1	
2	Isolation of Toxoplasma gondii from the brain of a dog in Australia and its
3	biological and molecular characterisation
4	
5	Sarwat Al-Qassab ^a , Michael P. Reichel ^{a,+} , Chunlei Su ^b , David Jenkins ^c , Craig
6	Hall ^d , Peter A.Windsor ^e , J. P. Dubey ^f , John Ellis ^{a,} *
7	
8	
9	^a Department of Medical and Molecular Biosciences and Institute for Biotechnology
10	of Infectious Diseases, University of Technology, Sydney, P. O. Box 123, Broadway,
11	New South Wales 2007, Australia
12	^b Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845,
13	USA
14	^c School of Animal and Veterinary Sciences, Charles Sturt University, Locked Bag
15	588, Wagga Wagga, NSW 2678, Australia
16	^d Novartis Animal Health Australasia, Kemps Creek, New South Wales 2171 Australia
17	^e Faculty of Veterinary Science, University of Sydney, P. O. Box 3, Camden, New
18	South Wales 2570, Australia
19	^f United States department of Agriculture, Agricultural Research Service, Animal and
20	Natural Resources Institute, Animal Parasitic Diseases Laboratory, Building 1001,
21	Beltsville, MD 20705-2350, USA
22	
23	* Corresponding author: Ph: 61 2 9514 4161
24	Fax: 612 95148206.Email: john.ellis@uts.edu.au (John Ellis)
25	
26	+ Present address: School of Veterinary Science, Adelaide University, South
27	Australia
28	

29	
30	
31	ABSTRACT
32	Toxoplasma gondii was isolated from the brain of a young dog for the first time in
33	Australia. The identity of the parasite was confirmed by PCR, Western blotting,
34	electron microscopy and cat bioassay. Genotyping of the isolate (TgDgAu1) was
35	determined by PCR-RFLP markers that showed it to be a Type II strain. Serology
36	demonstrated the presence of IgM antibodies to T. gondii suggesting the bitch was
37	probably infected during pregnancy and the T. gondii was transmitted to the pups
38	congenitally. We believe this represents the first description of a natural case of
39	congenital transmission of <i>T. gondii</i> in the dog.
40	
41	
42	Key words: Toxoplasma; Dog; Isolation; Genotyping; Australia; Congenital
43	transmission.
44	
45	
46	
47	
48	

49 **1. Introduction**

50

51 Toxoplasma gondii is a common parasite of most warm blooded 52 animals and birds. The majority of T. gondii strains from different human and animal 53 sources have been divided into three clonal but closely related lineages: I, II and III 54 based on restriction fragment length polymorphism (PCR-RFLP), isoenzyme analysis 55 and microsatellite analyses (Howe and Sibley, 1995; Dardé, 1996; Howe et al., 1997; Lehmann et al., 2000; Ajzenberg et al., 2002). Most recently, high resolution genetic 56 57 markers were developed and revealed an even greater level of polymorphism within this species than previously thought. In addition "atypical strains" were identified, 58 59 which are different from the clonal type I, II and III lineages (Su et al., 2006; Dubey 60 et al., 2007e). These atypical lineages could be either recombinants from type I, II 61 and III lineages, or unique diverged lineages. Speculations about the global evolution 62 of T. gondii have led to a world-wide effort to study genetic diversity within this 63 species (Lehmann et al., 2006). 64

Little is known about the type of *T. gondii* found in Australia. Before 65 the discovery of a related parasite, Neospora caninum in 1988 (Dubey et al., 1989), 66 there were many reports of fatal toxoplasmosis in dogs worldwide, including 67 Australia (Dubey and Beattie, 1988). The main aim of this study was to isolate N. 68 *caninum* from the brains of pups born to a bitch known to be infected with this 69 parasite. However T. gondii was unexpectedly isolated. Consequently we report here 70 the isolation and genetic characterization of *T. gondii* from a young pup in Australia. 71 Serology showed the bitch was probably infected during pregnancy and the T. gondii 72 was transmitted to the pups congenitally. We believe this represents the first 73 description of a natural infection of T. gondii occurring via congenital transmission in 74 the dog.

