution σ(X) is obtained by applying the maps
h1, h2, h3, h4, h5 to c1 in reverse order, that is, σ(X) =
h1h2h3h4h5(c1).

The first four transitions are substitutions τ1(X) = τ2(X) = aX, τ3(X) =
bX, τ4(X) = 1 so h1, h2, h3, h4 are just idC∗ , and the map h5(c1) = aab is a com-
pression to a final state. A solution for X can be obtained by applying the maps
to c1 in reverse order to the path labelling, so we get σ(X) = h1h2h3h4h5(c1) =
h1h2h3h4(aab) = aab.

3.8. Proof that the NFA is constructed in quasi-linear space. We can now
give the algorithm to construct the trim NFA A in NSPACE(n logn). We first give
an algorithm to construct F , then use this to construct A.

Lemma 20. Given a tuple V = (W,B,X , θ, µ), where W ∈ Γ∗, B ⊆ C, X ⊆ Ω, θ
is a type, and µ : (B∪X )→ N is a mapping, we can check within NSPACE(n logn)
whether V is an extended equation (that is, V is a state in F) and furthermore
decide whether the state V is initial or final.

Proof. As noted in Lemma 16, writing down any extended equation requires at
most O(n logn) bits, so if V requires more space we reject it as a valid input. If V
fits into the allowed space, then go through the conditions listed in Definition 8. It
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is obvious how to check the first five conditions. For example, if |W | > 204n, then
we reject immediately.

The most involved test is to see that for every factor u of every ui with the
interpretation ui ∈ M(Γ, θ) the element u also appears in W ∈ M(Γ, θ). For
this test we invoke the algorithm that solves the uniform factor problem in free
partially commutative monoids as explained in Subsection 1.2. Recall that the
uniform factor problem refers to an input of the form (Γ, θ, u, w). In our case the
input has the specific form (Γ, θ, u,W ). We presented a nondeterministic algorithm
using linear space in the input size, where the input size of a tuple (Γ, θ, u, w)
is (|Γ| + |θ| + |uw|) log |Γ|, as we need O(log |Γ|) bits to encode letters. Since
(|Γ|+ |θ|+ |uw|) log |Γ| ∈ O(n logn), the call of such a subroutine fits into our space
bound.

Having completed the check that V is a state of F , it is easy to check whether it
is initial (W = Winit, B = A, θ = ∅) or final (W = W , θ = ∅, X = ∅); since θ = ∅
in both cases we are just checking W = Winit,W = W in a free monoid. �

In the following, when we say that V = (W,B,X , θ, µ) is a state in F , this means
V is given as a tuple for which the syntax check according to Lemma 20 that V is
indeed a state was performed.

Lemma 21. Given states V = (W,B,X , θ, µ), V ′ = (W ′, B′,X ′, θ′, µ′) in F , and
a mapping h : B′ → B∗, we can check within NSPACE(n logn) whether the triple
(V, V ′, h) encodes an transition V

h−→ V ′ in the graph F .

Proof. We assume h is specified as a tuple requiring at mostO(n logn) bits. In order
to check whether V h−→ V ′ is a compression transition we must have h 6= idB∗ and
then we go through the conditions of Subsection 3.8, most of which are immediate
to verify. Among these, we have to compute h(W ′) as a word in (B ∪ X )∗ and
then see if W = h(W ′) ∈ M(B ∪ X , θ). The test W = h(W ′) ∈ M(B ∪ X , θ) is a
special case of the uniform factor problem in free partially commutative monoids,
as already discussed in the proof of Lemma 20.

For a substitution transition, a necessary condition is B = B′ and h = idB ,
which is trivial to check. Next we guess some mapping τ : X → (B ∪ X ′)∗ with
|τ(X)| ≤ 3 for all X ∈ X . Just as above we check τ(W ) = W ′ ∈ M(B′ ∪ X ′, θ′)
and the other requirements for substitutions listed in Subsection 3.7.1. �

As usual in automata theory we modify the NFA F by removing all states which
are not on a path from some initial to some final state. If there is no such path,
then L(F) is the empty set. The resulting NFA will be denoted as A. We have
L(A) = L(F). Moreover, L(A) = ∅ if and only if the automaton A is empty.

The key tool used to build the trim NFA A is Ispath(V, V ′), which we define to
be a Boolean predicate that yields true if and only if there is a path from state V
to V ′ in the graph A.

Lemma 22. Let V, V ′ represent two states in the graph F . Then the predicate
Ispath(V, V ′) can be evaluated in NSPACE(n logn).

Proof. Define the language LF = {(V, V ′) | Ispath(V, V ′) = true}. On input
(V, V ′) we can guess a path V = V0, V1, h1, V2, h2, · · · , V ′ = Vk, hk in F from V
to V ′ and check for each i whether (Vi−1, Vi, hi) encodes a transition by using
Lemmas 20 and 21. Thus, LF ∈ NSPACE(n logn).
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Since NSPACE(n logn) is closed under complementation by Immerman and Szelepcsényi
(see [17, Theorem 7.6]), we also have

LF = {(V, V ′) | 6 ∃ a path from V to V ′ in F} ∈ NSPACE(n logn).

Thus, the predicate Ispath(V, V ′) can be evaluated in NSPACE(n logn) by running
two procedures simultaneously to determine if (V, V ′) ∈ LF or (V, V ′) ∈ LF . �

Proposition 23. We can construct the trim NFA A in NSPACE(n logn). Within
the same space complexity we can decide whether A is empty, or whether A contains
a directed cycle.

Proof. For each V that is a state of F output V as an initial node of A if both (1)
V is initial in F , and (2) there exists some path to a final state in F . We check (1)
using Lemma 20. For (2) we run through all final states V ′ of F and evaluate the
predicate Ispath(V, V ′). If at some point Ispath(V, V ′) becomes true, we output
V as an initial node in A. If no initial node in A is found, then we stop; the output
is A = ∅. Hence, we continue only if there is at least one initial node.

Next, we construct all transitions of A as follows. We list all triples (V, V ′, h)
where V h−→ V ′ is a transition in F . For each such triple we consider all states V0
of A which are initial, and for each V0 we evaluate Ispath(V0, V ). If no such V0 is
found where Ispath(V0, V ) is true, then we move to the next triple (V, V ′, h). If at
least one such V0 exists, we list all states Vf of F which are final. For each Vf we
evaluate Ispath(V ′, Vf ). If no such Vf is found where Ispath(V ′, Vf ) is true, then
we move to the next triple (V, V ′, h). Otherwise we output (V, V ′, h) as a transition
of A. If, moreover, V ′ is final in F , then we mark that transition in order to indicate
that V ′ is final in A, too. We then move to the next triple (V, V ′, h).

Having these two lists at hand we have constructed the trim NFA A.
Finally, to check for a directed cycle we enumerate all pairs (V, V ′) ∈ A×A with

V 6= V ′ and for each pair evaluate Ispath(V, V ′) and Ispath(V ′, V ). �

With the assertion in Proposition 23 the algorithmic part of the proof of the
monoid version of Theorem 4 is finished. It remains to show the soundness and
completeness of the construction. This requires purely existential statements, where
no reference to effectiveness is necessary.

3.9. Soundness. In this section we prove soundness, that is, any output we obtain
by following the transitions in the NFA A from an initial to a final state, and then
applying the corresponding maps in reverse order to the distinguished letters, gives
a correct solution to the equation Winit.

Recall that we have chosen distinguished letters c1, . . . , cm ∈ C, and that if
(W,B, ∅, ∅, µ) is a final state, then W = W and W ∈ #c1# · · ·#cm#B∗.

