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Summary 

Molecular toxinology research was initially driven by an interest in the small subset of animal 

toxins that are lethal to humans. However, the realization that many venomous creatures possess 

a complex repertoire of bioactive peptide toxins with potential pharmaceutical and agrochemical 

applications has led to an explosion in the number of new peptide toxins being discovered and 

characterized. Unfortunately, this increased awareness of peptide toxin diversity has not been 

matched by the development of a generic nomenclature that enables these toxins to be rationally 

classified, catalogued, and compared. In this article, we introduce a rational nomenclature that 

can be applied to the naming of peptide toxins from spiders and other venomous animals. 
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1. Introduction 

Scientists and lay public alike have been interested in the secretions from venomous animals for 

many centuries. However, the modern era of molecular toxinology did not begin until the 1960s 

and it was driven primarily by a desire to purify and understand the mechanism of action of lethal 

components from medically important animals such as marine cone snails (Whysner and 

Saunders, 1966), stonefish (Deakins and Saunders, 1967), and snakes (Sato et al., 1969). 

 

The pioneering work of Baldomero Olivera, Michael Adams, Lourival Possani and others in the 

late 1980s and early 1990s led to the realization that most animal venoms comprise a complex 

cocktail of peptide and protein components of which the lethal toxin often represents only a 

minor proportion (Olivera, 1997; Possani et al., 2000; Adams, 2004). Moreover, it gradually 

became clear that many of the non-lethal venom components have useful bioactivities that enable 

them to be deployed as research tools, such as in the characterization of ion channels (Adams et 

al., 1993; McIntosh et al., 1999a; King, 2007; King et al., 2008), or as leads for the development 

of pharmaceutical agents (Harvey, 2002; Lewis and Garcia, 2003) and insecticides (Tedford et 

al., 2004b; Bosmans and Tytgat, 2007). This realization, combined with the development of more 

sophisticated venom fractionation techniques, advances in mass spectrometry (Escoubas, 2006; 

Favreau et al., 2006; Escoubas et al., 2008), and the ability to directly analyze toxin transcripts 

from venom-gland cDNA libraries (Kozlov et al., 2005; Sollod et al., 2005), has led to a rapid 

increase in rate of peptide toxin discovery during the past decade. 

 

Unfortunately, this rapid expansion of the peptide toxin database has not been matched by the 

development of a rational nomenclature for naming these toxins. In this article, we demonstrate 

that the number of peptide toxin sequences being deposited in the protein and nucleic acid 

databases is growing exponentially, with the result that continued use of ad hoc naming schemes 

will introduce confusion and make it difficult to compare toxins and establish evolutionary 
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relationships. We have therefore developed a rational nomenclature that imparts each toxin name 

with information about its origin and biological activity. We suggest that this nomenclature can 

be applied to the naming of peptide toxins from spiders and other venomous animals. 

 

2. Results and Discussion 

2.1 Growth of the peptide toxin database 

We define peptide toxins as venom peptides with a molecular mass less than 10 kDa, which 

includes the vast majority of proteinaceous toxins from spiders, hymenopterans, cone snails, and 

scorpions (and a significant proportion of sea anemone and snake toxins). This cut-off value 

provides a clear distinction between the peptide toxins that dominate most animal venoms and  

larger enzymes and haemostatic factors from snakes, for which an established nomenclature 

already exists (Meier and Stocker, 1992).  

 

We have used the Tox-Prot database (Jungo and Bairoch, 2005) in order to examine the rate of 

discovery of peptide-toxins. While there are more comprehensive sequence databases available 

for peptide toxins from scorpions (Tan et al., 2006) and cone snails (Haas et al., 2007), the Tox-

Prot database allows an objective historical comparison of the rate of discovery of peptide toxins 

from different venomous animals. Figure 1 shows the growth in peptide-toxin discovery during 

the period 1967–2006. We have defined the year of discovery as the date in which a particular 

peptide sequence was first published, patented, or deposited in Swiss-Prot (Boeckmann et al., 

2003). The number of peptide-toxin sequences isolated from sea anemones, cone snails, 

scorpions, and spiders has grown exponentially over the past decade (Fig. 1A–D), whereas the 

number of peptide toxins isolated from snakes has grown only linearly since 1970 (Fig. 1E). 

 

If one considers only peptide toxins from sea anemones, cone snails, scorpions, and spiders, the 

cumulative total number of sequences has been growing exponentially since 1985 (Fig. 1F). 
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Based on an extrapolation of this exponential rate of increase, the number of the peptide toxins 

isolated from these animals alone is expected to grow from 1,111 in 2006 to ~4,500 by 2015 and 

~24,000 by 2025 (Fig. 2). However, these projections are likely to be underestimates and they fall 

well short of the millions of unique sequences projected to be present in the venoms of these 

animals (Table 1). The ability to sequence toxins directly from mass spectrometric analysis of 

venoms (Escoubas et al., 2008), as well as initiatives to sequence the genomes of venomous 

animals (Menez et al., 2006; Putnam et al., 2007), will further accelerate the rate of peptide toxin 

discovery over the next decade. Thus, in order to facilitate future cataloguing and analysis, it is 

imperative that a rational nomenclature be developed for naming these peptide toxins. 

 

2.2 Extant schemes for naming peptide toxins 

Several attempts have been made previously to develop a rational nomenclature for naming 

venom proteins. For example, in 1991, the International Society for Toxinology (IST) established 

a Nomenclature Committee to develop a standardized nomenclature for naming toxins from 

plants, bacteria, and venomous animals (Meier and Stocker, 1992). A survey of IST members 

carried out by this committee (Meier and Stocker, 1992) indicated that 98% of respondents 

favoured development of a standardized toxin nomenclature but, almost two decades later, no 

such system has been formulated. As a result, numerous different methods have been employed 

to name peptide toxins. As outlined in the following sections, these range from ad hoc schemes 

that contain no information about function or species of origin to more rational nomenclatures 

based on toxin origin, function, molecular scaffold, or some combination of these parameters.  

 

2.2.1 Ad hoc naming schemes 

The relatively small number of lethal proteinaceous toxins purified from venomous animals in the 

earliest period of molecular toxinology research were typically named in an ad hoc fashion, 

usually by concatenating some derivative of the genus or species name with the word "toxin". For 
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example, the lethal peptide toxin from the Sydney funnel-web spider Atrax robustus was named 

robustoxin (Sheumack et al., 1985), whereas the toxic protein from the black widow spider 

Latrodectus tredecimguttatus was named α-latrotoxin (Tzeng and Siekevitz, 1978). While this ad 

hoc approach to naming toxins provides information about the biological origin of the peptide, it 

has the potential to cause confusion. For example, the lethal toxin from the Blue Mountains 

funnel-web spider Hadronyche versuta was named versutoxin (Brown et al., 1988), even though 

this peptide is an ortholog of robustoxin from Atrax robustus (34/42 residues are identical). Not 

surprisingly, these toxins have the same three-dimensional (3D) fold (Fletcher et al., 1997a; 

Pallaghy et al., 1997) and biological activity (Nicholson et al., 1994; Nicholson et al., 1998).  

 

Many peptide toxins have been given trivial names based on their order of elution during a 

chromatographic separation procedure, such as DW13.3 (Sutton et al., 1998) and Tx4(6-1) (de 

Figueiredo et al., 1995). This type of naming scheme provides minimal information content with 

no clues about the animal from which the toxins were isolated nor their mode of action. In some 

cases, initials identifying the source genus and species have been attached to the toxin name, such 

as in the case of the ASIC1a blocker PcTx1 from the tarantula Psalmopoeus cambridgei 

(Escoubas et al., 2000). While this type of naming scheme helps with source identification, it 

provides no information about the molecular target of the toxin and begs the question of what 

name to use for other toxins isolated from the same animal, including possible paralogs. 

