
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 
all other uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 1

Predictive Optimal Switching Sequence Direct

Power Control for Grid Connected Power

Converters

Sergio Vazquez, Member, IEEE, Abraham Marquez, Ricardo Aguilera, Member, IEEE, Daniel Quevedo, Senior

Member, IEEE, Jose I. Leon, Senior Member, IEEE and Leopoldo G. Franquelo, Fellow, IEEE

Abstract—Grid connected power converters play a key role
in several applications such as integration of renewable energy
sources and motor drives. For this reason, the development
of high performance control strategies for this particular class
of power converters has increasingly attracted the interest of
both academic and industry researchers. This paper presents
the predictive Optimal Switching Sequence Direct Power Control
(OSS-DPC) algorithm for grid connected converters. The OSS-
DPC method belongs to the predictive direct power control
(P-DPC) family and provides the desired power references by
calculating globally optimal switching sequences. To address
computational and implementation issues, an efficient control
algorithm, named reduced OSS-DPC (ROSS-DPC) is introduced.
The implementation of the proposed control strategy in a stan-
dard DSP is evaluated on a two-level power converter prototype
working as a STATCOM. Experimental results show algorithm’s
potential to provide high performance during both transient and
steady states.

I. INTRODUCTION

G
RID connected power converters play a key role in many

industrial applications such as active front end (AFE)

converters for motor drives, integration of renewable energy

sources (wind or photovoltaic), and energy storage systems

[1]–[4]. To achieve high performance, several issues have been

studied in the literature, including converter topologies, mod-

ulation strategies, grid synchronization schemes, and control

algorithms [5]–[10].

The control scheme of a grid connected converter is usually

divided into two control loops. The external one is devoted to

regulate the dc-link capacitor voltage. The inner control loop

focuses on either tracking the current or instantaneous active

and reactive power references depending on the state variables
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used to design the control strategy. In both cases, it is possible

to use an indirect control approach by including a PWM-SVM

modulation scheme [11], [12].

The direct power control (DPC) method uses the instan-

taneous active and reactive powers as state variables. In its

conventional form, DPC directly selects the power switch

states to track the desired active and reactive powers [13]. The

main problem with this approach is that the resulting switching

frequency is variable. This complicates the design of the output

filter. To overcome this issue, DPC formulated as an indirect

control was proposed in [14]. In order to avoid performance

degradation by the mismatching of system parameters, an

adaptive DPC control law has also been developed [15].

Although [14], [15] perform well, two major issues remain.

First, the method to define the control design constants is not

always clear and usually requires a trial and error procedure.

Second, conventional PI controllers or integral structures are

used to derive the control action. These factors limit the

bandwidth of the DPC algorithm, sacrificing the dynamic

response of the system.

As an alternative to these approaches, model predictive con-

trol (MPC) has been applied to the design of DPC strategies

(MPC-DPC). In general, MPC solves, at each sampling instant,

an optimal control problem over a finite prediction horizon.

This optimization yields an optimal control sequence for the

whole prediction horizon. Following the receding horizon

principle, only the first control action of this optimal sequence

is applied to the system. This process is repeated at each

sampling instant using fresh state measurements or estimates

[16]–[19].

Depending on the nature of the input constraints, MPC

can be divided into two major groups. If the power converter

uses a modulator then the input will be constrained to belong

to a bounded continuous control set (e.g., duty cycles or

PWM references). In the case when the converter switches are

handled directly, the input will belong to a Finite Control Set

(FCS) [18]. In the power electronics literature, both continuous

and FCS-MPC algorithms have been proposed for the DPC of

power converters [20]–[23]. To highlight this difference, in the

present work they will be referred to as P-DPC and FCS-P-

DPC respectively.

FCS-P-DPC considers the converter switches as the system

input. A power cost function, which comprises future active

and reactive power tracking errors is evaluated for each
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possible switch combination. The optimal input to be applied

to the system is the one that minimizes this cost function.

FCS-P-DPC is able to provide good performance. However,

it requires high sampling frequency and provides a variable

switching frequency. This generates output currents with a

widespread harmonic spectrum [20], [21].

Alternatively, P-DPC considers the commutation instants ti,
within a sampling period Ts, as the system input. To do this,

for each sampling period, P-DPC selects a converter voltage

vector sequence from a table using the grid voltage vector

angle. Thus, the minimization of the power cost function

returns the optimal commutation instants topi for these vectors

within the sampling period. This generates a switching pattern

that provides a constant switching frequency [24]. The robust-

ness of this strategy can be improved by using observers to

identify uncertain system parameters such as the smoothing

inductor value [25], [26]. Conventional P-DPC achieves, in

general, good closed-loop behavior. Nonetheless, at times, its

performance will be affected by an incorrect voltage sequence

selection [27]. To solve this problem, revised tables defining

the optimal output voltage sequence have been proposed in

[28]. In essence, when a switching time becomes negative, then

a new voltage sequence is selected. Although this procedure

presents good results, it requires additional computations. To

overcome this issue, a P-DPC strategy, which requires neither

grid voltage sector information nor a voltage vector selection

process, was proposed in [29]. In this strategy, the controller

simply evaluates the switching times for one sector and, from

this information, reconstructs the optimal switching pattern to

be applied.