Proposition 24. Let V0
h1−→ · · · ht−→ Vt be a path in A of length t, where V0 =

(Winit, A,Xinit, ∅, µinit) is an initial and Vt = (W,B, ∅, ∅, µ) is a final state. Then
V0 has a solution (idA∗ , σ) with σ(Winit) = h1 · · ·ht(W ). Moreover, for 1 ≤ i ≤ m
we have

σ(Xi) = h1 · · ·ht(ci).

Proof. Let s ≥ 0 and V0
h1−→ · · · hs−→ Vs be any path to some state Vs = (Ws, B,X , θ, µ)

such that σs is a B-solution at Vs. We claim that V0 and Vs have solutions (idA∗ , σ)
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and (idA∗h1 · · ·hs, σs), respectively, with

σ(Winit) = h1 · · ·hsσs(Ws).(12)

Claim (12) is trivial for s = 0 and for s > 0 it follows by induction using Lemma 15
or Lemma 14, depending on whether hs is a substitution transition or a compression
transition. Now for s = t we have W = W by the definition of a final state.
Since no variables occur in W , σt = idB∗ is the (unique) B-solution of W , so
σ(Winit) = h1 · · ·ht(W ).

By definition #X1# · · ·#Xm# is a prefix of Winit and #c1# · · ·#cm# is a prefix
of W for the final state Vt, but h = idA∗h1 · · ·ht is an A-morphism from B∗ to A∗
with |h(c)|# = 0 for all c ∈ B. This implies

σ(#X1# · · ·#Xm#) = h(#c1# · · ·#cm#).

In particular, σ(Xi) = h1 · · ·ht(ci) for 1 ≤ i ≤ m. �

Using the notation of Theorem 4 we have shown soundness, that is, every output
we obtain is a solution in reduced words.

Corollary 25. The following inclusion holds:

{(h(c1), . . . , h(cm)) ∈ C∗ × · · · × C∗ | h ∈ L(A)} ⊆⋃
{µ|µ(X) 6=0}

{(σ(X1), . . . , σ(Xm)) ∈ Fm | σ ∈ Σ ∧ σ(Winit) = σ(Winit) ∧ µ = µ0σ},

where Σ denotes the set of C-morphisms σ : Γ∗ → C∗.

Proof. Follows from Proposition 24. �

Corollary 26. If the NFA A is nonempty, then there is some solution σ which maps
all variables Xi to reduced words in A∗± and which satisfies σ(Winit) = σ(Winit).

If the NFA A contains a directed cycle, then there are infinitely many such σ.

Proof. The first part follows from Proposition 24.
Now assume that A contains a directed cycle. Then for every t0 ∈ N we can

choose a path V0
h1−→ · · · ht−→ Vt from an initial state V0 to some final state Vt with

t > t0. For each 0 ≤ s ≤ t define αs = idA∗h1 · · ·hs. Thus, α0 = idA∗ . We view
αs ∈ End(C∗), and let (αs, σs) be the corresponding solution at Vs, which exists
due to (12).

For every transition Vi−1
hi−→ Vi which is defined either by a compression, or

by a substitution of type (i), we have ‖Vi−1‖ > ‖Vi‖. Since ‖V ‖ ∈ O(n4) for all
states, there is a constant κ′ such that every path of length κ′n4 must include a
substitution of type (ii) or (iii). Thus, we may assume that for a large enough t

there are more than t0 transitions where Vi−1
hi−→ Vi is defined by a substitution

of type (ii) or (iii), i.e. with τ(X) ∈ Γ∗CΓ∗.
By the definition of A we have αs(c) 6= 1 for all c ∈ C whenever s < t. (The

final transition is an exception.) By Lemma 14 and Lemma 15 we have

‖α0, σ0‖ ≥ t0.

since for each compression transition the weight is unchanged, and for each substi-
tution the weight decreases, and in particular, it decreases strictly at least t0 times.
The result follows since α0 = idA∗ . Hence, there infinitely many solutions σ0. �
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3.10. Completeness. Now we show that every solution of the equation Winit can
be obtained from A.

Let us fix some state V = (W,B,X , ∅, µ) and assume that V has a solution (α, σ).
We will show that if V is “small enough”, then A contains a path V h1−→ V1 · · ·

ht−→
Vt to some final state Vt = (W ′, B′, ∅, ∅, µ′) such that σ(W ) = h1 · · ·ht(W ′). Let
us make precise what “small” means.
Definition 27. A state V = (W,B,X , ∅, µ) is called small if

|W | ≤ 96n+ 6 |Winit| .
Clearly every initial state is small. Final states need not be small.

3.10.1. Forward property of transitions. The existence of a path V h1−→ V1 · · ·
ht−→ Vt

to some final state Vt = (W ′, B′, ∅, ∅, µ′) such that σ(W ) = h1 · · ·ht(W ′) relies on
the following technical concept.

Definition 28. Let V = (W,B,X , θ, µ) h−→ (W ′, B′,X ′, θ′, µ′) = V ′ be a transition
in A and (α, σ) be a solution at V . We say that the triple (V h−→ V ′, α, σ) satisfies
the forward property if there exists a solution (αh, σ′) at V ′ such that

ασ(W ) = αhσ′(W ′).

By a slight abuse of language: if V h−→ V ′ is a transition in A and the solution
(α, σ) at the source V is clear from the context, then we say also that the transition
V

h−→ V ′ satisfies the forward property. In particular, if we follow a path from
V having a solution (α, σ) to some state V ′ = (W ′, B′, ∅, θ′, µ′) by transitions
satisfying the forward property, then V ′ has some solution. But as V ′ uses no
variables, we obtain W ′ = W ′.
Lemma 29. Let V = (W,B,X , θ, µ) ε−→ (τ(W ), B,X ′, θ′, µ′) = V ′ be a substitu-
tion transition (according to Subsection 3.7.1) and θ(Y ) = θ′(Y ) for all Y ∈ X ∩X ′.
In each of the following cases (V ε−→ V ′, α, σ) satisfies the forward property:

(1) σ(X) = 1 and the transition V
ε−→ V ′ removes X by τ(X) = 1;

(2) θ = ∅, σ(X) = av, µ′(X) = µ(v), and the transition V
ε−→ V ′ is defined by

τ(X) = aX;
(3) θ(X) = ∅, σ(X) = cuv, u ∈ c∗, µ′(X ′) = µ(u), µ′(X) = µ(v), and the

transition V
ε−→ V ′ is defined by τ(X) = cX ′X with θ′(X ′) = c;

(4) θ(X) = c, σ(X) = cu, µ′(X) = µ(u), and the transition V
ε−→ V ′ substi-

tutes X by τ(X) = cX.

Proof. Let V ε−→ V ′ be defined by τ : M(B,X , θ, µ) → M(B,X ′, θ′, µ′). It is
enough to show that V ′ has a B-solution with σ = σ′τ .

(1) Let σ′ be the restriction of σ to X ′ = X \
{
X,X

}
. Then we have σ = σ′τ .

(2) Recall that by definition of a substitution transitions, we have θ′ = ∅,
too. Define σ′ by σ′(X) = v and σ′(Y ) = σ(Y ) for Y 6= X,X. Since
µ′(X) = µ(v), we obtain σ′ as a morphism; and we have σ = σ′τ .

(3) Define σ′(X ′) = u, σ′(X) = v and σ′(Y ) = σ(Y ) for Y 6= X ′, X ′, X,X.
Then we have σ = σ′τ .