76 2. Material and methods

77

78 2.1. Host history

79 A female cattle dog, aged 18 months, was previously determined to have a 80 titre of 1:200 in the immunofluorescent antibody test (IFAT, VMRD Inc, USA) to N. 81 *caninum* (Hall et al., 2005). In February 2007, the bitch gave birth to six pups and 82 sera from her and all pups were tested in the IFAT and the commercially available 83 latex agglutination test (LAT) (Eiken, Japan) for N. caninum and T. gondii antibodies 84 , respectively. All sera were negative to T. gondii in the LAT (<1:8 serum dilution), 85 but the female cattle dog had an IFAT titre of >1:2800 to N. caninum. All pups were 86 weakly positive at 1/50 in the IFAT to N. caninum. Serial bleeds were subsequently 87 obtained from the bitch in two-weekly intervals in July and August of 2007 and 88 demonstrated a persistent IFAT titre of 1/1000 for N. caninum yet remained negative 89 for T. gondii using LAT.

90

91 2.2. Preparation of brain and cultivation of the parasite

92 All animal research was performed with approval from the University of 93 Technology Sydney and Australian National University Animal Care & Ethics 94 Committees. The six pups were killed at 14 days of age using barbiturate anaesthesia. 95 Whole brains were removed for attempted protozoal isolation by bioassays in cell 96 culture and mice. Brains were homogenized aseptically in saline (0.95 % NaCl), 97 trypsinized and overlayed on to African Green Monkey kidney (VERO) cells seeded 98 in 75 cm² vented flasks. Cells were grown in RPMI-1640 medium (Sigma) 99 supplemented with 50 U/ml penicillin G, 50 μ g/ml streptomycin (Sigma) and 2% 100 heat-inactivated horse serum (Sigma) at 37 °C in a 5% CO₂ humidified incubator. 101 Each flask was sub-cultured once after three weeks of inoculation and divided into 102 two. For PCR, a small portion of pup brains were stored in the -80 °C freezer. 103 104 2.3. Bioassay in mice

105 The brain homogenates were also inoculated subcutaneously into female in-

106 bred BALB/c mice (Gore Hill Research Laboratories, Sydney) maintained on

107 drinking water supplemented with dexamethasone (Sigma, 1 mg/L, Nicoll et al., 1997)

108 beginning at 2 weeks prior to inoculation until the end of experiment.

109	In order to investigate virulence of the tachyzoites isolated into culture,								
110	untreated mice were inoculated subcutaneously with1, 100 or 1000 culture-derived								
111	tachyzoites. Mice were observed for 2 months.								
112									
113	2.4. Bioassay in cats								
114	To exclude the possibility of mixed infection with N. caninum, mice were								
115	infected with 10,000 cultured tachyzoites of TgDgAu1 and subsequently their brains								
116	were fed to five T. gondii-free cats as described (Dubey, 1995); T. gondii oocysts are								
117	produced by cats and N. caninum oocysts are produced in dogs. Faeces of cats were								
118	examined for shedding of T. gondii oocysts 3-21 days post-ingesting mouse tissues.								
119									
120	2.5. DNA extraction and PCR								
121	DNA was extracted from the brains of pups, mice and in vitro grown								
122	tachyzoites. Tissues were snap frozen with liquid nitrogen and ground to a fine								
123	powder with a mortar and pestle. Tissues powdered in this way and tachyzoites were								
124	lysed in 2ml of lysis buffer containing 10mM Tris-Cl (pH 7.6), 100mM EDTA, 1%								
125	SDS containing 40 units of proteinase K [50mg/ml] (Sigma) at 65°C for 4 hours.								
126	DNA was purified by extraction with phenol-chloroform followed by ethanol								
127	precipitation. The DNA obtained was quantified using a Nanodrop								
128	spectrophotometer and stored at -20°C.								
129	Various primers were used to confirm the parasite identity and to detect T.								
130	gondii and N. caninum in cultures and dog and mouse tissues. The primer pairs were								
131	Tim3/Tim 11 (Payne and Ellis, 1996); T1/T4 for <i>T. gondii</i> (Burg et al. 1989; Chabbert								
132	et al. 2004); and the nested PCR described by Barratt et al. (2008) for N. caninum. All								
133	PCR reactions were performed on a PTC-100 Programmable Thermal Controller (MJ								
134	Research Inc.). DNA from the isolates Me49 of T. gondii (sourced from ATCC) and								
135	NC-Liverpool of N. caninum were used as controls.								
136	The PCR product produced from cultured tachyzoites isolated from the pup								
137	using Tim3 and Tim11 primer sets was purified applying a QIAquick gel extraction								
138	kit (QIAGEN), according to the protocol described by the manufacturer and								
139	sequencing was performed by the service provider SUPAMAC (Sydney University).								
140	Blast searches were conducted using GenBank.								
141									
142									