 

2.2.2 Nomenclature based on primary structure and molecular target 

The most comprehensive sequence-based toxin nomenclature is that developed by Tygat and 

coworkers (Tytgat et al., 1999), which is derived from an earlier scheme developed by Miller 

(Miller, 1995), for naming scorpion peptides that modulate the activity of voltage-activated 

potassium (KV) channels. In this scheme, scorpion peptides active on KV channels are grouped 

into one of 20 families (designated α-KTx1 through α-KTx20) based on amino acid sequence 
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motifs plus the location of the cysteine residues that establish the 3D fold of the toxins (Tytgat et 

al., 1999; Rodriguez de la Vega and Possani, 2004; Abdel-Mottaleb et al., 2006). Toxins within 

the same family are distinguished by additional numerical descriptors. For example, within the α-

KTx1 family, charybdotoxin and iberiotoxin are named α-KTx1.1 and α-KTx1.3, respectively.  

 

This nomenclature has the advantage of being inherently simple and the grouping into 20 toxin 

families recapitulates the phylogeny of the toxins (Tytgat et al., 1999; Rodriguez de la Vega and 

Possani, 2004). However, it has several drawbacks as a generic naming scheme. First, the toxin 

name contains no information about its biological origin. Second, because the secondary within-

family descriptor is largely arbitrary and based on order of discovery, paralogs and orthologs that 

differ by only one or two amino acid residues might be given names that disguise their close 

evolutionary relationship. For example, it would not be immediately obvious that a charybdo-

toxin paralog named α-KTx1.25 was a close relative of α-KTx1.1 (charybdotoxin). Finally, the 

activity prefixes (e.g., α for KV blockers) might cause confusion since they have been assigned 

without reference to previous use in other groups of venomous animals. Thus, while this scheme 

is very useful for classifying peptide toxins, it has disadvantages as a generic naming scheme. 

 

The problem with arbitrary assignment of activity descriptors (and this is a widespread problem 

in the field) is that they conflict with use of identical descriptors with different biological 

inference that are used for naming toxins from other venomous animals. For example, scorpion 

α-toxins target voltage-activated sodium (NaV) channels (Possani et al., 1999), α-conotoxins 

target nicotinic acetylcholine receptors (McIntosh et al., 1999b), scorpion α-KTx toxins target KV 

channels (Tytgat et al., 1999), and α-agatoxins are polyamines that block mammalian glutamate 

receptors (Adams, 2004). The non-uniform (and up until now largely arbitrary) use of activity 

descriptors highlights why it is important to develop a rational nomenclature before the database 

becomes too large to allow systematic revision of toxin names. 
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2.2.3 Nomenclature based on species of origin, cystine scaffold, and molecular target 

The most comprehensive toxin nomenclature is that developed by Olivera and others for naming 

cystine-rich peptide toxins from marine cone snails (Conus spp.) (McIntosh et al., 1999b). This 

scheme has the advantage of providing information about the toxin's biological origin, cystine 

framework (which determines its 3D fold), and molecular target. In this nomenclature, the toxin 

name begins with a Greek symbol that identifies its molecular target (if known). For example, ω  

and κ  are used to identify peptides that block voltage-activated calcium (CaV) and KV channels, 

respectively. This symbol is followed an uppercase letter identifying the species of origin. 

Because cone snails constitute a single genus (Conus), this is often sufficient to identify the 

species. Thus, P and G denote C. purpurascens and C. geographus, respectively. In cases where 

two distinct Conus species names begin with the same letter, additional lowercase letters are 

added to avoid confusion. Thus, Gm is used to distinguish C. gloriamaris from C. geographus. 

 

The species identifier is followed by a Roman numeral that identifies the cystine framework of 

the toxin. Framework definitions are based on the number of Cys residues, intercystine spacing, 

and the pattern of disulfide connectivities. For example, framework IV defines the six-cysteine 

pattern C1C2–C3–C4–C5–C6 with disulfide connectivity C1–C5, C2–C3, and C4–C6, where the dash 

indicates a variable number of residues in the intercystine loops. Toxin paralogs with the same 

cystine framework are discriminated by an uppercase letter following the framework identifier. 

Thus, ω-conotoxin MVIIA, MVIIB, MVIIC, and MVIID are paralogous CaV channel blockers 

from C. magus that have framework VII and very similar sequences. The framework identifiers 

have evolved in an ad hoc fashion and they do not provide information per se about the number 

of cystines, nor their connectivity. Moreover, this ad hoc method of defining cystine frameworks 

has in some cases introduced confusion since some frameworks that were initially thought to be 

different and hence given different names (e.g., I and II) were later shown to be identical. 

Alternative methods of defining conotoxin frameworks have been suggested (Olivera, 2002). 
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Unfortunately, this rational conotoxin nomenclature has not been applied to Conus peptides that 

have only one or no disulfide bonds. For historical reasons, these peptides are generally referred 

to as conopeptides rather than conotoxins and they have been named in an ad hoc manner (e.g., 

contulakin, conopressin, and conantokin). In theory, however, there is no reason why a unified 

nomenclature could not be systematically applied to both linear and disulfide-rich peptide toxins. 

 

2.2.4 Nomenclature based on species of origin and molecular target 

The realization over a decade ago that there are likely to be well over one million unique spider 

toxins led us to develop a rational nomenclature for naming these peptides (Fletcher et al., 1997b; 

King et al., 2002). This nomenclature was derived from the scheme described above for naming 

conotoxins, except that information about cystine framework was excluded because of the 

paucity of information about spider-toxin scaffolds at that point in time. 

 

This nomenclature begins with a Greek symbol, which is based on those previously used for 

naming conotoxins, that identifies the molecular target of the toxin (if known). This is followed 

by a generic toxin name based on the genus, subfamily, or family name of the spider or group of 

spiders. For example, toxins from Australian mouse spiders (Missulena spp.) are known 

generically as missulenatoxins (MSTXs) (Gunning et al., 2003). This part of the toxin name is 

more important for spider toxins than those from cone snails since cone snails comprise a single 

genus whereas spiders comprise >40,000 species in more than 3,600 genera (Platnick, 1997). 

Moreover, spider taxonomy is in considerable flux and one has to be cautious in choosing the 

generic toxin name. For example, Australian funnel-web spiders currently comprise two separate 

genera (Atrax and Hadronyche) within the subfamily Atracinae (Gray, 1988). Thus, in order to 

avoid confusion as a result of future taxonomic revisions, these peptides were named atracotoxins 

(ACTXs) based on the subfamily name rather than one of the genera (Fletcher et al., 1997b). 
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The generic toxin name is followed by an uppercase letter that identifies the genus of origin and a 

lowercase letter that identifies the species. Both genus and species designators are required to 

avoid confusion because of the vast number of spider species and the complications caused by the 

same group of spiders being assigned to more than one genus. The genus/species designators are 

followed by a number that designates a particular family of paralogous toxins with the biological 

function indicated by the activity descriptor. This designator was introduced because often there 

is more than one group of toxins from the same species that act on the same molecular target. 

This designator is simply incremented as new groups of toxins are discovered. For example, the 

first group of CaV channel blockers isolated from the venom of the Blue Mountains funnel-web 

spider Hadronyche versuta were named ω-ACTX-Hv1 toxins whereas a subsequent group of CaV 

blockers isolated from the same spider, which have evolved from a different gene and which have 

a substantially different 3D structure, were named ω-ACTX-Hv2 toxins (Wang et al., 2001). 

 

The toxin-family designator is followed by a lowercase letter that is used to distinguish homologs 

(also called isoforms). This designator is critical because of the combinatorial library strategy that 

spiders and other venomous animals have employed to diversify their toxin repertoire (Sollod et 

al., 2005). That is, rather than producing "one-off" versions of each toxin, spiders typically 

express a small family of 3–6 homologs that can differ by as little as one or a few amino acid 

residues (Tedford et al., 2004b). Hence, from an evolutionary perspective, it is helpful if the toxin 

name conveys the relationship between homologous toxins in a facile manner. For example, six 

ω-ACTX-Hv1 homologs have been isolated thus far from H. versuta and they were named ω-

ACTX-Hv1a through ω-ACTX-Hv1f based on this nomenclature (Wang et al., 1999). 