(4) Define σ′(X) = u and σ′(Y ) = σ(Y ) for Y 6= X,X. Since θ(X) = c and σ
is a solution, we have u ∈ c∗ and as τ is a morphism we have θ′(X) = c,
too. Then we have σ = σ′τ .
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In all cases it is clear that σ′ is a B-solution. �

Lemma 30. Let B′ ⊆ B and V = (h(W ′), B,X , θ, µ) h−→ (W ′, B′,X , θ′, µ′) = V ′

be a compression transition (according to Subsection 3.8). If σ : X →M(B, ∅, θ, µ)
factors through morphisms as

σ : X σ′−→M(B′, ∅, θ′, µ′) h−→M(B, ∅, θ, µ)

such that σ′(X) ∈ c∗ whenever θ′(X) = c, then (αh, σ′) is a solution at V ′ and
(V h−→ V ′, α, σ) satisfies the forward property.

Proof. We have σh = hσ′ and hence, ασ(W ) = αhσ′(W ′). �

Frequently, we cannot apply Lemma 30 because σ cannot be written as hσ′.
The typical example is that B′  B, but some σ(X) uses a letter from B \B′, and
h(a) = a for all a ∈ B′. This type of “alphabet reduction”, switching from a larger
alphabet B to some proper subset B′, is needed only if the type relations θ, θ′ are
empty. Therefore the following lemma applies in this situation.

Lemma 31. Let B′  B and V = (W,B,X , ∅, µ) ε−→ (W ′, B′,X , ∅, µ′) = V ′ be a
compression transition which is induced by the identity idC∗ . Thus, ε becomes the
canonical inclusion of M(B′, ∅, ∅, µ′) into M(B, ∅, ∅, µ). In particular, W = W ′

and µ′ is the restriction of µ.
Let (α, σ) be a solution at V . Define a B′-morphism β : M(B, ∅, ∅, µ) →

M(B′, ∅, ∅, µ′) by β(b) = α(b) for b ∈ B \ B′ and β(b) = b for b ∈ B′. Let
σ′(X) = βσ(X). Then (αε, σ′) is a solution at V ′ with ασ(W ) = αεσ′(W ′). In
particular, (V ε−→ V ′, α, σ) satisfies the forward property.

Proof. Since α : M(B, ∅, ∅, µ) → M(A, ∅, ∅, µ0) is an A-morphism with µ(a) =
µ0(a) for all a ∈ A, we have µβ(b) = µα(b) = µ0α(b) = µ(b) for all b ∈ B \B′ and
β is indeed a B′-morphism from M(B, ∅, ∅, µ) to M(B′, ∅, ∅, µ′).

Note that M(B′,X , ∅, µ′) is a submonoid of M(B,X , ∅, µ) and ε realizes the
inclusion of these free monoids. Hence W = ε(W ′) = W ′ as words. In particular,
σ(W ) = σ(W ) implies σ′(W ′) = σ′(W ′). Thus, (αε, σ′) solves V ′.

Finally, by definition of β we have α = αβ because α is an A-morphism. Hence
α = αεβ and we obtain

αεσ′(W ′) = αεσ′(W ) = αεβσ(W ) = ασ(W ).

�

Definition 32. Let σ : Γ → C∗ be any C-morphism and W ∈ Γ∗. The word W
is realized as a sequence of positions, say 1, 2, . . . , |W |, and each position is labeled
by a letter from Γ. If W = u0x1u1 · · ·xmum, with ui ∈ C∗ and xi ∈ Ω, then we
have σ(W ) = u0σ(x1)u1 · · ·σ(xm)um. The positions in σ(W ) corresponding to the
positions of the ui’s are henceforth called visible.

Given w = σ(W ), each visible position in w can be uniquely identified with a
position in W , both positions having the same label in C. Following a path satisfy-
ing the forward property makes the length of the equation oscillate. In particular,
thoughout the compression method below the algorithm progresses from small state
to small state, but in between the states are not necessarily small.

Proposition 33 shows that every solution can be found by tracing a path in A.
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Proposition 33. Let V = (W,B,X , ∅, µ) be small and let (α, σ) be a solution at
V . Then A contains a path V h1−→ V1 · · ·

ht−→ Vt to some final state Vt of transitions
satisfying the forward property.

In particular, if V is an initial state, then we have σ(Xi) = h1 · · ·ht(ci) for all
1 ≤ i ≤ m, where c1, . . . , cm are the distinguished letters.

3.10.2. Reduction of Proposition 33 to Lemma 34. As a base case we let X = ∅:
thus, V = (W,B, ∅, ∅, µ). If V is final, then there is nothing to do. Otherwise,
by definition of an extended equation, we have W ∈ #B∗# and |W |# = |Winit|#.
Since X = ∅, we have (α, σ) = (α, idB∗) and we can write

W = #u1# · · ·#um#um+1#um+2#um+2#um+1#um# · · ·#u1#.

Define B1 = A∪{c1, c1, . . . , cm+2, cm+2} as a disjoint union where c1, . . . , cm are
the distinguished letters. Define V1 = (W1, B1, ∅, ∅, µ1) with

W1 = #c1# · · ·#cm#cm+1#cm+2#cm+2#cm+1#cm# · · ·#c1#.

Defining µ1(ci) = µ(ui) and h1(ci) = ui yields the desired result. Clearly, (αh1, idB∗1 )
is a solution at the final state V1 and the compression transition V h−→ V1 satisfies
the forward property. (Note that we could have some ui = 1, so this is where the
case distinction discussed in Remark 18 is needed.)

The proof of Proposition 33 is by induction on the weight ‖α, σ, V ‖. It covers
the rest of this section. Throughout the proof, all transitions satisfy the forward
property by Lemma 29, Lemma 30, and Lemma 31; therefore, if we know that
Vi = (Wi, Bi,Xi, θi, µi) has a Bi-solution σi for all 1 ≤ i ≤ s, where s is some
positive integer, then we obtain σ(W ) = h1 · · ·hsσs(Ws) by Definition 28.

Preprocessing. By the base case we may henceforth assume that X 6= ∅. If we
have σ(X) = 1 for some variable, then we follow a substitution transition removing
the variable; and we are done by induction on the weight.

Thus, without restriction, we can assume σ(X) 6= 1 for all variables. For each
X ∈ X , if σ(X) ∈ aB∗ we follow a substitution transition defined by τ(X) = aX.
This has the effect of popping out constants at the start and end of each variable,
since each X comes with its involution X. Since W has at most 4n variables
present, the length of W increases by at most 8n and the weight ‖ασ‖ decreases.
In case that this substitution leads to a situation where a solution maps X to the
empty word, we remove X and X. After that we are done by induction on the
weight (since ‖ασ‖ is the dominant term in the lexicographic ordering), unless we
end with |τ(W )| > 96n+ 6 |Winit|, that is, the new state is not small. In that case
we will have 96n + 6 |Winit| < |τ(W )| ≤ 104n + 6 |Winit|. Thus, in proving a more
general statement, we will not assume that V is small, but that

96n+ 6 |Winit| < |W | ≤ 104n+ 6 |Winit| .

So far, we did not discuss the size of B. Assume that we are in the situation of
Lemma 31: there is B′ with A ⊆ B′  B such that W ∈ (B′∪X )∗, then we can use
Lemma 31; and we are done by induction on the weight. Thus, after preprocessing
we may assume that all letters in B \ A appear in W , that is, |W |b ≥ 1 for all
b ∈ B \A.
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During the preprocessing we decreased the weight, but at the end of this phase V
may no longer be small. Therefore, the proof of Proposition 33 reduces to showing
the following lemma.