143 2.6. PCR-RFLP genotyping

144 Strain typing of *T. gondii* was performed using ten PCR-RLFP genetic 145 markers including *SAG1*, *SAG2*, *SAG3*, β *TUB*, *GRA6*, *c22-8*, *c29-2*, *L358*, *PK1* and 146 *Apico* using nested PCR and following the published protocol (Su et al., 2006; Dubey 147 et al., 2007e).

148

149 2.7. Immunoblot analysis

150 Tachyzoites of Me49, NC-Nowra (N. caninum) and TgDgAu1 were purified 151 from cultures by filtration through 3 µm filters (Isopore membrane filter, Millipore) 152 and then centrifuged at 3000 rpm for 10 min, after which the pellet was snap-frozen in 153 liquid nitrogen. The tachyzoites were then resuspended in 0.5 ml PBS and 154 frozen/thawed three times. The mixture was centrifuged at 10,000 g for 10 min and 155 the supernatant containing the soluble fraction was removed and stored at -80 $^{\circ}$ C. 156 Western blotting experiments was performed as follows using tachyzoite extracts and 157 either rat anti T. gondii sera or sera from the female dog as primary antibodies.

158 Tachzyoites were solubilised in NuPage LDS buffer (Invitrogen) containing 159 5% β-mercaptoethanol and electrophoresed on a NuPage 4-12% Bis-Tris gel 160 (Invitrogen) using 1x XT MES SDS running buffer (Bio-Rad) for 1hr at 180 V in a 161 Bio-Rad minigel apparatus. A SeeBlue plus2 pre-stained standard (Invitrogen) was 162 used as a marker. Proteins were transferred to a 0.45 µm PVDF membrane 163 (immobilon-P, Millipore) using a Novex transfer system (100 V for 1 hr, which was 164 cooled with ice) and blotting buffer (0.192 M Glycine, 0.025 M Tris and 20% 165 Methanol). The membrane was stained with Ponceau S to visualise the proteins. The 166 membrane was incubated overnight in 5% skim milk at 4 °C to block non-specific 167 antibody binding and then washed three times with cold PBS containing 0.02% 168 Tween 20 (PBST). All subsequent washing of the membrane was also done using 169 PBST.

Serum from a Wister rat infected with the Me49 strain of *T. gondii* (bled at 8
weeks post infection) was used as primary antibody (1:1000 dilution in 5% skim
milk) and anti-rat IgG (whole molecule)-alkaline phosphatase conjugated antibody
(rabbit; Sigma) was used as secondary antibody (1:1000 dilution in 5% skim milk).
Antibody binding was visualised using the Sigma Fast BCIP/NBT alkaline
phosphatase substrate (5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium;

Sigma) dissolved in water. The membrane was then washed with distilled water andallowed to dry.

Serum from the bitch was also used as primary antibody (1:125 dilution in 5%
skim milk) and anti-dog IgG (whole molecule) alkaline phosphatase conjugated
antibody (rabbit, Sigma; 1:500 dilution in 5% skim milk) and anti-dog IgM alkaline
phosphatase conjugated antibody (goat, Bethyl Laboratories Inc.; 1:500 dilution) were
used as secondary antibodies. Antibody binding was visualised using the Sigma Fast
BCIP/NBT alkaline phosphatase substrate.

