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Abstract—The smart grid has been considered as a next-
generation power system to modernize the traditional grid to
improve its security, connectivity and sustainability. Unfortu-
nately, the grid is susceptible to malicious cyber attacks, which
can create serious technical, economical and control problems in
power network operations. In contrast to the traditional cyber
attack minimization techniques, this paper proposes a recursive
systematic convolutional (RSC) code and Kalman filter based
method in the context of microgrids. Specifically, the proposed
RSC code is used to add redundancy in the microgrid states,
and the log maximum a posterior is used to recover the state
information which is affected by random noises and cyber
attacks. Once the estimated states are obtained, a semidefinite
programming based optimal feedback controller is proposed to
regulate the system states. Test results show that the proposed
approach can accurately mitigate the cyber attacks and properly
estimate and control the system states.

Keywords—Cyber attack, Kalman filter, renewable microgrid,
smart grid, optimal feedback control.

I. INTRODUCTION

The smart grid can provide an efficient way of supplying
and consuming energy by providing two-way energy flow
and communication [1]. It can integrate multiple renewable
distributed energy resources (DERs) which are environment
friendly, low green house emission and effective to alleviate
transmission power losses. The associated connectivity and
advanced information/communication infrastructure make the
smart grid susceptible to cyber attacks [1], [2]. Statistics in the
energy sector show that more than 150 cyber attacks happened
in 2013 and 79 in 2014 [1]. As a result, the power outage cost
is about 80 billion per year in the USA. Usually, the utility
operators amortize it by increasing the energy tariff, which
is unfortunately transferred to consumer expenses [3]. The
renewable microgrid incorporating DERs can be a potential
solution, but it needs to be properly monitored as its generation
pattern depends on the weather and surrounding conditions.
One of the smart grid features is that it can integrate multiple
microgrids and monitor them using reliable communication
networks.

Since the generation pattern of a microgrid varies on
the time-place basis so its operating condition should be
closely monitored. Therefore, the microgrid state estimation
is an important function in the smart grid energy management
system (EMS). As shown in Fig. 1 system state estimation
is an essential task for the monitoring and control of the
power network. In order to monitor the grid information, the
utility company is deployed a set of sensors around them. The

communication infrastructure is used to send grid information
from sensors to EMS. The accurately estimated states can
also be used in other functions of EMS such as contingency
analysis, bad data detection, energy theft detection, stability
analysis, and optimal power dispatch [4].
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Fig. 1: Flow of electricity and information between different
sections of smart grids [5].

Many studies have been carried out to investigate the cyber
attacks in smart grid state estimations. To begin with, most of
the state estimation methods use the weighted least squared
(WLS) technique under cyber attacks [6], [7], [8]. Chi-Square
detector is also used to detect those attacks. Even though this
approach is easy to be implemented for non-linear systems, it
is computationally intensive and it can not eliminate the attacks
properly [6], [5]. To this end, the WLS based l1 optimization
method is explored in [4]. Furthermore, a new detection
scheme to detect the false data injection attack is proposed
in [9]. It employs a Kullback-Leibler method to calculate the
distance between the probability distributions derived from the
observation variations. A sequential detection of false data
injection in smart grids is investigated in [2]. It adopts a
centralized detector based on the generalized likelihood ratio
and cumulative sum algorithm. Note that this detector usually
depends on the parametric inferences so is inapplicable to the
nonparametric inferences [9]. Thereafter, a Kalman filter (KF)
based microgrid energy theft detection algorithm is presented
in [3].

Many feedback control algorithms have been proposed to
regulate the system states. The most established approach is



the linear quadratic regulator (LQR) method [10], [11], [12]. It
is shown in [13], [14] that designing a state feedback controller
framework for a general case of polynomial discrete-time
system is quite challenging because the solution is nonconvex.
Thus, the convex method based controller design has gained
growing interest in the research communality. Driven by the
aforementioned motivations, this paper proposes a recursive
systematic convolutional (RSC) code and KF based cyber
attack minimization technique in the context of microgrids.
The key contributions of this paper are summarized as follows:

• A microgrid incorporating multiple DERs is mod-
elled as a discrete time linear state-space equation
considering the uncertainty and cyber attack in the
measurement.