Lemma 34. Let V = (W,B,X , ∅, µ) be a state with a solution (α, σ) such that
X 6= ∅ and |W | ≤ 104n+ 6 |Winit|. Then A contains a path of transitions satisfying
the forward property to some small state V ′ = (W ′, B′,X ′, ∅, µ′) with a solution
(α′, σ′) such that ‖α, σ, V ‖ ≥ ‖α′, σ′, V ′‖.

3.10.3. Proof of Lemma 34. The assertion of the lemma is trivial, if V is small.
That is: |W | ≤ 96n + 6 |Winit|. Hence, we may assume 96n + 6 |Winit| < |W | ≤
104n + 6 |Winit|. Let V = (W,B,X , ∅, µ) be a state with a fixed solution (α, σ)
satisfying the hypothesis of Lemma 34. We describe a way to find a path through
A in terms of a procedure which “knows” the solution (α, σ).

Block compression. We employ block compression only if W contains a factor b2,
where b ∈ B and b 6= #. Otherwise we move straight to the next procedure, called
pair compression. During the procedure we will increase the length of W by O(n),
but at the end we will arrive at an equation where |W ′| ≤ |W |; and importantly, W ′
will not contain any proper factor b2 with b ∈ B and b 6= #. We give an example
of this procedure in Section 5.

Remark 35. While this procedure is technical, the idea is quite simple. The goal
is to eliminate long blocks b` that are visible in the equation. To do so we use
transitions which replace bb by b, just two letters at a time. Before we can apply
such a compression, we must ensure the length of any maximal block b` with at
least part of the block visible must be even. So first we follow various substitution
and compression transitions to arrange this.

(1) Recording the constants with large exponents. Due to the previous
substitutions X 7→ bX in the preprocessing step, we have that for each X
if bX ≤ W and b′X ≤ W are factors with b, b′ ∈ B, then # 6= b = b′. For
each b ∈ B \ {#} define two sets:

Λb =
{
λ ≥ 2

∣∣ ∃dbλe ≤ σ(W ) : d 6= b 6= e and some b in dbλe is visible
}
,

Xb = {X ∈ X | bX ≤W ∧ σ(X) ∈ bB∗} .

Note that

(13)
∑
b

|Λb|+ |Xb| ≤ |W | .

By Definition 8 we have Λb = Λb. Another fact is crucial: it might be
that there are X ∈ X \ Xb with σ(X) ∈ bB∗, but then to the left of every
occurrence of X there is (the same) letter b′ ∈ B \

{
#, b, b

}
. In this case

the block compression procedure does not touch the variable X (although it
may change σ(X)). If, on the other hand, X ∈ Xb, then a factor bb crosses
the left border for every occurrence of X. The first b in such a factor is
visible in W , the second one is not.

(2) Introducing the type and renaming of some constants. For each
b ∈ B with Λb 6= ∅ we introduce a fresh letter cb ∈ C \B with µ(cb) = µ(b).
In addition, for each λ ∈ Λb introduce a fresh letter cλ,b with µ(cλ,b) = µ(b).
The fresh letters are chosen such that cb = c b and cλ,b = cλ,b. Note that
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cλ,b and cb are just names for formal symbols realized by fresh letters in
the fixed extended alphabet C.

We let B′ = B∪
⋃
{cb, cb, cλ,b, cλ,b | λ ∈ Λb ∧ b ∈ B} and we introduce a

type by θ(cλ,b) = cb for all λ ∈ Λb. This yields a free partially commutative
monoid M(B′,X , θ, µ). We define an X -morphism

h : M(B′,X , θ, µ)→M(B,X , ∅, µ)
by h(cλ,b) = h(cb) = b. Next, we modify W : in every factor dbλe of σ(W )
with d 6= b 6= e and λ ∈ Λb we replace that factor by dcλb e. This defines a
new word W ′ such that h(W ′) = W . Note that so far, no cλ,b does appear
in W ′. Let V ′ = (W ′, B′,X , θ, µ). Then V ′ is a state and we can follow
the transition V

h−→ V ′. We have ‖V ′‖ < ‖V ‖ since θ 6= ∅ and this term
appears before the number of constants in the weight of a state. (It might
be that all b are gone, so we cannot make sure that the second component
in the weight decreased.) Note that for each λ ∈ Λ at least one position
labeled by cb is visible in W .

We rename V ′ = (W ′, B′,X , θ, µ) as V = (W,B,X , θ, µ) and rename the
solution as (α, σ).

(3) Splitting the variables starting with special constants. We skip this
step if Xb = ∅ for all b. Otherwise, for each b ∈ B and X ∈ Xb we write
σ(X) = c`bw for some ` ≥ 1 with w /∈ {b, cb}B∗. We split the variable X
by defining τ(X) = cbX

′X where X ′ = X ′b,X ∈ Ω \ X is a fresh variable,
which is assigned a type θ′(X ′) = cb. Moreover, we let µ′(X ′) = µ(cb)`−1,
µ′(X) = µ(w), σ′(X ′) = c`−1

b , and σ′(X) = w. The new set of variables is
a disjoint union

X ′ = X ∪
{
X ′b,X , X

′
b,X

∣∣∣ b ∈ B ∧X ∈ Xb} .
We obtain a new state V ′ = (τ(W ), B,X ′, θ′, µ′) and a morphism

τ : M(B,X , θ, µ)→M(B,X ′, θ′, µ′).

The morphism τ defines a substitution transition V
ε−→ V ′ which pops a

letter. The new solution at V ′ is (α, σ′).
We rename V ′ = (τ(W ), B,X ′, θ′, µ′) as V = (W,B,X , θ, µ) and rename

the solution as (α, σ). The next step introduces the letters cλ,b into W and
σ(W ).

(4) Identifying a position in each block dcλb e. We representW ∈M(B,X , θ, µ)
by any word in (B ∪ X )∗. For each letter cb, we scan the word σ(W ) from
left to right and stop at each occurrence of a factor dcλb e where λ ∈ Λb and
d 6= cb 6= e. At the stop we do the following.
• If at least one of the cb’s in this block is visible in W , then choose the

left-most corresponding visible position in W , and replace the label cb
at this visible position by cλ,b. In σ(W ), replace dcλb e by dcλ,bc

λ−1
b e.

If no position of the cb’s in this block is visible in W , then we make
no change.

Thus, from left to right, we transform the word W into an element W ′ ∈
M(B,X ′, θ, µ) and simultaneously σ(W ) into an element σ′(W ′) ∈ M(B).
We obtain a new state V ′ = (W ′, B,X , θ, µ) and we can follow the arc
V

h−→ V ′ where h is the X -morphism defined by a renaming h(cλ,b) = cb.
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Note that ‖V ‖ > ‖V ′‖ since for each cλ,b a factor cλ,bcb appears in W ′,
so there are more letters visible in W ′ than in W , which decreases the
second component in the weight of an extended equation. At V ′ we obtain
a new solution (α, σ′); and as usual, we rename V ′ = (τ(W ), B,X ′, θ′, µ′)
as V = (W,B,X , θ, µ) and rename the solution as (α, σ).