 

This rational but simple nomenclature solved the confusion that was caused by use of the names 

versutoxin and robustoxin for the very similar orthologous lethal toxins from H. versuta and 

A. robustus, respectively. These toxins were renamed δ-ACTX-Hv1a and δ-ACTX-Ar1a 
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(Fletcher et al., 1997a), which rapidly conveys the knowledge that these toxins are orthologs and 

that they both target NaV channels (Nicholson et al., 2004). 

 

2.3 Development of a rational nomenclature for naming peptide toxins 

2.3.1 Key criteria for development of a generic toxin nomenclature 

In developing a rational nomenclature for naming peptide toxins one has to consider the diverse 

groups of researchers who study or use toxins. While most toxinologists have a broad interest in 

the structure, function, and evolution of toxins, physiologists and pharmacologists are primarily 

interested in the molecular target of the toxin while molecular geneticists may be more concerned 

with phylogenetic relationships and the genetic mechanisms for evolving toxin diversity. Thus, in 

any rational nomenclature for naming peptide toxins, the toxin name should, at minimum, include 

information about the biological origin of the peptide as well as its molecular target and/or 

biological function (if known). In addition, the name should facilitate rapid searching of 

electronic databases for toxins from different venomous animals that act on the same or similar 

molecular target, and it should allow inferences to be drawn about possible evolutionary 

relationships (e.g., paralogs and orthologs). 

 

Structural biologists are also interested in peptide toxins as they often present novel 3D folds not 

found outside of venomous animals. In addition, they can serve as structural templates for 

medicinal chemists for the rational design of drugs (Lewis and Garcia, 2003; Clark et al., 2005; 

Armishaw et al., 2006) and insecticides (Froy et al., 1999b; Maggio and King, 2002; Cohen et 

al., 2004; Tedford et al., 2004a). However, classifying toxins on the basis of 3D structure is very 

difficult, largely because structures have not been determined for the vast majority of peptide 

toxins. Thus, it will be many years before we have even a rudimentary understanding of the 

complete range of 3D scaffolds that have been recruited into venom peptidomes. Hence, while it 

might be desirable for a toxin's name to provide information about its 3D fold, or even simply its 
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disulfide architecture, this is a difficult task and should only be done if it provides useful 

information without introducing confusion.  

 

2.3.2 Proposed nomenclature for naming peptide toxins 

The nomenclature we propose for naming peptide toxins, regardless of whether they contain 

disulfide bonds or not, is outlined in Figure 3. It is a simple extension of the nomenclature we 

developed earlier for naming spider toxins (Fletcher et al., 1997b), as described in Section 2.2.4. 

 

Broad activity descriptor: The toxin name should begin with a Greek letter or other symbol 

denoting its biological activity or molecular target. These activity descriptors, which are 

summarized in Table 2, were chosen to be as parsimonious as possible. Wherever a conflict 

existed between extant activity descriptors, we gave precedence to the descriptor used for naming 

conotoxins, since this is the most widely used rational nomenclature. Thus, for example, we 

propose that scorpion α-toxins, which target NaV channels, should be renamed δ or µ toxins since 

these Greek symbols have been widely used to describe both spider and cone snail toxins that 

modify the activity of NaV channels (see Table 2). In Table 2, we introduce a number of new 

activity descriptors to account for recently discovered toxins with novel activities. For example, 

we propose the use of π  to designate toxins such as PcTx1 (Escoubas et al., 2000) and APETx2 

(Diochot et al., 2004) that target acid-sensing ion channels (ASICs) and φ  to denote toxins such 

as maurocalcine (Fajloun et al., 2000) that target ryanodine receptors. In addition, we have 

introduced activity descriptors for a variety of 7TM receptors such as the endothelin, neurotensin, 

octopamine, and vasopressin receptors (see Table 2). 

 

Rather than targeting a specific receptor or ion channel, many peptide toxins (primarily those 

without disulfide bonds) have nonspecific cytolytic activity via their ability to interact with, and 

disrupt, lipid membranes (Anderluh and Macek, 2002; Kuhn-Nentwig, 2003). In order to develop 
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a unified nomenclature that includes all peptide toxins, we have introduced a new activity 

descriptor (Δ) for this group of cytolytic peptides. In addition, we propose that the activity 

descriptor U be used for toxins for which the primary biological activity has not yet been 

identified. Although seemingly trivial, this is an important descriptor since many toxins identified 

from sequencing cDNA/EST libraries will initially not have an identified biological activity. 

Where there is more than one family of toxins with unknown activity from a single species, then 

these can be discriminated by adding a subscript to the activity indicator (i.e., U1, U2, U3, etc.). 

 

It is likely that new activity indicators will have to be introduced in future as new toxins are 

discovered with novel activities. However, the comprehensive list of activity indicators in Table 2 

should suffice for the vast majority of peptide toxins. 

 

Descriptor for receptor and ion channel subtypes: Many peptide toxins have become useful 

pharmacological probes because of their ability to discriminate between different ion channel and 

receptor subtypes. Unfortunately, however, information about the subtype-specificity of toxins is 

rarely incorporated into their names. We propose that this can be readily accomplished by 

incorporating a subscript after the broad activity descriptor that refers to the primary receptor or 

ion channel subtype that is targeted by the toxin. Whenever possible, these subscripts should 

follow the International Union of Pharmacology (IUPHAR) recommendations for vertebrate 

receptor and ion channel subtypes as outlined in the 2007 Guide to Receptors and Channels 

(Alexander et al., 2007). Thus, for example, a toxin that specifically targeted KV1.3 channels 

(e.g., ShK) would be given the prefix κ1.3, whereas a toxin that targeted endothelin receptor B 

(e.g., sarafotoxin S6c) would be given the prefix ξB. If the subtype specificity of a toxin is not 

known, or if it is broadly active against all subtypes of the molecular target, then only the broad 

activity descriptor should be used, without the subscript denoting subtype specificity. 
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Toxin name: The activity descriptor should be followed by a name that is common to all toxins 

from a single venomous family, regardless of the species, so that taxonomic relationships 

between toxins can be quickly established. Surprisingly, with several notable exceptions such as 

the conotoxins (Gray et al., 1981) and atracotoxins (Fletcher et al., 1997b), this has not been 

common practice. For example, toxins from the scorpion Leiurus quinquestriatus have been 

given a variety of trivial names such as charybdotoxin (Miller et al., 1985), 18-2 (Marshall et al., 

1994), and Lq2 (Lu and MacKinnon, 1997), which makes it impossible without consulting the 

literature to establish that these toxins all derive from the same source. 

 

Since cone snails comprise a single genus, Conus, it makes sense to continue to use the generic 

term conotoxin (abbreviated CTX) to describe peptide toxins from marine cone snails. However, 

the situation is considerably more complex for scorpions, sea anemones, snakes, and spiders 

which comprise ~175, 68, 328, and >3,600 genera, respectively [see (Platnick, 1997) and the 

Integrated Taxonomic Information System at http://www.itis.gov/index.html]. For these animals, 

using toxin names based on genus would cause confusion (since it would be exceedingly difficult 

to keep track of more than 4,000 generic toxin names!) and it would disguise the evolutionary 

relationship between orthologous toxins. Moreover, since taxonomy is generally more stable at 

the family level as opposed to the genus level, a nomenclature based on family rather than genus 

should be less susceptible to future taxonomic revisions. Thus, for venomous animals other than 

marine cone snails, we propose that the toxin name should be based on the taxonomic family 

rather than the genus. This considerably simplifies the naming scheme since snakes, scorpions, 

sea anemones, and spiders comprise only 18, 18, 48, and 108 families, respectively. 