• An RSC code is proposed to mitigate the impairments
and introduce redundancy in the system states. The log
maximum a posterior is adopted to recover the state
information which is affected by random noises and
cyber attacks.

• After estimating the system states, a feedback control
strategy for voltage regulation of the microgrid is
proposed based on semidefinite programming. This
proposed control scheme acts as a precursors in term
of network stability and the operation of DERs.

II. MICROGRID SYSTEM MODEL

A microgrid is a small-scale power network that can
operate independently or be connected to the main grid. The
considered N micro-sources in this study are connected to the
main grid. For simplicity, we assume that N=4 solar panels
are connected through the IEEE-4 bus test feeder as shown
in Fig. 2 [15], [16]. Here the input voltages are denoted by

DER 1

vp1

Lc1

v1

vp2

Lc2

v2

vp3

Lc3

v3

vpN

LcN

vN

Network

DER 2 DER NDER 3

PCC PCC PCC PCC

InputInputInputInput

Fig. 2: Micro-sources are connected to the network [16].

the vp = (vp1 vp2 vp3 vp4)T , where vpi is the i-th DER input
voltage. The four micro-sources are connected to the power
network at the corresponding Points of Common Coupling
(PCCs) whose voltages are denoted by vs = (v1 v2 v3 v4)T ,
where vi is the i-th PCC voltage.

Now by applying Laplace transformation, the nodal voltage
equation can be obtained:

Y(s)vs(s) =
1

s
L−1
c vp(s), (1)

where Lc = diag(Lc1 , Lc2 , Lc3 , Lc4) and Y(s) is the
admittance matrix of the entire power network incorporating
four mico-sources. Based on the typical specifications of the
IEEE 4-bus distribution feeder [16], the admittance matrix is

given in (2). Now we can convert the transfer function form
into the linear state-space model [16]. The discrete-time linear
dynamic system can be derived as follows:

x(k + 1) = Adx(k) + Bdu(k) + nd(k), (3)

where x(k) = vs − vref is the PCC state voltage deviation,
vref is the PCC reference voltage, u(k) = vp − vpref is the
DER control input deviation, vpref is the reference control
effort, nd(k) is the zero mean process noise whose covariance
matrix is Qn, the state matrix Ad = I + A∆t and input matrix
Bd = B∆t with

A =

 175.9 176.8 511 103.6
−350 0 0 0
−544.2 −474.8 −408.8 −828.8
−119.7 −554.6 −968.8 −1077.5

 , (4)

B =

 0.8 334.2 525.1 −103.6
−350 0 0 0
−69.3 −66.1 −420.1 −828.8
−434.9 −414.2 −108.7 −1077.5

 , (5)

and ∆t is the discretization parameter.

III. OBSERVATION MODEL AND CYBER ATTACK

The measurements of the microgrid states are obtained by
a set of sensors and can be modelled as follows:

z(k) = Cx(k) + w(k), (6)

where z(k) is the measurements, C is the measurement matrix
and w(k) is the zero mean sensor measurement noise whose
covariance matrix is Rw. Generally, the objective of attackers
is to insert false data into the observations as follows:

y(k) = Cx(k) + w(k) + a(k), (7)

where y(k) is the measurements considering cyber attacks, and
a(k) is the false data inserted by the attacker [1], [2], [3]. The
attackers have complete accesses to the system infrastructure
so that they can hijack, record and manipulate data according
to their best interest. In this paper, the cyber attack pattern is
similar to those illustrated in [1], [2], [17]. Figure 3 shows the
observation model and cyber attack process in the context of
microgrid state estimations.
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Fig. 3: Observation model with cyber attack in the microgrid.