Due to partial commutation we have the following: if a factor f ∈
d {cb, cλ,b}` e occurs in σ(W ) with d, e /∈ {cb, cλ,b}, then we have ` = λ ∈ Λb,
and f = dcλ,bc

λ−1
b e ∈ M(B, ∅, θ, µ). Moreover, if θ(X) = cb, then X com-

mutes with the letter cb, but X does not commute with any cλ,b.
(5) The block compression. As long as there exists a letter cb which occurs

in σ(W ), perform the following loop, which also finishes the block compres-
sion. During the following loop we maintain the invariant: if dcλ,bc`be and
d′cλ,bc

`′

b e
′ are factors of σ(W ) with d 6= cb 6= e and d′ 6= cb 6= e′, then ` = `′

and σ(W ) contains a factor d cλ,b cb ` e as well. During the loop we perform
various times a renaming in order to keep the notation V and (α, σ) at the
current states. Initially we define a list

ΛB = {b ∈ B | Λb 6= ∅} .

while ΛB 6= ∅ do
(a) For some b ∈ ΛB remove b and b from ΛB ;
(b) Let c = cb and for all λ ∈ Λb abbreviate cλ,b as cλ.
(c) while |σ(W )|c ≥ 1 do

(i) For all X with θ(X) = c where |σ(X)| is odd, follow a substi-
tution transition of type X 7→ cX. Hence, we may assume that
|σ(X)| is even for all X with θ(X) = c.

(ii) Remove all X from X where σ(X) = 1. Observe, if there remains
a variable X with θ(X) = c, then σ(W ) contains a factor c2.

(iii) For all cλ where σ(W ) contains a factor dcλc`e where d 6= c 6= e
and ` is odd, follow a compression transition with h(cλ) = ccλ.
In order to see that this is possible observe that for every oc-
currence of such a factor dcλc`e there are only two possibilities.
Either none of the positions of cλc` are visible in W , or the po-
sition of cλ is visible in W . Moreover, c commutes with cλ and
with all X where θ(X) = c; and |σ(X)| is even for those X.
Thus, wherever cλ is visible in W , the factor ccλ is visible in
W ∈M(B,X , θ, µ).
Still, we need to be more precise in order to guarantee a weight
reduction. The X -morphism defined by h(cλ) = ccλ leads to
new element W ′ ∈ M(B,X , θ, µ) and a new solution (αh, σ′).
In case that no letter c occurs in σ′(W ′) anymore, the letter c
and the type becomes useless. Thus, if |σ′(W ′)|c = 0, then we
actually follow a compression transition

V
h−→ (W ′, B′,X , θ′, µ)

where B′ = B \ {c, c} and hence |θ′| < |θ|. Nevertheless ‖V ‖ >
‖V ′‖ since |W ′| < |W | due to compression.

(iv) If there exists a variable X with θ(X) = c, then we know σ(X) =
c2c` where ` is even. We follow a substitution arc defined by
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X 7→ c2X in order to guarantee that a factor c2 becomes visible
in W .

(v) Due to the previous steps: either we have c /∈ B or W contains
a visible factor c2. In the first case, we skip this step. Thus,
we assume that W contains a visible factor c2. Now, if σ(W )
contains a factor dcλc`e where d 6= c 6= e, then ` is even; and
if θ(X) = c, then σ(X) = cj and j is even, too. Thus we can
follow a compression transition defined by h(c) = c2. This leads
to a new equation W ′ with h(W ′) = W and new solution σ′(W ′)
and the number of occurrences of c and c is halved. Note that
‖V ‖ > ‖V ′‖ since W contains a factor c2. Hence, |W | > |W ′|.
Rename the parameters to V,W,B,X , θ, µ, α, σ.

endwhile
(d) Rename all cλ by cλ,b.
endwhile

Space requirements for the block compression. Let us show that the block compres-
sion can be realized inside A.

Lemma 36. Let V = (W,B,X , ∅, µ) be the state after preprocessing, when we enter
“block compression”, and let V ′ = (W ′, B′,X ′, ∅, µ′) be the state at the end of block
compression. Then V ′, as well as all intermediate states between V and V ′, are in
A. Moreover, |W ′| ≤ 104n+ 6 |Winit|.

Proof. At the end of block compression we have X ′ ⊆ X , and each visible position
of the new letter cλ,b occupies a position where some letter b was visible in W .
Thus, |W ′| ≤ |W | ≤ 104n+ 6 |Winit|.

To show that the procedure stays inside A we calculate the maximum length
of an intermediate equation during the process. We start block compression with
|W | ≤ 104n+ 6 |Winit|, and |X | ≤ 4n. In step (3) we add at most 8n new variables
X ′ and at most 8n constants (we may substitute a variable X by aX ′XX ′′b in the
case that σ(X) = a`wb`

′). So the length of the intermediate equation at this step
is at most 104n + 6 |Winit| + 16n = 120n + |Winit|. The only other step of block
compression that adds length to the equation during the inner while-loop in step
(5).

We start this loop with|W | ≤ 120n+ |Winit| and with at most 8n typed variables
(the variables that were added in step (3)). We perform the loop at step (5c) with
one letter c ∈ ΛB fixed.

In step (i) we pop at most one c letter for each typed variable, and in step (ii)
we pop c2 for each typed variable, so we add at most 3 · 8n = 24n c’s, and then in
step (v) we halve the number of c’s, so overall we add at most 12n c′s. We repeat
this loop until all c’s are eliminated. In each iteration we add at most 24n new c
letters, but then divide the total number of c letters by 2. If we just consider the
number of new c letters added from the start of the while loop, we see that after
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each iteration the number of new c letters remaining is at most:
iteration number before number added number before number after

step (i) step (v) step (v)
1 0 24n 24n 12n
2 12n 24n 36n 18n
3 18n 24n 42n 21n
4 21n 24n 45n 23n
5 23n 24n 48n 24n

Thus the total length of W is never more than
(14) 120n+ 6 |Winit|+ 48n = 168n+ 6 |Winit|

Since this call of the inner while-loop eliminates all occurrences of the letter
c, at the end of each call the length of W returns to being bounded above by
120n+ 6 |Winit|, when we repeat the while-loop at step (5c) for another constant in
ΛB , until ΛB = ∅. Thus all states are in A. �

For the final state V ′ = (W ′, B′,X ′, ∅, µ′) the type relation is empty. If V ′ is
small, that is, |W ′| ≤ 96n + 6 |Winit|, then Lemma 34 is shown. Thus, without
restriction we again have

96n+ 6 |Winit| < |W ′| ≤ 104n+ 6 |Winit| .

Pair compression. After block compression we run pair compression, following es-
sentially the formulation of Jeż’s original procedure [12]. We start a pair compres-
sion at a state Vp = (W,B,X , ∅, µ) where we have:

• |W |b ≥ 1 for all b ∈ B \A.
• 96n+ 6 |Winit| < |W | ≤ 104n+ 6 |Winit|.
• W doesn’t contain any proper factor b2 with b ∈ B \#.
• The current solution is denoted by (α, σ).

The goal of the process is to end at a state Vq = (W ′′, B′,X ′′, ∅, µ′′) with |W ′′| ≤
96n+6 |Winit| by some path satisfying the forward property and without increasing
the weight. Moreover, there will be no types in this phase. Note that the constraints
make sure that σ(X) does not contain any factor aa, but we cannot rule out that
W contains such factors. However, the number of aa factors remains bounded by
|Winit|, since they can only occur after preprocessing Winit.

Consider all partitions B \ {#} = L∪R such that b ∈ L ⇐⇒ b ∈ R. Note that
there is no overlap between factors ab, cd ∈ LR unless ab = cd. Moreover

ab ∈ LR ⇐⇒ ba ∈ LR.