 

Devising generic names based on taxonomic family rather than genus has the additional 

advantage of highlighting evolutionary relationships between toxins. To give an example, toxins 

from the spider genera Macrothele and Hadronyche have been named Magi toxins and 
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atracotoxins (ACTXs), respectively. However, these hexathelid spiders are closely related, and it 

is clear that many of the toxins isolated from these spiders are orthologs, a fact completely 

disguised by their very different names. For example, as illustrated in Fig. 4, Magi-14 (Satake et 

al., 2004) and δ-ACTX-Hv1a (Fletcher et al., 1997a) are 70% identical and have the same cystine 

framework; they are clearly derived from the same ancestral gene. Thus, we propose that toxins 

derived from these two genera, as well as all other genera within the taxonomic family 

Hexathelidae, be named hexatoxins (HXTXs). Thus, δ-ACTX-Hv1a from Hadronyche versuta 

and Magi-14 from Macrothele gigas would be renamed δ-HXTX-Hv1a and δ-HXTX-Mg1a, 

respectively. The revised names immediately reveal that these toxins are orthologs and that they 

both target NaV channels. 

 

We have developed a complete list of generic toxin names (and corresponding abbreviations) for 

all extant families of snakes, spiders, scorpions, and sea anemones. These names were developed 

based on the following criteria: 

 

(i) The generic toxin name should be as short as possible 

(ii) Generic toxin names should all be sufficiently different to avoid potential confusion 

(iii) The abbreviations for these toxin names should comprise no more than five letters and, in 

accordance with longstanding convention, they should end with the letters "TX". 

(iv) Toxin abbreviations must be unique, with no overlap between groups of venomous animals 

(v) To avoid confusion, names and abbreviations in current use should be avoided 

 

Criterion (v) is important, and it required exhaustive literature searches to fulfill. For example, 

although exotoxin and lipotoxin would appear to be suitable names for toxins from the sea 

anemone families Exocoelactiidae and Liponematidae, respectively, these names are currently 
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used for bacterial toxins and thus should be avoided. We therefore chose the generic names 

coelatoxin and liponetoxin, respectively, for toxins from these two families of sea anemones. We 

have also avoided names that might invoke a broader meaning, such as isotoxin, microtoxin, 

megatoxin, and pseudotoxin, as well as toxin abbreviations in common use such as SRTX 

(sarafotoxin), ACTX (atracotoxin), and MSTX (missulenatoxin). We purposefully avoid three-

letter abbreviations for generic toxin names in order to avoid confusion with extant abbreviations 

such as BTX (batrachotoxin), CTX (conotoxin and ciguatoxin), DTX (dendrotoxin), LTX 

(latrotoxin), and STX (saxitoxin). 

 

In order to minimize the extent of name revisions required by the proposed nomenclature, we 

were able in several cases to chose generic toxin names that were initially developed to describe 

toxins from certain genera, but for which the definition can be readily expanded to include toxins 

from all species within the same taxonomic family. For example, the name agatoxin has been used 

for almost 20 years to describe peptide toxins from the spider genus Agelenopsis (Bindokas and 

Adams, 1989; Adams, 2004), which is a member of the family Agelenidae. Thus, we propose that 

all toxins derived from species within Agelenidae be named agatoxins in order to avoid major 

revision of the names of the widely used and studied agatoxins. Similarly, the definition of 

lycotoxin, which was originally used to describe toxins from spider genus Lycosa (Yan and 

Adams, 1998), can be extended to include all toxins derived from the spider family Lycosidae, in 

which Lycosa resides. We have also extended the definition of the name plectoxin (abbreviated 

PLTX), which is commonly used to describe toxins from the spider genus Plectreurys, to include 

all toxins from the spider family Plectreuridae. 

 

The proposed generic names for peptide toxins from snakes, scorpions, sea anemones, and 

spiders are given in Supplementary Tables 1–4 and they are reproduced for convenience at 

http://www.venomics.org/nomenclature. Using iterative rounds of naming and revision, we were 
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able to devise a unique set of abbreviations that comprise only four letters for 94% of these 192 

taxonomic families (including all scorpion, sea anemone, and snake families). 

 

Genus and species descriptors: While the toxin name alone should be sufficient to identify the 

family from which a toxin derives, an additional descriptor is necessary to distinguish different 

species within each family. This descriptor is important for source identification since, in many 

cases, there will be tens or even hundreds of different species within each family. The most 

extreme case is the spider family Linyphiidae, which comprises 4329 species in 571 genera (see 

http://research.amnh.org/entomology/spiders/catalog/counts.html for an up-to-date list of all 

spider families, genera, and species). 

 

Thus, we propose that the generic toxin name should be followed by an uppercase letter that 

identifies the genus of origin and a lowercase letter that identifies the species. Thus, Phoneutria 

nigriventer would be identified as Pn. In some cases, additional lowercase letters will be required 

to distinguish species that begin with the same letter. For example, Phoneutria bahiensis and 

Phoneutria boliviensis could be denoted Pbh and Pbv, respectively. In special cases where the 

species has not yet been identified, we propose use of the lowercase identifier "spp". Thus, an 

unidentified Phoneutria species would be given the genus/species designation Pspp. 

 

Discriminating between different toxins with the same activity and species of origin: In 

some cases, distinctly different toxins (i.e., not paralogs) from the same species might have 

activity against the same molecular target. Examples include the ω-ACTX-Hv1 and ω-ACTX-

Hv2 toxin families from H. versuta that both have activity against invertebrate CaV channels 

(King et al., 2002), as well as the numerous different families of ω-agatoxins that target 

vertebrate CaV channels (Adams, 2004). In order to discriminate between these toxins, we 

propose that the genus/species descriptor be followed by a numerical descriptor that is simply 
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incremented as new families of toxins are discovered with similar activity. Thus, if four families 

of ω-atracotoxins had already been discovered, then the next family of toxins from these spiders 

with activity against CaV channels would be denoted the ω-atracotoxin-Xx5 family, where the Xx 

refers to the genus/species descriptor. 

 

Discriminating between closely-related homologs: Spiders, cone snails, and scorpions (and 

probably other venomous animals) have used a combinatorial library strategy to diversify their 

toxin repertoire (Sollod et al., 2005) and they often express a number of closely-related 

homologous toxins (often referred to as isoforms) that can differ by as little as a single amino 

acid residue. In order to distinguish between these homologs in a manner that readily indicates 

their close evolutionary relationship, we propose that the numerical descriptor indicating the 

toxin family be followed by a lowercase letter. Thus, the six known homologs of ω-ACTX-Hv1 

were formerly denoted ω-ACTX-Hv1a through ω-ACTX-Hv1f (Wang et al., 1999). 

 

Structural information: While it would be helpful in some instances to provide information 

about toxin structure or even just the disulfide framework within the toxin name, this is currently 

very difficult because of the limited range of toxin structures that are available. For example, 

although there are 105 potential disulfide isomers for toxins with four disulfide bonds and 945 

possible disulfide isomers for toxins with five disulfide bridges, it is unclear how many of these 

frameworks have been utilized by venomous animals. It seems likely that venom peptidomes 

include only a small number of privileged disulfide scaffolds, but the extent of these is uncertain 

at the present time. Thus, with the exception of the conotoxins, for which a framework definition 

has been developed (Terlau and Olivera, 2004), it seems premature to include structural 

information in the toxin name. This does not imply, however, that cysteine motifs cannot be used 

for toxin classification (e.g., Tytgat et al., 1999; Kozlov and Grishin, 2005). 
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2.3.3. Examples of the proposed toxin nomenclature 

Although the nomenclature we have proposed is, by design, relatively simple, it is perhaps best 

understood by considering several examples (summarized in Table 3). 