184

185 2.8. Electron microscopy

Tachyzoites of TgDgAu1 were washed in three changes of 0.1 M PBS (pH 186 187 7.2), and fixed in 3% glutaraldehyde at 4 °C then washed three times with 0.1 M PBS. 188 The tachyzoites were post-fixed in 1% osmium tetroxide in the same buffer for 2 189 hours than washed in PBS and enbloc stained with 2 % aqueous uranyl acetate for 20 190 minutes. Dehydration in ethanol was used, and the tachzyoites infiltrated and 191 embedded in LR White resin. Blocks were polymerised overnight at 65 °C. Semi-192 thin $(1\mu m)$ sections were stained with 1% methylene blue. Ultrathin (70nm) sections 193 were cut using a diamond knife (Drukker) and an ultramicrotome (Ultracut S, Leica). 194 Sections were mounted on 300 mesh copper grids and stained with 2% aqueous 195 uranyl acetate for 20 min and lead citrate (Reynold's) for 4 min. All samples were 196 viewed and imaged in a Philips CM10 TEM.

198 **3. Results**

199	3.1. In vitro isolation of the parasite
200	PCR of DNA derived from the female dog sera showed that she contained
201	DNA from both T. gondii and N. caninum. Homogenates from the brains of the six
202	pups were individually injected into mice or inoculated into tissue culture.
203	Tachyzoites were observed in all tissue culture flasks after four weeks post
204	inoculation, but flasks inoculated with tissues of five of the six pups were discarded
205	without characterization of the parasites After 60 days, tachyzoites started dividing
206	only in the culture derived from pup3 and the present isolate (called TgDgAu1) is
207	derived from this culture.
208	
209	3.2. Mouse infection
210	All mice (except one) that were injected with brain tissue from the pups and
211	TgDgAu1 tachyzoites remained healthy. One mouse injected with brain tissue from
212	pup4 showed clinical signs manifest as kyphosis from 55 days post-infection and died
213	one week later. This mouse was later shown by PCR to be infected with N. caninum
214	but no parasite was recovered into culture.
215	T. gondii-like tissue cysts of TgDgAu1 were observed in impression smears
216	from brains of mice infected with 10000 tachyzoites after 25 days post infection.
217	
218	3.3. PCR analysis
219	PCR of DNA derived from sera of the bitch showed it contained DNA from
220	both T. gondii and N. caninum. PCR of DNA from pup brains showed that all brain
221	tissues contained <i>T. gondii</i> but only pup3 and pup4 brains were positive to <i>N</i> .
222	caninum. PCR of tissue cultures that were inoculated with brain tissue were positive
223	to T. gondii in all flasks, while all were negative by PCR to N. caninum.
224	Analyses of the DNA sequences of PCR products (derived using Tim3 and
225	Tim11 primers or T1 and T4 primers) from TgDgAu1 showed them to be identical to
226	T. gondii sequences (e.g. GenBank accession no. L49390 or AF179871) thereby
227	confirming the identity of the new isolate as T. gondii.
228	
229	3.4. Cat infection

230	All cats fed infected mouse tissues shed T. gondii-like oocysts. DNA isolated									
231	from them generated a PCR product using T. gondii-specific primers. Bioassay of									
232	oocysts in mice was not performed.									
233										
234	3.5. Genotyping									
235	Genotyping results at all ten loci are summarised in Table 1. TgDgAu1									
236	displayed the features of a Type II strain at nine loci, while at the SAG1 locus alleles									
237	II and III are identical.									
238										
239	3.6. Western blotting									
240	Immunoblotting of proteins derived from Me49, NC-Nowra and									
241	TgDgAu1were probed with antisera from a rat infected with Me49. The antigen									
242	profile (Fig. 1a) showed that TgDgAu1 is similar, but not identical to that obtained									
243	from Me49, thereby providing additional evidence that the isolate is T. gondii.									
244	Western blotting using sera from the bitch obtained on the day of the euthanasia of its									
245	pups, and sera from different bleeds taken over six months, showed the bitch had IgG									
246	and IgM antibodies to <i>T. gondii</i> (Fig1b, c).									
247										
248	3.7. Electron microscopy									
249	Electron microscopy of the tachyzoites of TgDgAu1 showed that they had the									
250	characteristic morphology of T. gondii with few electron-lucent rhoptries.									
251										
252										
253										

254
255
256 4. Discussion
257 The main aim of this study was to isolate *N. caninum* from the brains of pups
258 born to a bitch known to be infected with this parasite. However *T. gondii* was
259 unexpectedly isolated giving rise to a tachyzoite population (called TgDgAu1) that
260 was stably maintained in culture.