For each choice of (L,R) we count the number positions in W where some factor
ab ∈ LR with a 6= b begins. We intend to compress all these factors into single
letters.

Remark 37. We choose and fix one of the partitions (L,R) such that the number
of factors ab ∈ LR in σ(W ) such that a 6= b and at least one of a or b visible is
maximal.

We say that ab ∈ LR is crossing if W contains either a factor aX with σ(X) ∈
bB∗ or a factor bX with σ(X) ∈ aB∗ (or both). In the first phase we run the
following procedure.
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Uncrossing. Create a list L = {X ∈ X | ∃b ∈ R : σ(X) ∈ bB∗}.
For each X ∈ L:

• choose b ∈ R such that σ(X) ∈ bB∗ and follow a substitution transition
X 7→ bX.

This concludes the “uncrossing”; and, as done previously we rename the parameters
to V,W,B,X , µ, α, σ.

Above, when we follow X 7→ bX with b ∈ R, then automatically X is replaced
with X b, and b ∈ L. We also have

{
X,X

}
⊆ L if and only if σ(X) ∈ bB∗a for

some ab ∈ LR. In that case we actually substituted X by bXa and X by aX b.
Recall that we have at most 4n variables in W . Thus, at this stage we have:
(15) |W | ≤ 104n+ 6 |Winit|+ 8n = 112n+ |Winit|

The second phase begins with creating a list P = {ab ∈ LR | a 6= b}. After that
we run the following while-loop.
while P 6= ∅ do

(1) Define
B′ = A ∪ {a ∈ B | |W |a ≥ 1 ∨ ∃X ∈ X : σ(X) ∈ aB∗} .

IfB′ 6= B, then follow a substitution transition V ε−→ (W,B′,X , ∅, µ) where
the label ε = idC∗ yields the inclusion of M(B′, ∅, ∅, µ) into M(B, ∅, ∅, µ).
Rename the parameters to V,W,B,X , µ, α, σ.

(2) Select and remove some pair ab in P. If ab does not occur as a factor in
W , then do nothing, else perform the next steps.

(3) Choose a fresh letter c = cab ∈ C \ B with µ(c) = µ(ab) and let B′′ =
B ∪ {c, c}. Define an X -morphism

h : M(B′′,X , ∅, µ′)→M(B,X , ∅, µ)
by h(c) = ab.

(4) Replace in W all factors ab by c and all factors ba by c. Let W ′ ∈ (B′∪X )∗
be the new word and V ′ = (W ′, B′′,X , ∅, µ′) be the new state. We have
W = h(W ′); and hence there is a compression transition

V
h−→ V ′.

(5) Follow the compression transition V
h−→ V ′; and rename the parameters

to V,W,B,X , µ, α, σ.
endwhile

Lemma 38. During the while-loop for pair compression the following properties
hold.

(1) After the first step, where the new alphabet B′ is created (and then renamed
as B) we have |B| ≤ |W |+ 2.

(2) No factor ab ∈ LR ever becomes crossing.
(3) At each step where we move from state V to V ′ we have ‖V ‖ > ‖V ′‖.
(4) Each transition satisfies the forward property.

Proof. (1) In the first step inside the loop, when the new alphabet B′ is created,
we have |B′| ≤ |W |. Therefore, after the first renaming, we have |B| ≤
|W |. When we define B′′, we add two new letters. Hence, we obtain
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|B′′| ≤ |W |+ 2, which yields, after renaming, |B| ≤ |W |+ 2. This property
persists during subsequent loops.

(2) We have to show that no factor ab ∈ LR ever becomes crossing. To see
this, consider the alphabet reduction by following the transition V

ε−→
(W,B′,X , ∅, µ) with B′ 6= B. It involves replacing every letter a ∈ B \ B′
by α(a) according to Lemma 31. The potential problem is that we might
have a ∈ L, but α(a) starts with a letter in R, so we might create new LR
factors. However as B′ contains all letters a where σ(X) ∈ aB∗ for some
X, we never introduce any new crossing pairs.

(3) The assertion ‖V ‖ > ‖V ′‖ is trivial.
(4) The transition V

ε−→ (W,B′,X , ∅, µ) with B′ 6= B satisfies the forward
property by Lemma 31. In order to see that V h−→ V ′ satisfies the forward
property when we have h(c) = ab we proceed as follows. As done for W ,
also replace in σ(W ) all factors ab by c and all factors ba by c. Since ab is
not crossing, we find a B′-morphism

σ′ : M(B′,X , ∅, µ′)∗ →M(B′, ∅, ∅, µ′)
such that σ(X) = hσ′(X) for all variables X. Thus, we obtain (αh, σ′) as
a solution at V ′

�

Lemma 39. Let Vp = (W,B,X , ∅, µ) be a state in A with a solution (α, σ) where
96n + 6 |Winit| < |W | ≤ 104n + 6 |Winit| such that W doesn’t contain any factor
d2 for # 6= d ∈ B. Let (L,R) be the partition with B \ {#} = L ∪ R according
to the choice made in Remark 37. Then pair compression on Vp leads to a state
Vq = (W ′′, B′,X , ∅, µ′′) with |W ′′| ≤ 96n + 6 |Winit|, that is, the state Vq is small.
Moreover, the intermediate steps of the pair compression algorithm are performed
within A.

Proof. Recall that the NFA A is trim. Hence, there is a path

V0
h1−→ · · ·Vp−1

hp−→ Vp

from an initial state with the appropriate µ to Vp. Let Vi = (Wi, Bi,Xi, θi, µi).
We perform the following marking process. The idea is that we wish to mark all
constants in the Wi which could possibly give rise to a factor aa in W . These
factors can arise in exactly two ways: the initial equation may be unreduced to
start with, or from a substitution (for example, we may have aX or Y Z factors of
the initial equation and we pop X −→ aX or Y −→ Y a, Z −→ aZ).

(1) In W0 = Winit we mark all letters (both constants and variables).
(2) If Vi−1

ε−→ Vi is a substitution transition, Wi = τ(Wi−1) and the positions
with constants in Wi−1 are mapped to positions with constants in Wi. We
mark constants in Wi that come from marked constants in Wi−1, and if
τ(X) ∈ aΓ∗ and X is marked in Wi−1, we mark the newly added a on the
left of the variable X in Wi, and leave X unmarked. If τ(Y ) = Y and Y
is marked in Wi−1, we leave Y marked in Wi. Note that in this way each
marked variable gives rise to exactly one marked letter.

(3) If Vi−1
h−→ Vi is a compression transition, then we have h(Wi) = Wi−1.

Mark a constant c in Wi if it is mapped by h to an occurrence of a factor
containing a marked position in Wi−1.
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Note that since the pair compression procedure is always preceded by the prepro-
cessing step above, we can assume that every variable X in Winit has been replaced
by aX where a is marked, so in Vp the word W contains at most |Winit| marked
constants and no marked variables.

When we run the pair compression procedure on W we cannot compress pairs
aa, or pairs containing variables. If we now mark all variables present in W , then
we are allowed to compress any pairs of letters in W that are unmarked. After
marking the variables we have at most 2 |Winit| marked letters in W .

Let us factor the word W ∈ (B ∪X )∗ as W = x0u1x1 · · ·u`x`, where ` is chosen
to be maximal that for all 1 ≤ i ≤ ` we have:

(1) xi ∈ (B ∪ X )∗.
(2) ui ∈ (B \ {#})∗ and ui doesn’t contain any marked position.
(3) The length of each ui is exactly 3.