 

Example 1: We first consider peptide toxins from the sea anemone genus Stichodactyla, which 

have previously been given trivial names such as ShK, Sh I, and gigantoxin. These names 

provide no information about molecular target and they disguise close evolutionary relationships, 

including the fact that Sh I and gigantoxin III are orthologs. We propose that all of these toxins be 

referred to generically as stichotoxins (SHTXs) based on the taxonomic family (Stichodactylidae) 

in which the genus Stichodactyla resides (see Table 2 in Supplementary Data). Thus, ShK from 

Stichodactyla helianthus, which is a specific blocker of KV1.3 channels, would be renamed κ1.3-

stichotoxin-Sh1a (κ1.3-SHTX-Sh1a) whereas Sh I, which delays NaV channel inactivation, would 

be re-named δ-SHTX-Sh1a. Gigantoxin III, an ortholog of Sh I from S. gigantea (the two toxins 

are 79% identical), would be renamed δ-SHTX-Sg1a, which immediately reveals its similarity to 

δ-SHTX-Sh1a. Gigantoxin I, which has very different pharmacology to the unrelated gigantoxins 

II and III , would be renamed Ω-SHTX-Sg1a based on its activity against the EGF receptor. 

 

Example 2: The Brazilian armed spider Phoneutria nigriventer is one of the few spiders that are 

potentially deadly to humans, and hence its venom has been the subject of intensive study 

(reviewed in Gomez et al., 2002). Peptide toxins from this spider have typically been given trivial 

names such as Tx2-1, Pn2-1A, and Pn4B, mostly based on order of elution during a 

chromatographic separation procedure. These names have minimal information content and they 

disguise the fact that many of the isolated toxins, such as Tx2-1, Pn2-1A, Tx2-5, Pn2-5A, and 

Tx2-6, are closely related paralogs. Thus, we propose that all peptide toxins from the genus 

Phoneutria be described using the generic term ctenitoxin (CNTX), based on the taxonomic 

family (Ctenidae) in which Phoneutria resides (see Table 4 in Supplementary Data). 
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Members of the Tx2-1 family of Phoneutria toxins have complex effects on NaV channels 

(Matavel et al., 2002) but their primary effect appears to be an inhibition of channel inactivation, 

a pharmacology similar to that of the δ-atracotoxins (Nicholson et al., 2004) and δ-conotoxins 

(Ekberg et al., 2007). Hence, we propose that Tx2-1 be renamed δ-CNTX-Pn1a to indicate this 

pharmacology, and that the paralogs Tx2-5, Tx2-6, Pn2-1A and Pn2-5A be named δ-CNTX-Pn1b 

through δ-CNTX-Pn1e, respectively. This nomenclature immediately conveys the information 

that these toxins are paralogs and that they have the same molecular target. In addition, using this 

nomenclature, the orthologous toxins PRTx32C1 and PKTx36C1 from P. reidyi and 

P. keyserlingi would be named δ-CNTX-Pr1a and δ-CNTX-Pk1a, respectively, which 

immediately conveys the close evolutionary relationship between this family of toxins. 

 

Since the subtype specificity of the δ-CNTXs remains to be determined, only the broad activity 

descriptor (δ) can be deployed at present. In contrast, Tx3-4/ω-phonetoxin-IIA and Tx3-6/PnTx3-

6 from P. nigriventer appear to be specific blockers of vertebrate CaV2 channels (Cassola et al., 

1998; Dos Santos et al., 2002; Vieira et al., 2005), and consequently we propose that these toxins 

(which are not paralogs) be renamed ω2-CNTX-Pn1a and ω2-CNTX-Pn2a, respectively. 

 

Example 3: Charybdotoxin (α-KTx 1.1) from the scorpion Leiurus quinquestriatus hebraeus is 

one of the most widely used peptide toxins due to its ability to specifically inhibit KCa channels 

(Gimenez-Gallego et al., 1988). In addition to several homologs from L. quinquestriatus 

hebraeus, numerous orthologs such as iberiotoxin, BmTX2, and slotoxin have been discovered in 

the venom of related scorpions within the family Buthidae. These very different names disguise 

the evolutionary connection between these toxins and provide no information about their 

molecular target. We propose the generic name buthitoxin (BUTX) for all peptide toxins derived 

from species within Buthidae (see Table 1 in Supplementary Data). Thus, charybdotoxin would 

be renamed λ-BUTX-Lqh1a, where the activity descriptor λ signifies activity against KCa 
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channels (see Table 2), and its homologs charybdotoxin b–d would be renamed λ-BUTX-Lqh1b, 

λ-BUTX-Lqh1c, and λ-BUTX-Lqh1d. The orthologous toxins iberiotoxin, BmTX2, and slotoxin 

from Hottentotta tamulus, Mesobuthus martensii, and Centruroides noxius would be renamed λ-

BUTX-Mt1a, λ-BUTX-Mm1a, and λ-BUTX-Cn1a, respectively. These names make it 

immediately apparent that these toxins are orthologs and that they all target KCa channels. 

 

3. Conclusions 

We have devised a simple, rational nomenclature for naming peptide toxins that conveys each 

toxin name with information about the biological origin of the peptide, its molecular target, and 

its relationship to known paralogs and orthologs. Although there will inevitably be some 

resistance to revising toxin names that have been in use for some time, it should be emphasized 

that systematic revision of toxin names at this point in time, with less than 1500 sequences in the 

Tox-Prot database, is likely to be much easier than deferring the problem to a future time when 

tens of thousands of peptide-toxin sequences have been determined. Moreover, the adoption of a 

unified nomenclature for naming peptide toxins will greatly facilitate their cataloguing and 

analysis using electronic databases, thus enabling their potential as drugs, insecticides, and 

pharmacological probes to be better exploited. 
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Figure legends 

Figure 1: Cumulative total number of peptide toxin sequences reported for (A) scorpions, (B) 

spiders, (C) sea anemones, (D) marine cone snails, and (E) snakes  for the period 1967–2006. The 

Tox-Prot database (Jungo and Bairoch, 2005) was used to determine the year in which a 

particular peptide sequence was first published, patented, or submitted to the Swiss-Prot database. 

Fragments and incomplete sequences were excluded from the analysis. (F) The data shown in 

panels (A)–(D) were used to determine the combined total number of peptide toxin sequences 

discovered from anemones, cone snails, scorpions, and spiders during the period 1967–2006. 

Figure 2: Exponential fit (solid line) to the cumulative total number of peptide toxin sequences 

discovered from anemones, cone snails, scorpions, and spiders during the period 1985–2006. 

Extrapolation of the fitted curve (dotted line) yields projections for the total number of peptide-

toxin sequences likely to be deposited in electronic databases in future years. Note the log scale 

on the ordinate axis. 

Figure 3: Schematic of the proposed nomenclature for naming peptide toxins. The toxin name 

can be broadly divided into three parts that describe the toxin's activity (blue), biological source 

(red), and relationship to other toxins (green/purple). The example given is for a sea anemone 

toxin, commonly known as ShK, that specifically targets KV1.3 channels. The subtype descriptor 

should be based on IUPHAR-recommended nomenclature for channels and receptors (Alexander 

et al., 2007). 