To secure the system states, in the signal processing re-
search community, the channel code is used. Motivated by the
convolutional coding concept [18], [19], the microgrid state-
space and observation models are regarded as the outer code.
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Then the standard uniform quantizer performs quantization to
get the sequence of bits b(k). b(k) is encoded by RSC channel
code which is regarded as the inner code. Generally speaking,
RSC code is characterized by three parameters: the codeword
length n, the message length l, and the constraint length m
i.e., (n, l,m). The quantity l/n refers to the code rate which
indicates the amount of parity bits added to the data stream.
The constraint length specifies m-1 memory elements which
represents the number of bits in the encoder memory that
affects the RSC generation output bits. This paper considers a
(2, 1, 3) RSC code and (1 0 1, 1 1 1) code generator polynomial
in the feedback process. As shown in Fig. 4, this RSC code
produces two outputs and can convert an entire data stream into
one single codeword. The codeword is then passed through the
binary phase shift keying (BPSK) to obtain s(k). s(k) is passed
through the additive white Gaussian noisy (AWGN) channel
with some noise. To illustrate, Fig. 4 shows the proposed cyber
attack protection procedure in the context of microgrids. At the
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Fig. 4: An illustration of the cyber attack protection in
microgrids.

end, the received signal is:

r(k) = s(k) + e(k), (8)

where e(k) is the AWGN noise. The received signal is followed
by the log-maximum a posteriori (Log-MAP) decoding for this
dynamic system. The Log-MAP works recursively from the
forward path to the backward path to recover the state infor-
mation [18]. The Log-MAP output is sent to demodulation and
de-quantization and then finally used by the state estimation
method.

IV. PROPOSED FRAMEWORK FOR CYBER ATTACK
MINIMIZATION IN MICROGRIDS

Generally, the forecasted system state estimate is expressed
as follows [20]:

x̂−(k) = Adx̂(k − 1) + Bdu(k − 1), (9)

where x̂(k−1) is the estimated state of the last step. Then the
forecasted error covariance matrix is given by:

P−(k) = AdP(k − 1)AT
d + Qn(k − 1), (10)

where P(k−1) is the estimated error covariance matrix of the
last step. The observation innovation residual d(k) is given by:

d(k) = yrd(k) − Cx̂−(k), (11)

where yrd(k) is the dequantized and demodulated output bit
sequence. The Kalman gain matrix can be written as:

K(k) = P−(k)CT [CP−(k)CT + Rw(k)]−1. (12)

The updated state estimation is given by:

x̂(k) = x̂−(k) + K(k)d(k). (13)

Finally, the updated estimated error covariance matrix P(k) is
expressed as follows:

P(k) = P−(k) − K(k)CP−(k). (14)

After estimating the system state, the proposed control
strategy is applied for regulating the microgrid states. In order
to regulate the microgrid states, define the following feedback
control law [10], [11], [12]:

u(k) = Fx(k), (15)

by minimizing the following cost function:

J =

∞∑
k=0

[x′(k)Qzx(k) + u′(k)Rzu(k)]. (16)

Here F is the state feedback gain matrix, Qz and Rz are
positive-definite state weighting matrix and control weighting
matrix. By using (15) and standard trace operator (m′Dn =
tr[Dnm′]), (16) can be expressed as:

J =

∞∑
k=0

tr[Qzx(k)x′(k) + F′RzFx(k)x′(k)]

=

∞∑
k=0

tr[Qz + F′RzF]x(k)x′(k)

=tr[Qz + F′RzF]P, (17)

where P =
∑∞

k=0[x(k)x′(k)] and it can be written as follows:

P =

∞∑
k=0

[x(k)x′(k)]

=

∞∑
k=0

x(k + 1)x′(k + 1) + x(0)x′(0)

=

∞∑
k=0

(Ad + BdF)x(k)x′(k)(Ad + BdF)′ + x(0)x′(0).