The factorization enjoys the following properties.
• Since all #’s are marked, we have x0 6= 1 6= x`. Some other xi can be

empty.
• Since we require |ui| = 3 it may be that xi contains for each marked position

also two unmarked position. The exception is the first position in x0.
Hence, we obtain∑

0≤i≤`
|xi| ≤ 3(2 |Winit|)− 2 ≤ 6 |Winit| .

• Since |W | − 6 |Winit| > 96n, the previous line yields

` > 32n.

Consider the word W ′ which was obtained via the substitution transitions, but
before the compression of factors ab ∈ LR into single letters. The increase in length,
which is |W ′| − |W |, comes from the substitution transitions X 7→ bX,X 7→ X b
with X ∈ L, so the length goes up by at most 8n. Note that the ui factors do not
change, only the xi factors do. Hence W ′ has the factorization W ′ = y0u1y1 · · ·u`y`
with yi ∈ (B ∪ X )∗ and

|y0 · · · y`| ≤ |x0 · · ·x`|+ 8n.(16)

Finally, let W ′′ be the word obtained after pair compression has been performed.
The word W ′′ is the compression of some word y0v1y1 · · · vmym where each vi is
the result of the compression restricted to ui.

Each ui can be written as ui = abc with a, b, c ∈ B. Since W did not contain
any proper factor d2 with d ∈ B by hypotheses (and as we have performed block
compression first), we know a 6= b 6= c. Moreover, we cannot have a = b or c = b
because in every occurrence of bb in W at least one position is marked.

Assume for a moment that membership to L or R was defined uniformly at
random. That is for each # 6= a ∈ B the probability for aa ∈ LR is 1

2 and
independent of the other events “bb ∈ LR” for a 6= b.

There are two possibilities: either b ∈ L or b ∈ R. In the first case, either
c ∈ R or c ∈ L, and in the second case either a ∈ L or a ∈ R. Each event
bc ∈ LR, bc ∈ LL, ab ∈ LR, ab ∈ RR has probability 1

4 , so with probability 1
2

one pair in the factor ui is compressed: thus the expected length of a factor vi is
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E [ |vi| ] = 3
2 + 2

2 = 5
2 . By linearity of expectation, we obtain

E [ |v1 · · · v`| ] = 5
2`.(17)

Thus if the partition (L,R) were chosen at random, we expect the length of the
word u1 · · ·u` to decrease from 3` to 5

2` or less, that is, we expect at least 1
6` factors

ui are compressed (each vi has length either 2 or 3). But in Remark 37 we made
the best choice of compressing a maximal number of pairs in W ′. This means at
least 1

6` factors of W ′ are compressed. Hence, for the actual pair compression, we
may estimate the length of W ′′ as follows.

|W ′′| ≤ |x0 · · ·x`|+ 8n+ 5
2` since 1

6` factors are compressed
= |W |+ 8n− `

2 since |W | = |x0 · · ·x`|+ 3`
≤ |W | − 8n since ` > 32n
≤ 96n+ 6 |Winit| since |W | ≤ 104n+ 6 |Winit|.

Since |W ′′| ≤ 96n+ 6 |Winit|, the last state Vq = (W ′′, B′,X , ∅, µ′′) is small. �

A linear bound on the size of C is evident from the proofs above and an explicit
bound is given next. Thus, we have shown Lemma 34.

3.10.4. The size of the extended alphabet C: the choice of κ. The longest equation
W we needed to establish completeness occurs during block compression, where we
found that |W | ≤ 168n + 6 |Winit| (14). Combining this with |Winit| ≤ 6n (6) we
obtain
(18) |W | ≤ 168n+ 36n = 204n.
The largest alphabet we ever needed during block and pair compression was less
than

3 · (|A+|+ |W |) ≤ 3 · (n+ 204n) = 3 · 205n = 615n.
Thus, we can choose κ such that
(19) |C| = κ · n = 615n.

3.10.5. Finishing the proof of Theorem 4 in the monoid case. Lemma 34 implies
Proposition 33 by the reduction in Subsection 3.10.2. This in turn proves (3)
in Theorem 4 in the monoid case M(A) = A∗. Clearly, {(h(c1), . . . , h(cm)) ∈
C∗ × · · · × C∗ | h ∈ L(A)} is empty if and only if L(A) = ∅. It remains to show
that A contains a directed cycle if and only if (U, V ) has infinitely many solutions.
If there is no cycle, then L(A) is finite and (U, V ) can have only finitely many
solutions. The converse has been shown in Corollary 26.

4. Proof of Theorem 4 in the group case: M(A) = F(A+)

The proof is a reduction to the monoid case. Recall that A = A±∪{#}, F is the
subset of reduced words in A∗±, and π : A∗ → F(A+) is the canonical projection.

We start with an equation (U, V ) in the free group F(A+), where U, V ∈ (A∪X )∗,
X =

{
X1, X1, . . . , Xm, Xm

}
, and solutions are A-morphisms σ : (A ∪ X )∗ → F

such that πσ(U) = πσ(V ). In a first phase we transform the equation (U, V ) into
a system of triangular equations, where triangular means 1 ≤ |UV | ≤ 3. We may
assume UV 6= 1. If |UV | ≤ 3, then the equation is already triangular. Hence, let
us assume |UV | ≥ 4. Since we are in the group case we may also assume |V | = 1.
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Write U = x1 · · ·xp with xi ∈ A∪X and p ≥ 3. Next, we introduce a new variable
X and replace x1 · · ·xp = V by the system

x1 · · ·xp−1 = X ∧Xxp = V.

We iterate until the system is triangular. The procedure introduces more variables,
but it does not change the set of solutions. More formally, if {(Ui, Vi) | 1 ≤ i ≤ t}
is the system of triangular equations we obtained above, then

{(σ(X1), . . . , σ(Xm)) ∈ F× · · · × F | πσ(U) = πσ(V )}
= {(σ(X1), . . . , σ(Xm)) ∈ F× · · · × F | ∀1 ≤ i ≤ t : πσ(Ui) = πσ(Vi).}

The crucial step in our reduction is to switch from solutions over free groups to
solutions over free monoids with involution. We do this using the following lemma,
whose geometric interpretation is simply that the Cayley graph of a free group (over
standard generators) is a tree.

Lemma 40. Let x, y, z be reduced words in A∗±. Then xy = z holds in the group
F(A+) (i.e. π(xy) = π(z)) if and only if there are reduced words P,Q,R in A∗±
such that x = PR, y = RQ, and z = PQ holds in the free monoid A∗±.

P

R Q

x z

1

y

Figure 3. Paths corresponding to geodesic words for x, y, z with
xy = z in the Cayley graph of F(A+) with standard generators,
as in Lemma 40. The geodesics to vertices x and z split after an
initial path labeled by P .