Figure 4: Alignment of the primary structure of orthologous peptide toxins from the spiders 

Hadronyche versuta (δ-ACTX-Hv1a) and Macrothele gigas (Magi-14), along with revised names 

based on the nomenclature proposed herein. Identical residues are shaded grey. 
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Table 1: Estimated number of unique peptide toxins in venomous animals 

Animal Group No. of Peptides References 

Cone snails 50,000 (Olivera and Cruz, 2001; Norton and Olivera, 
2006) 

Scorpions 100,000 (Possani et al., 1999) 

Spiders 1.5–16 million (Escoubas and Rash, 2004; Tedford et al., 2004b; 
Escoubas et al., 2006) 
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T
able 2: A

ctivity descriptors for nam
ing peptide toxins 

D
escriptor 

B
iological function associated w

ith descriptor 
E

xam
ple 

R
eference 

α (alpha) 
Targets acetylcholine receptor  

α-bungarotoxin (snake) 
(C

hangeux et al., 1970) 
β (beta) 

Shifts voltage-dependence of N
aV  channel activation 

B
j-xtrIT (scorpion) 

(Froy et al., 1999b) 
γ (gam

m
a) 

Targets H
C

N
1 nonspecific cation channels 

γ-C
tx PnV

IIA
 (cone snail) 

(Fainzilber et al., 1998) 
δ (delta) 

D
elays inactivation of voltage-activated N

aV  channels 
δ-A

C
TX

-H
v1a (spider) 

(Fletcher et al., 1997a) 
ε (epsilon) 

Targets C
lC

 chloride channels 
–

2 
– 

ζ (zeta) 
Targets cyclic nucleotide-gated channels 

pseudechetoxin (snake) 3 
(B

row
n et al., 1999) 

η (eta) 
Targets inw

ard-rectifier potassium
 (K

IR ) channels 
tertiapin (honey bee) 

(Jin and Lu, 1998) 
θ (theta) 

Targets tw
o-pore dom

ain potassium
 (K

2P ) channels 
– 

– 
ι (iota) 

N
aV  channel agonist 

ι-C
tx R

X
IA

 (cone snail) 
(B

uczek et al., 2007) 
κ (kappa) 

Inhibits voltage-activated potassium
 (K

V ) channels 
κ-C

tx PV
IIA

 (cone snail) 
(Terlau et al., 1996) 

λ (lam
bda) 

Inhibits calcium
-activated potassium

 (K
Ca ) channels 

charybdotoxin (scorpion) 
(M

iller et al., 1985) 
µ (m

u) 
Inhibits voltage-activated sodium

 (N
aV ) channels 

µ-A
ga-I (spider) 

(Skinner et al., 1989) 
ν (nu) 

Targets neurotensin receptor 
contulakin-G

 (cone snail) 
(C

raig et al., 1999) 
ξ (xi) 

Targets endothelin receptor 
sarafotoxin S6c (snake) 

(A
m

bar et al., 1988) 
ο (om

icron) 
Targets octopam

ine receptor 
– 

– 
π (pi) 

Targets acid-sensing ion channels (A
SIC

s) 
PcTx1 (spider) 

(Escoubas et al., 2000) 
ρ (rho) 

Targets adrenoceptor 
ρ-C

tx TIA
 (cone snail) 

(Sharpe et al., 2001) 
σ (sigm

a) 
Targets 5-H

T receptor 
σ-C

tx G
V

IIIA
 (cone snail) 

(England et al., 1998) 
τ (tau) 

Targets transient receptor potential (TR
P) channel 

V
aTx1 (spider) 

(Siem
ens et al., 2006) 

υ (upsilon) 
Targets vasopressin/oxytocin receptor 

conopressin-G
 (cone snail) 

(C
ruz et al., 1987) 

φ (phi) 
Targets ryanodine receptor 

m
aurocalcine (scorpion) 

(Fajloun et al., 2000) 
χ (chi) 

Targets noradrenalin transporter 
χ-C

tx M
rIA

 (cone snail) 
(Sharpe et al., 2001) 

ψ
 (psi) 

N
oncom

petitive antagonist of acetylcholine receptor 
ψ

-C
tx PIIIE (cone snail) 

(Shon et al., 1997) 
ω

 (om
ega) 

Inhibits voltage-gated calcium
 (C

aV ) channels 
ω

-A
ga-IV

A
 (spider) 

(M
intz et al., 1992) 

Γ (G
A

M
M

A
) 

Targets glutam
ate receptor 

conantokin-G
 (cone snail) 

(M
ena et al., 1990) 

Λ
 (LA

M
B

D
A

) 
Targets G

A
B

A
 receptor 

– 
– 

Ξ (O
M

IC
R

O
N

) 
Targets P2X

 receptor 
– 

– 
Σ (SIG

M
A

) 
Targets C

FTR
 channel 

G
aTx1 (scorpion) 

(Fuller et al., 2007) 
Ω

 (O
M

EG
A

) 
Targets epiderm

al grow
th factor receptor 

G
igantoxin I (sea anem

one) 
(Shiom

i et al., 2003) 
Δ (D

ELTA
) 

C
ytolytic activity 

C
upiennin 1a (spider) 

(K
uhn-N

entw
ig et al., 2004) 

U
 

U
nknow

n activity 
A

C
TX

-H
vf17 (spider) 

(Szeto et al., 2000) 
1A

bbreviations used: C
FTR

, cystic fibrosis transm
em

brane conductance regulator; H
C

N
, hyperpolarization-activated, cyclic nucleotide-gated 

2A
 dash indicates that no toxins have yet been isolated w

ith this pharm
acology. 

3Pseudechetoxin (24 kD
a) is not a peptide toxin by the definition em

ployed here but is included to indicate that this pharm
acology exists in venom

 proteom
es. 
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T
able 3: R

evised nom
enclature for selected peptide toxins from

 scorpions, sea anem
ones, and spiders. 

A
nim

al 
G

enus/species 
T

arget (if know
n) 

Previous nam
e(s) 

Proposed new
 nam

e 
R

eference 
Stichodactyla helianthus 

K
V 1.3 

ShK
 

κ
1.3 -stichotoxin-Sh1a (κ

1.3 -SH
TX

-Sh1a) 
(C

astaneda et al., 1995) 
Stichodactyla helianthus 

N
a

V  (inhibits inactivation) 
Sh I 

δ-SH
TX

-Sh1a 
(N

orton, 1991) 
Stichodactyla gigantea 

N
a

V  (inhibits inactivation) 
G

igantoxin III 
δ-SH

TX
-Sg1a 

(Shiom
i et al., 2003) 

Stichodactyla gigantea 
N

a
V  (inhibits inactivation) 

G
igantoxin II 

δ-SH
TX

-Sg2a 
(Shiom

i et al., 2003) 

Sea 
anem

one 

Stichodactyla gigantea 
EG

F receptor 
G

igantoxin I 
Ω

-SH
TX

-Sg1a 
(Shiom

i et al., 2003) 
 

Phoneutria nigriventer 
N

a
V  (inhibits inactivation) 

Tx2-1/PnTx2-1 
δ-ctenitoxin-Pn1a (δ-C

N
TX

-Pn1a) 
(C

ordeiro et al., 1992) 
Phoneutria nigriventer 

N
a

V  (inhibits inactivation) 
Tx2-5/PnTx2-5 

δ-C
N

TX
-Pn1b 

(C
ordeiro et al., 1992) 

Phoneutria nigriventer 
N

a
V  (inhibits inactivation) 

Tx2-6/PnTx2-6 
δ-C

N
TX

-Pn1c 
(C

ordeiro et al., 1992) 
Phoneutria nigriventer 

N
a

V  (inhibits inactivation) 
Pn2-1A

 
δ-C

N
TX

-Pn1d 
(K

alapothakis et al., 1998) 
Phoneutria nigriventer 

N
a

V  (inhibits inactivation) 
Pn2-5A

 
δ-C

N
TX

-Pn1e 
(K

alapothakis et al., 1998) 
Phoneutria reidyi 

N
a

V  (inhibits inactivation) 
PR

Tx32C
1 

δ-C
N

TX
-Pr1a 

Sw
iss-Prot P83904 

Phoneutria keyserlingi 
N

a
V  (inhibits inactivation) 

PK
Tx36C

1 
δ-C

N
TX

-Pk1a 
Sw

iss-Prot P84012 
Phoneutria nigriventer 

B
locks C

a
V 2 channels 

Tx3-4/ω
-PN

TX
-IIA

 
ω

2 -C
N

TX
-Pn1a 

(C
assola et al., 1998) 