261 A serological test (a commercial LAT) showed the bitch was seronegative to 262 T. gondii whilst seropositive to N. caninum. Similar results were obtained from sera 263 obtained from the bitch up to six months after the birth of its six pups. However 264 Western blotting and PCR of sera from the dog provided evidence that she was co-265 infected with both T. gondii and N. caninum. Co-infection with these two parasites 266 has also been reported by others (Dubey et al., 2008). The pups were also 267 seronegative to T. gondii by LAT, although PCR on DNA extracted from their brain 268 tissue showed that all six pups contained T. gondii DNA while only pup3 and pup4 269 were positive to N. caninum (representing a mixed infection). Western blotting using 270 anti-IgG and IgM demonstrated that the cattle dog was probably infected with T. 271 gondii during pregnancy (Fig 2b, c). Although transplacental transmission of T. 272 gondii in naturally infected dogs has not previously been demonstrated, there is 273 evidence from experimentally-infected dogs that congenital infection does occur 274 (Bresciani et al., 1999).

There is little information on the genotyping of Australian isolates of *T. gondii*. Only the TG96 strain isolated from a non AIDS patient (see Sibley and Boothroyd, 1992) is reported and was genotyped using PCR-RFLP, allozyme analysis and microsatellite (Sibley and Boothroyd, 1992; Howe and Sibley, 1995; Dardé, 1996; Ajzenberg et al., 2002). These studies showed that TG96 stain was avirulent and a Type II (= zymodeme 4 and microsatellite group 2) strain. The relatedness of Australian *T. gondii* to the rest of the world remains unclear.

Genotyping of *T. gondii* from Asia has been reported in more detail. Studies on dogs in Sri Lanka revealed four genotypes; one of the Type III lineage plus three other atypical genotypes (Dubey et al., 2007d). Two atypical genotypes were detected in dogs from Vietnam (Dubey et al., 2007c). The Type III lineage from Sri Lanka is identical to a genotype isolated from a dog in Brazil (Dubey et al., 2007b). An atypical lineage 4 from Sri Lanka and an isolate from Vietnam (from a dog) are

288 identical to a genotype isolated from dog in Colombia (Dubey et al., 2007a), and also 289 to genotypes isolated from chicken and cat in Brazil and China irrespectively (Dubey 290 et al., 2007e, f) suggesting a South American origin of T. gondii currently found in 291 South East Asia (Lehmman et al., 2006; Dubey et al., 2007c). 292 In conclusion, this study is the first isolation of *T. gondii* from the

293 brain of a young dog in Australia. Serology showed the bitch was probably infected 294 during pregnancy and T. gondii was transmitted to the pups congenitally. The 295 genotyping of TgDgAu1 confirmed it to be of the Type II linage. Further studies are

- 296 needed for a better understanding of the diversity of *T. gondii* from this region.
- 297

298 Acknowledgements

- 299 We would like to thank P. Williams of Kemps Creek (NSW) for donating the 300 pups; Dr M. Johnson (UTS) for providing the rat sera and experimental assistance 301 with Western blotting; Dr D. Birch from Macquarie University for her assistance with 302 EM. UTS provided finance. This research was conducted by SAQ towards a PhD at UTS.
- 303