Proof. The direction from right to left is trivial, whether or not P,Q,R are reduced.
For the other direction there are two cases. First, xy is a reduced word. Then we
can choose P = x, R = 1, Q = y, and we are done. Second, we have x = x′a
and y = ay′ for some letter a ∈ A±, so x′y′ = z′ holds in the group F(A+). By
induction, there are reduced words P,Q,R′ with x′ = PR′, y′ = R′Q, z = PQ in
A∗±. We can define R = R′a, which is reduced due to the equation x = x′a = PR′a
and the fact that x is reduced. The result is now immediate. �

The consequence of Lemma 40 is that with the help of fresh variables P,Q,R we
can substitute every equation xy = z with x, y, z ∈ {1} ∪ A± ∪ Ω in F(A+) by the
following three word equations to be solved over a free monoid with involution:

x = PR, y = RQ, z = PQ.(20)
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More precisely, in the third phase of the transformation we replace each Ui = Vi,
where Ui = xiyi and Vi = zi, by the three equations

xi = PiRi, yi = RiQi, zi = PiQi.(21)

Thus, for s = 3t ≤ 3 |UV | we obtain a new system of triangular word equations
{(U ′i , V ′i ) | 1 ≤ i ≤ s} such that

{(σ(X1), . . . , σ(Xm)) ∈ F× · · · × F | πσ(U) = πσ(V )}(22)
= {(σ(X1), . . . , σ(Xm)) ∈ F× · · · × F | ∀1 ≤ i ≤ s : σ(U ′i) = σ(V ′i ).}(23)

Note that the morphism π is not present in (23), since (23) refers to a system of
equations over a free monoid with involution.

The final step is to encode the system {(U ′i , V ′i ) | 1 ≤ i ≤ s} into a single word
equation (U ′′, V ′′) over the free monoid A∗, by defining

U ′′ = U ′1# · · ·#U ′s
V ′′ = V ′1# · · ·#V ′s .

Thus we have deterministically reduced the equation (U, V ) to the equation (U ′′, V ′′),
where

|U ′′V ′′| ≤ 15 |UV |

since each U ′iV
′
i has length at most 3 and we have inserted 2s − 2 copies of the

letter #. This finishes the proof of Theorem 4 for the group case.

Remark 41. Since the length of the word equation obtained from a free group
equation of length n is at most 15n, an upper bound for the size of the alphabet C
in the statement of Theorem 4 in the free group case is 615 · 15n = 9225n.

5. Example of preprocessing, block and pair compression procedures

We conclude with a demonstration of the procedures described in Subsection 3.10
with a simple example. Suppose we have a single equation (U, V ) in a free monoid
with involution with

U = XaY baXP and V = bY b3ZQ.

For simplicity we have chosen an equation with no involuted letters. Suppose also
that we know a solution

σ(X) = b5, σ(Y ) = b4a, σ(Z) = bab, σ(P ) = ab3a, σ(Q) = ab5ab3a.

We depict the situation as follows:
X Y X P︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

b b b b b a b b b b a b a b b b b b a b b b a︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸
Y Z Q

.

For simplicity, we will ignore the rest of the word Winit, and focus just on the
factor U#V .

We first follow the preprocessing step on page 23. In this case we pop the first
and last letter of each variable, to obtain:

X Y X P︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
b b b b b a b b b b a b a b b b b b a b b b a︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸

Y Z Q

.
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Next we enter block compression. In step (1) we compute Λa = ∅,Λb = {4, 5}.
Note that 3 6∈ Λb since the factor b3 is completely inside P and Q so is not visible.
The block compression process will not touch this factor. We also compute Xa = ∅
and Xb = {X,Y }. Note that P 6∈ Xb since it is preceded by a in W .

Step (2) introduces the fresh letters cb, c4,b, c5,b, and renames the letters b that
are part of a visible block of length at least 2 as cb:

X Y X P︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷
cb cb cb cb cb a cb cb cb cb a b a cb cb cb cb cb a b3 a︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸

Y Z Q

.

In step (3) we split the variables X −→ X ′X,Y −→ Y ′Y , then remove X,Y
since σ(X) = 1 = σ(Y ):

X′ Y ′ X′ P︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷
cb cb cb cb cb a cb cb cb cb a b a cb cb cb cb cb a b3 a︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸

Y ′ Z Q

.

Note that Q does not belong to Xb, so it does not split even though σ(Q) starts
with cb.

Step (4) renames one of the cb in each block in both W and σ(W ):

X′ Y ′ X′ P︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷
c5,b cb cb cb cb a c4,b cb cb cb a b a c5,b cb cb cb cb a b3 a︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸

Y ′ Z Q

.

We now enter the loop in step (5). We write c = cb, cλ = cλ,b:

X′ Y ′ X′ P︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷
c5 c c c c a c4 c c c a b a c5 c c c c a b3 a︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸

Y ′ Z Q

.

Since θ(X ′) = θ(Y ′) = c we pop each to make the number of c letters in each
σ(X) even:

X′ Y ′ X′ P︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷
c5 c c c c a c4 c c c a b a c5 c c c c a b3 a︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸

Y ′ Z Q

.

Note that we have used the fact that X ′, Y ′ commute with c in the partially com-
mutative monoid.

We are now at part (d) of step (6). Since c4c
3 is a factor where the number of c

letters is odd, we follow the compression transition h(c4) = c4c to obtain:

X′ Y ′ X′ P︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷
c5 c c c c a c4 c c a b a c5 c c c c a b3 a︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸

Y ′ Z Q

.

We now have all blocks of c inside variables and in W of even length, so we can
finally follow the block compression transition h(c) = cc to reduce the number of c
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letters by half:
X′ Y ′ X′ P︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷

c5 c c a c4 c a b a c5 c c a b3 a︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸
Y ′ Z Q

.

Since there are still c letters remaining in σ(W ) we repeat the loop, and after
two more iterations of the loop we obtain:

P︷︸︸︷
c5 a c4 a b a c5 a b3 a︸︷︷︸ ︸ ︷︷ ︸

Z Q

.

At this point we have removed all letters cb so the loop terminates. We reduce
the alphabet by removing cb, and remove the types. Note that we keep each cλ,b
since each letter represents a different length block of b’s, and therefore they are all
different. Let us rename c5,b = d and c4,b = e. So the equation is now:

P︷ ︸︸ ︷
d a e a b a d a b b b a︸︷︷︸ ︸ ︷︷ ︸

Z Q

.

As promised, W contains no proper factors b2 for any b ∈ B, so we can start pair
compression.

Suppose we choose a partition of B\{#} as B+ = {a, b, d, e} and B− = {a, b, d, e}
(we suppose this choice is maximal according to Remark 37). In step (1) of pair
compression we introduce fresh letters cba, cda, cea, then in step (2) we create the
list L = {Z,P ,Q}. (We will continue to ignore involutions, and focus just on a
factor of W containing no involuted letters or variables). We perform uncrossing
by popping a from Z and removing Z, and since we follow P −→ bP then we also
follow P −→ Pb, and similarly for Q, leading to:

P︷︸︸︷
d a e a b a d a b b b a︸ ︷︷ ︸

Q

.

In step (3) we follow compression transitions h(cba) = ba, h(cda) = da, h(cea) =
ea to obtain:

P︷︸︸︷
cda cea cba cda b b cba︸ ︷︷ ︸

Q

.

This completes one round of the process. We then return to the preprocessing
step, which gives:

cda cea cba cda b b cba︸︷︷︸
Q

,

and then block compression would produce:

cda cea cba cda c2,b cba.
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[12] A. Jeż. Recompression: a simple and powerful technique for word equations. J. ACM,

63(1):4:1–4:51, 2016. Conference version in STACS 2013.
[13] R. M. Keller. Parallel program schemata and maximal parallelism I. Fundamental results. J.

ACM, 20(3):514–537, 1973.
[14] O. Kharlampovich and A. Myasnikov. Elementary theory of free non-abelian groups. J. of

Algebra, 302:451–552, 2006.
[15] A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Rep. PB 78,

Aarhus University, Aarhus, 1977.
[16] J. Messner. Pattern matching in trace monoids. In R. Reischuk, editor, Proc. 14th Annual

Symposium on Theoretical Aspects of Computer Science (STACS’97), Lübeck (Germany),
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