Spider 

Phoneutria nigriventer 
B

locks C
a

V 2 channels 
Tx3-6/PnTx3-6 

ω
2 -C

N
TX

-Pn2a 
(C

ordeiro et al., 1993) 
 

Leiurus q. hebraeus 1 
Inhibits K

C
a  channels 

C
harybdotoxin-a/α-K

Tx 1.1 
λ-buthitoxin-Lqh1a (λ-B

U
TX

-Lqh1a) 
(G

im
enez-G

allego 
et 

al., 
1988) 

Leiurus q. hebraeus 1 
Inhibits K

C
a  channels 

C
harybdotoxin-b/α-K

Tx 1.12 
λ-B

U
TX

-Lqh1b 
(Froy et al., 1999a) 

Leiurus q. hebraeus 1 
Inhibits K

C
a  channels 

C
harybdotoxin-c/α-K

Tx 1.13 
λ-B

U
TX

-Lqh1c 
(Froy et al., 1999a) 

Leiurus q. hebraeus 1 
Inhibits K

C
a  channels 

C
harybdotoxin-d/Lqh 18-2/ 
C

hTx-Lq2/α-K
Tx 1.2 

λ-B
U

TX
-Lqh1d 

(Lucchesi et al., 1989) 

M
esobuthus m

artensii 
Inhibits K

C
a  channels 

B
m

TX
2/α-K

Tx 1.6 
λ-B

U
TX

-M
m

1a 
(R

om
i-Lebrun et al., 1997) 

H
ottentotta tam

ulus 
Inhibits K

C
a  channels 

Iberiotoxin/α-K
Tx 1.3 

λ-B
U

TX
-M

t1a 
(G

alvez et al., 1990) 

Scorpion 

Centruroides noxius 
Inhibits K

C
a  channels 

Slotoxin/α-K
Tx 1.11 

λ-B
U

TX
-C

n1a 
(G

arcia-V
aldes et al., 2001) 

1Leiurus quinquestriatus hebraeus 
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Figure 2 
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Figure 3 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 
 
 

Old name Primary structure Proposed name 

δ-ACTX-Hv1a CAKKRNWCGKTEDCCCPMKCVYAWYNEQGSCQSTISALWKKC δ-hexatoxin-Hv1a 

Magi-14 CARKRAWCEKTENCCCPMKCIYAWYNGQSSCDHTISTIWTSC δ-hexatoxin-Mg1a 
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Supplementary Data 
Tables 1–4 summarize the proposed generic toxin names, and their corresponding abbreviations, for all 
families of scorpions, sea anemones, snakes, and spiders, respectively. Note that these tables are 
reproduced online for easy look-up at http://www.venomics.org/nomenclature. 

 
Table 1: Generic names for peptide toxins from scorpions1 

Family No. Family Name Generic toxin name Toxin abbreviation 
1 Bothriuridae Bothritoxin BTTX 
2 Buthidae Buthitoxin BUTX 
3 Chactidae Chactitoxin CHTX 
4 Chaerilidae Chaeritoxin CETX 
5 Diplocentridae Diplotoxin DLTX 
6 Euscorpiidae Euscotoxin ESTX 
7 Hemiscorpiidae Hemiscorpitoxin HMTX 
8 Heteroscorpionidae Heteroscorpitoxin HSTX 
9 Iuridae Iuritoxin IRTX 

10 Liochelidae Liotoxin LITX 
11 Microcharmidae Microcharmitoxin MCTX 
12 Pseudochactidae Pseudochactitoxin PCTX 
13 Scorpionidae Scorpionitoxin SNTX 
14 Scorpiopidae Scorpiotoxin SPTX 
15 Superstitioniidae Stitiotoxin SSTX 
16 Troglotayosicidae Troglotoxin TGTX 
17 Urodacidae Urodatoxin UDTX 
18 Vaejovidae Vaejotoxin VJTX 

1Note that the higher-level taxonomy of scorpions (Animalia: Arthropoda: Chelicerata: Arachnida: 
Scorpiones) is controversial and susceptible to future revision. We have therefore used the expanded 18-
family set proposed by Prendini and Wheeler (Prendini and Wheeler, 2005) rather than the reduced 13-
family set proposed by Fet and Soleglad (Fet and Soleglad, 2005). This choice is not intended to reflect 
on the relative merits of the two different taxonomic classifications but rather is intended to minimize 
future revisions of scorpion toxin nomenclature. No future revisions will be required if the P&W model 
proves to be correct. If the F&S model proves correct, the worst-case scenario is that two or more 
generic toxin names might be associated with a given scorpion family. However, we determined that 
this would be a better situation than if we had chosen the F&S model and the P&W model ultimately 
proves correct. In this scenario, new generic names would have to be created and a large number of 
scorpion toxin names would need to be revised. 
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Table 2: Generic names for peptide toxins from sea anemones1 
Family No. Family Name Generic toxin name Toxin abbreviation 

1 Acontiophoridae Acontiophoritoxin APTX 
2 Actinernidae Actinetoxin AETX 
3 Actiniidae Actitoxin AITX 
4 Actinodendronidae Dendronitoxin DNTX 
6 Actinoscyphiidae Scyphitoxin SCTX 
7 Actinostolidae Stolitoxin SOTX 
8 Aiptasiidae Aiptatoxin ATTX 
9 Aiptasiomorphidae Ptasiotoxin PSTX 

10 Aliciidae Alicitoxin ALTX 
11 Andresiidae Andretoxin ADTX 
12 Andwakiidae Andwatoxin AWTX 
13 Aurelianidae Aureliatoxin AUTX 
14 Bathyphelliidae Bathytoxin BHTX 
15 Boloceroididae Bolotoxin BLTX 
16 Condylanthidae Condytoxin CYTX 
17 Diadumenidae Diatoxin DITX 
18 Discosomidae Discotoxin DCTX 
19 Edwardsiidae Edwarditoxin EWTX 
20 Exocoelactiidae Coelatoxin COTX 
21 Galatheanthemidae Galatoxin GLTX 
22 Gonactiniidae Gonatoxin GNTX 
23 Halcampidae Halatoxin HATX 
24 Halcampoididae Campotoxin CATX 
25 Halcuriidae Halcutoxin HCTX 
26 Haliactiidae Haliatoxin HLTX 
27 Haliplanellidae Planellitoxin PNTX 
28 Haloclavidae Clavitoxins CVTX 
29 Hormathiidae Hormotoxin HRTX 
30 Ilyanthidae Ilyatoxins IYTX 
31 Isoactiidae Isoactitoxin ISTX 
32 Isanthidae Isanthooxin INTX 
33 Isophelliidae Isophellitoxin IPTX 
34 Limnactiniidae Limnatoxin LMTX 
35 Liponematidae Liponotoxin LNTX 
36 Metridiidae Metritoxin MTTX 
37 Minyadidae Minyatoxin MYTX 
38 Nemanthidae Nemanthitoxin NTTX 
39 Nevadneidae Nevatoxin NVTX 
40 Octineonidae Octinotoxin OTTX 
41 Paractidae Paratoxin PRTX 
42 Phymanthidae Phymatoxin PMTX 
43 Preactiidae Preactitoxin PATX 
44 Ptychodactiidae  Dactitoxin DATX 
45 Sagartiidae Sagatoxin SATX 
46 Sagartiomorphidae Sagartitoxin STTX 
47 Stichodactylidae Stichotoxin SHTX 
48 Thalassianthidae Thalatoxin TATX 

1Animalia: Cnidaria: Anthozoa: Hexacorallia: Actiniaria. Taxonomy is taken from the Integrated 
Taxonomic Information System (http://www.itis.gov/index.html). 
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Table 3: Generic names for peptide toxins from snakes1 