304

305	References
306	Ajzenberg, D., Banuls, A. L., Tibayrenc, M., Dardé, M. L. 2002. Microsatellite
307	analysis of Toxoplasma gondii shows considerable polymorphism structured
308	into two main clonal groups. Int. J. Parasitol. 32, 27-38.
309	
310	Barratt, J., Al Qassab, S., Reichel, M. P., Ellis, J. T. 2008. The development and
311	evaluation of a nested PCR assay for detection of Neospora caninum and
312	Hammondia heydorni in feral mouse tissues. Mol. Cell. Probes 22, 228-33.
313	
314	Bresciani, K. D. S., Costa, A. J., Toniollo, G. H., Sabatini, G. A., Moraes, F. R.,
315	Paulillo, A. C., Ferraudo, A. S. 1999. Experimental toxoplasmosis in pregnant
316	bitches. Vet. Parasitol. 86, 143-5.
317	
318	Burg, J. L., Grover, C. M., Pouletty, P., Boothroyd, J. C. 1989. Direct and sensitive
319	detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain
320	reaction. J. Clin. Microbiol. 27, 1787-92.
321	
322	Chabbert, E., Lachaud, L., Crobu, L., Bastien, P. 2004. Comparison of two widely
323	used PCR primer systems for detection of Toxoplasma in amniotic fluid, blood,
324	and tissues. J. Clin. Microbiol. 42, 1719-22.
325	
326	Dardé, M. L. 1996. Biodiversity in Toxoplasma gondii. Current Topics in Microbiol.
327	Immunol. 219, 27-41.
328	
329	Dubey, J. P. 1995. Duration of immunity to shedding of Toxoplasma gondii oocysts
330	by cats. J. Parasitol. 81, 410-5.
331	
332	Dubey, J. P., Beattie, C. P. 1988. Toxoplasmosis in animals and human, CRC Press
333	Inc., Boca Raton, FL USA.
334	
335	Dubey, J. P., Carpenter, J. L., Topper, M. J., Uggla, A. 1989. Fatal Toxoplasmosis in
336	Dogs. J. Am. An. Hosp. Assoc. 25 659-64.
337	

338	Dubey, J. P., Cortés-Vecino, J. A., Vargas-Duarte, J. J., Sundar, N., Velmurugan, G.
339	V., Bandini, L. M., Polo, L. J., Zambrano, L., Mora, L. E., Kwok, O. C., Smith,
340	T., Su, C. 2007a. Prevalence of <i>Toxoplasma gondii</i> in dogs from Colombia,
341	South America and genetic characterization of <i>T. gondii</i> isolates. Vet. Parasitol.
342	145, 45-50.
343	
344	Dubey, J. P., Gennari, S. M., Sundar, N., Vianna, M. C., Bandini, L. M., Yai, L. E.,
345	Kwok, C. H., Suf, C. 2007b. Diverse and atypical genotypes identified in
346	Toxoplasma gondii from dogs in São Paulo, Brazil. J. Parasitol. 93, 60-4.
347	
348	Dubey, J. P., Huong, L. T. T., Sundar, N., Su, C. 2007c. Genetic characterization of
349	Toxoplasma gondii isolates in dogs from Vietnam suggests their South
350	American origin. Vet. Parasitol. 146, 347-51.
351	
352	Dubey, J. P., Rajapakse, R. P., Wijesundera, R. R., Sundar, N., Velmurugan, G. V.,
353	Kwok, O. C., Su, C. 2007d. Prevalence of Toxoplasma gondii in dogs from Sri
354	Lanka and genetic characterization of the parasite isolates. Vet. Parasitol. 146,
355	341-6.
356	
357	Dubey, J. P., Sundar, N., Gennari, S. M., Minervino, A. H. H., Farias, N. A. D., Ruas,
358	J. L., dos Santos, T. R. B., Cavalcante, G. T., Kwok, O. C. H., Su, C. 2007e.
359	Biologic and genetic comparison of Toxoplasma gondii isolates in free-range
360	chickens from the northern Para state and the southern state Rio Grande do Sul,
361	Brazil revealed highly diverse and distinct parasite populations. Vet. Parasitol.
362	143, 182-8.
363	
364	Dubey, J. P., Zhu, X. Q., Sundar, N., Zhang, H., Kwok, O. C. H., Su, C. 2007f.
365	Genetic and biologic characterization of Toxoplasma gondii isolates of cats from
366	China. Vet. Parasitol. 145, 352-6.
367	
368	Dubey, J. P., Stone, D., Kwok, O. C. H., Sharma, R. N. 2008. Toxoplasma gondii and
369	Neospora caninum antibodies in dogs from Grenada, West Indies. J. Parasitol.
370	94, 750-1.
371	