(18)



Now (18) can be written as follows:

P = (Ad + BdF)P(Ad + BdF)′ + x(0)x′(0), (19)

whose feasibility is equivalent to

(Ad + BdF)P(Ad + BdF)′ − P + x(0)x′(0) < 0
(Ad + BdF)PP−1P(Ad + BdF)′ − P + x(0)x′(0) < 0. (20)

It can be observed that the (20) is nonlinear because it involves
the multiplication of variables P and F. This prevents a
straightforward application of linear matrix inequality. Fortu-
nately, one can introduce a new variable H = FP and rewrite
the (20) as follows:

(AdP + BdH)P−1(AdP + BdH)′ − P + x(0)x′(0) < 0. (21)

Now according to the Schur’s complement, (21) can be trans-
formed into the following form:[

x(0)x′(0) − P AdP + BdH
(AdP + BdH)′ −P

]
< 0. (22)

From (17), F and P can be found by minimising the following
expression:

minimize
P,F

tr[Qz + F′RzF]P

subject to (22).
(23)

Based on the H = FP, (23) can be transformed as follows:

minimise
P,S,H

tr[QzP] + tr[S] (24)

subject to S > R1/2
z HP−1H′R1/2

z (25)
Hold Eq. (22).

According to the Schur’s complement, we can rewrite (25) as
follows: [

S R1/2
z H

H′R1/2
z P

]
> 0. (26)

We can finally formulate the proposed optimization problem
as follows:

minimise
P,S,H

tr[QzP] + tr[S]

subject to Hold Eq. (22), Hold Eq. (26).
(27)

Finally, the feedback gain matrix is computed as:

F = HP−1. (28)

The performance of the proposed method is analysed in the
next section.

V. PERFORMANCE EVALUATION

The simulation parameters are summarized in Table I.
The mean squared error (MSE) versus signal-to-noise ratio
(SNR) is presented in Fig. 5. It can be observed that the
proposed method significantly outperforms the existing KF
method [1]. For better visualization of the cyber attack, the
state (∆v1 and ∆v2) versus time step results are illustrated
in Figs. 6–71. It can be observed and expected that the cyber
attack enormously affects the system states when KF filter is

1Other states have similar estimation performance.

TABLE I: The parameters for the simulation using Matlab.

Parameters Values Parameters Values

Qz diag(10−2, 10−2, 101, 10−3) Rz 0.01 ∗ I4
Codes generator 5/7 ∆t 0.0001

Quantization Uniform 16 bits Decoding Log-MAP
Code rate 1/2 Channel AWGN

Qn 0.005 ∗ I4 Rw 0.05 ∗ I4
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Fig. 5: MSE versus SNR performance comparison.

used to estimate system states [1]. In other words, there is
a significant fluctuation due to the random noises and cyber
attacks. Interestingly, the proposed RSC based cyber attack
protection technique can regulate the system impairments by
introducing redundancy and protection in the system states. As
a result, the proposed method can estimate microgrid states
accurately even if there is cyber attacks and noises.

Unfortunately, it is noticed that the actual PCC state
deviations increase dramatically, which is very dangerous in
terms of network stability and microgrid operation. Thus, it
is necessary to apply a suitable control technique, so that the
PCC voltage deviations are driven to zero. After applying the
proposed control method to the microgrid connected to the
IEEE 4-bus distribution system, it can be seen from Fig. 8 that
the proposed controller is able to keep the voltage deviations
to zero by the time k=100, which acts as a precursor in terms
of network stability and proper operation of microgrids.

VI. CONCLUSION

This paper proposes a cyber attack minimization based
dynamic state estimation technique and feedback control al-
gorithm in microgrids. An RSC coded cyber attack protection
technique is proposed to add redundancy in the system states.
Then a Log-MAP decoding can assist to extract the system
states from the received signal which is polluted by random
noises and cyber attacks. In order to regulate the voltage
deviation, this study proposes an semidefinite programming
based optimal feedback control method. The effectiveness of
the developed approaches is verified by numerical simulations.
These findings can help to design the future smart control
center under cyber attacks. Consequently, it is encouraged to
use environment-friendly renewable microgrid and the utility
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operator can monitor and control the power network properly.
In the future work, packet losses and delay will be investigated
in terms of system performance.
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