Family No. Family name Generic toxin name2 Toxin Abbreviation 
1 Acrochordidae Acrotoxin ARTX 
2 Aniliidae Anilitoxin ANTX 
3 Anomalepididae Anomatoxin AMTX 
4 Anomochilidae Chilitoxin CITX 
5 Atractaspididae Atractasptoxin ASTX 
6 Boidae Boidatoxin BDTX 
7 Bolyeriidae Bolyeritoxin BRTX 
8 Colubridae Colubritoxin CLTX 
9 Cylindrophiidae Cylindrotoxin CDTX 

10 Elapidae Elapitoxin EPTX 
1 Leptotyphlopidae Leptotoxin LTTX 

12 Loxocemidae Loxotoxin LXTX 
13 Pythonidae Pythotoxin PYTX 
14 Tropidophiidae Tropidotoxin TPTX 
15 Typhlopidae Typhlotoxin TYTX 
16 Uropeltidae Uropetoxin UPTX 
17 Viperidae Viperitoxin VPTX 
18 Xenopeltidae Xenotoxin XNTX 

1Animalia: Chordata: Vertebrata: Reptilia: Squamata: Serpentes. Taxonomy is taken from the 
Integrated Taxonomic Information System (http://www.itis.gov/index.html). 
2While a small subset of snakes have traditionally been classified as "non-venomous", recent work 
on evolution of the venom apparatus in squamates (Fry et al., 2006) indicates that some of these 
snakes may nonetheless possess rudimentary venom glands and produce peptide toxins. Thus, we 
have provided generic names for all snake families. 
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Table 4: Generic names for peptide toxins from spiders1 
Family No. Family Name Generic toxin name Toxin abbreviation 

1 Actinopodidae Actinopoditoxin AOTX 
2 Agelenidae Agatoxin AGTX 
3 Amaurobiidae Amaurobitoxin AMATX 
4 Ammoxenidae Ammoxotoxin AXTX 
5 Amphinectidae Amphinetoxin APHTX 
6 Anapidae Anapitoxin ANPTX 
7 Antrodiaetidae Antrotoxin ATRTX 
8 Anyphaenidae Anyphaetoxin APHTX 
9 Araneidae Aranetoxin AATX 
10 Archaeidae Archaetoxin ARCTX 
11 Atypidae Atypitoxin ATPTX 
12 Austrochilidae Austrotoxin OZTX 
13 Barychelidae Barytoxin BATX 
14 Caponiidae Capotoxin CPTX 
15 Chummidae Chummitoxin CMTX 
16 Cithaeronidae Cithaerotoxin CTTX 
17 Clubionidae Clubiotoxin CBTX 
18 Corinnidae Corinnitoxin CRTX 
19 Ctenidae Ctenitoxin CNTX 
20 Ctenizidae Ctenizitoxin CZTX 
21 Cyatholipidae Cyathotoxin CYTTX 
22 Cybaeidae Cybaetoxin CYBTX 
23 Cycloctenidae Cyclotoxin CYCTX 
24 Cyrtaucheniidae Cyrtautoxin CUTX 
25 Deinopidae Deinotoxin DOTX 
26 Desidae Desitoxin DSTX 
27 Dictynidae Dictytoxin DTTX 
28 Diguetidae Diguetoxin DGTX 
29 Dipluridae Dipluritoxin DPTX 
30 Drymusidae Drymutoxin DMTX 
31 Dysderidae Dysdetoxin DDTX 
32 Eresidae Eretoxin ERTX 
33 Filistatidae Filistatoxin FLTX 
34 Gallieniellidae Gallitoxin GATX 
35 Gnaphosidae Gnaphotoxin GPTX 
36 Gradungulidae Gradutoxin GDTX 
37 Hahniidae Hahnitoxin HNTX 
38 Hersiliidae Hersitoxin HITX 
39 Hexathelidae Hexatoxin HXTX 
40 Holarchaeidae Holarchatoxin HHTX 
41 Homalonychidae Homatoxin HOTX 
42 Huttoniidae Huttotoxin HUTX 
43 Hypochilidae Hypotoxin HPTX 
44 Idiopidae Idiotoxin IDTX 
45 Lamponidae Lampotoxin LATX 
46 Leptonetidae Leptotoxin LPTX 
47 Linyphiidae Linytoxin LYTX 
48 Liocranidae Liocratoxin LRTX 
49 Liphistiidae2 – – 
50 Lycosidae Lycotoxin LCTX 
51 Malkaridae Malkatoxin MKTX 
52 Mecicobothriidae Mecitoxin MBTX 
53 Mecysmaucheniidae Mauchetoxin MUTX 
54 Micropholcommatidae Microphotoxin MPTX 
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55 Microstigmatidae Microstigmatoxin MCSTX 
56 Migidae Migitoxin MITX 
57 Mimetidae Mimetoxin MMTX 
58 Miturgidae Miturgitoxin MGTX 
59 Mysmenidae Menidatoxin MDTX 
60 Nemesiidae Nemetoxin NETX 
61 Nephilidae Nephitoxin NPTX 
62 Nesticidae Nestitoxin NSTX 
63 Nicodamidae Nicotoxin NCTX 
64 Ochyroceratidae Ochyrotoxin ORTX 
65 Oecobiidae Oecotoxin OCTX 
66 Oonopidae Oonotoxin ONTX 
67 Orsolobidae Orsotoxin OSTX 
68 Oxyopidae Oxotoxin OXTX 
69 Palpimanidae Palpitoxin PPTX 
70 Pararchaeidae Pararchatoxin PRCTX 
71 Paratropididae Paratrotoxin PTTX 
72 Periegopidae Peritoxin PETX 
73 Philodromidae Philotoxin POTX 
74 Pholcidae Pholcitoxin PHTX 
75 Phyxelididae Phyxetoxin PXTX 
76 Pimoidae Pimotoxin PITX 
77 Pisauridae Pisautoxin PSTX 
78 Plectreuridae Plectoxin PLTX 
79 Prodidomidae Proditoxin PDTX 
80 Psechridae Psechritoxin PSRTX 
81 Salticidae Saltitoxin SLTX 
82 Scytodidae Scytotoxin SYTX 
83 Segestriidae Segestritoxin SGTX 
84 Selenopidae Seletoxin SETX 
85 Senoculidae Senocutoxin SUTX 
86 Sicariidae Sicaritoxin SCRTX 
87 Sparassidae Sparatoxin SPRTX 
88 Stenochilidae Stenotoxin STNTX 
89 Stiphidiidae Stiphiditoxin SDTX 
90 Symphytognathidae Symphytoxin SMTX 
91 Synaphridae Synaphritoxin SYNTX 
92 Synotaxidae Synotaxitoxin SXTX 
93 Telemidae Teletoxin TETX 
94 Tengellidae Tengellitoxin TNGTX 
95 Tetrablemmidae Tetrabletoxin TBTX 
96 Tetragnathidae Tetratoxin TTTX 
97 Theraphosidae Theraphositoxin TRTX 
98 Theridiidae Theriditoxin TDTX 
99 Theridiosomatidae Theridiotoxin THTX 

100 Thomisidae Thomitoxin TMTX 
101 Titanoecidae Titanotoxin TNTX 
102 Trechaleidae Trechaletoxin TLTX 
103 Trochanteriidae Trochantoxin TCTX 
104 Uloboridae2 – – 
105 Zodariidae Zodatoxin ZDTX 
106 Zoridae Zoritoxin ZRTX 
107 Zorocratidae Zorocratoxin ZCTX 
108 Zoropsidae Zoropsitoxin ZPTX 

1Animalia: Arthropoda: Chelicerata: Arachnida: Araneae. Taxonomy is taken from the World 
Spider Catalog (http://research.amnh.org/entomology/spiders/catalog/) (Platnick, 1997). 
2Uloboridae and Liphistiidae lack venom glands and thus do not produce peptide toxins. 