372	Hall, C. A., Reichel, M. P., Ellis, J. T. 2005. Neospora abortions in dairy cattle:
373	diagnosis, mode of transmission and control. Vet. Parasitol. 128, 231-41.
374	
375	Howe, D. K., Sibley, L. D. 1995. Toxoplasma gondii comprises three clonal lineages -
376	correlation of parasite genotype with human-disease. J. Inf. Dis. 172, 1561-6.
377	
378	Howe, D. K., Honore, S., Derouin, F., Sibley, L. D. 1997. Determination of genotypes
379	of Toxoplasma gondii strains isolated from patients with toxoplasmosis. J. Clin.
380	Microbiol. 35, 1411-4.
381	
382	Lehmann, T., Blackston, C. R., Parmley, S. F., Remington, J. S., Dubey, J. P. 2000.
383	Strain typing of Toxoplasma gondii: Comparison of antigen-coding and
384	housekeeping genes. J. Parasitology 86, 960-71.
385	
386	Lehmann, T., Marcet, P. L., Graham, D. H., Dahl, E. R., Dubey, J. P. 2006.
387	Globalization and the population structure of Toxoplasma gondii. Proc. Nat.
388	Acad. Sci. USA 103, 11423-8.
389	
390	Nicoll, S., Wright, S., Maley, S. W., Burns, S., Buxton, D. 1997. A mouse model of
391	recrudescence of Toxoplasma gondii infection. J. Med. Micro. 46, 263-6.
392	
393	Payne, S., Ellis, J. T. 1996. Detection of Neospora caninum DNA by the polymerase
394	chain reaction. Int. J. Parasitol. 26, 347-51.
395	
396	Sibley, L. D., Boothroyd, J. C. 1992. Virulent strains of Toxoplasma gondii comprise
397	a single clonal lineage. Nature 359, 82-5.
398	
399	Su, C., Zhang, X., Dubey, J. P. 2006. Genotyping of Toxoplasma gondii by multilocus
400	PCR-RFLP markers: a high resolution and simple method for identification of
401	parasites. Int. J. Parasitol. 36, 841-8.
402	
403	
404	
405	

Figure and Table legends
Fig. 1. Western blotting using rat anti- T. gondii (A) or dog serum (B,C) and
tachyzoite extracts. Arrows point to differences between the two isolates (Dog3 is
TgDgAu1). B and C were developed with anti-IgG (B) or anti-IgM (C).
Table 1. Summary of genotyping data for the TgDgAu1 isolate of <i>T. gondii</i> .

Ser

SS

Genotype	SAG1	5'+3'	SAG2 ^b	SAG3	βTUB	GRA6	c22-8	c29-2	L358	PK1	Apico	Isolate IDs
		$SAG2^{a}$					*					
Type I	Ι	Ι	Ι	Ι	Ι	\overline{I}	Ι	Ι	Ι	Ι	Ι	RH88
Type II	II or III	II	II	II	II	II	II	II	II	II	II	PTG
Type III	II or III	III	III	III	III	III	III	III	III	III	III	CTG
Atypical	Ι	II	II	III	II	II	II	u-1	Ι	u-2	Ι	TgCgCa1
Atypical	u-1	Ι	II	III	III	III	u-1	Ι	Ι	III	Ι	MAS
Atypical	Ι	III	III	III	III	III	Ι	Ι	Ι	u-1	Ι	TgCatBr5
Type II	II or III	II	II	<u> </u>	П	II	II	II	II	II	II	TgDgAu1

^a The SAG2 marker based on 5'- and 3'-end DNA sequence polymorphisms of SAG2 gene (Howe et al., 1997).

^b The SAG2 marker developed recently based on 5'-end DNA sequence of SAG2 gene is able to identify additional alleles often seen in

atypical T. gondii strains (Su et al., 2006).

A B C

Page 17 of 17