The associated constrained optimization problem has also

been addressed in [30]. It should be noted that natural con-

straints for this problem are the switching period and the

magnitude of the control voltage vector. The solution to the

constrained problem proposed in [31], consists of calculating

the global optimum from the quadratic cost function of the

instantaneous power deviations at the end of the predicted

switching instant. Thus, the control vector is chosen as the

orthogonal projection of the global optimum to the hexagon

of the control vectors.

The present paper introduces a novel P-DPC strategy. To

overcome the aforementioned problems inherent to voltage

sequence selection, the use of look-up-tables is avoided. In-

stead, the proposed P-DPC takes advantage of the discrete

nature of the power converter. As is well known, the control

region of the power converter in the stationary αβ frame can be

divided into six sectors. Taking this into account, the proposed

controller calculates the optimal commutation instants for each

sector. This provides six local Optimal Switching Sequences

(OSSs) and their associated cost values. Similar to the FCS-

MPC approach, the global OSS applied by the proposed P-

DPC is that which minimizes the power cost function. The

main advantage of the proposed predictive controller when

compared to P-DPC is that the control action is calculated

without relying on the grid voltage sector information. This

allows the controller to select the OSS even when the control

action is saturated. The proposed predictive control strategy is

called OSS-DPC.
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Fig. 1. Scheme of a grid connected two-level power converter.

The present article extends the preliminary work presented

in [32]. In the latter, only a simulation study was carried out.

In the present work, the proposed OSS-DPC is experimentally

tested in order to evaluate the effectiveness of the proposed

strategy when implemented on a standard DSP platform. It

turns out that OSS-DPC requires a large number of computa-

tions. To address this issue, a new algorithm, named Reduced

OSS-DPC (ROSS-DPC) is developed. ROSS-DPC presents

a reduced computational cost when compared to OSS-DPC,

allowing one to take advantage of the digital platform to

improve the closed-loop performance. In addition, in this paper

the effect of delays caused by the digital implementation are

also investigated and a delay compensator is introduced.

The remainder of this paper is organized as follows. In

Section II the conventional P-DPC controller is described. In

Section III the proposed OSS-DPC is derived. Experimental

results are documented in Section IV. Here, in order to address

practical experimental issues, the ROSS-DPC algorithm is

introduced. Conclusions are given in Section V.

II. CONVENTIONAL P-DPC ALGORITHM

The key idea of the conventional P-DPC strategy is to use a

predefined switching pattern based on the available switching

vectors that the converter can generate. In order to minimize

the active and reactive power errors, the method finds, in an

optimal manner, the instants when these vectors are applied

within a given sampling period. For this purpose, this section

develops a system model which is then used to analyze the

instantaneous active and reactive power dynamics [22], [24].

A. System Model

Fig. 1 shows the electrical scheme of a voltage source

inverter (VSI) connected to the grid. Considering the stationary

αβ framework, the instantaneous active and reactive power, ps
and qs, can be expressed by [33]:

[

ps
qs

]

=

[

vsα vsβ
vsβ −vsα

] [

isα
isβ

]

, (1)

where vsαβ and isαβ represent the grid voltage and the VSI

output current in the αβ frame respectively by using the
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Fig. 2. Converter voltage vectors vri.

power-invariant Clarke transformation. From (1), it is possible

to derive dynamic equations for ps and qs as

dps
dt

= vsα
disα
dt

+ vsβ
disβ
dt

+ isα
dvsα
dt

+ isβ
dvsβ
dt

,

dqs
dt

= vsβ
disα
dt

− vsα
disβ
dt

− isβ
dvsα
dt

+ isα
dvsβ
dt

.

(2)

Under a balanced sinusoidal three-phase system, the deriva-

tive of the grid voltage can be expressed as

dvsαβ
dt

= ωJvsαβ , (3)

where the matrix J is given by

J =

[

0 −1
1 0

]

. (4)

Taking into account that the dynamic model of the ac currents

can be represented by

disαβ
dt

=
1

L
(vrαβ − vsαβ) , (5)

where vrαβ is the output voltage of the VSI, the following

dynamic model of the active and reactive powers is obtained

dps
dt

= vsα

(

1

L
(vrα − vsα) + ωisβ

)

+ vsβ

(

1

L
(vrβ − vsβ)− ωisα

)

,

dqs
dt

= vsβ

(

1

L
(vrα − vsα) + ωisβ

)

− vsα

(

1

L
(vrβ − vsβ)− ωisα

)

.

(6)

B. Vector Selection

As illustrated in Fig. 2 a two-level power converter can

generate eight voltage vectors, vri with i ∈ {0, . . . , 7} in

the αβ plane. In the conventional P-DPC [22], the vector

sequence applied to the converter is selected in order to

TABLE I
VECTOR SEQUENCE TO BE APPLIED WHEN USING CONVENTIONAL P-DPC

Sector Vector sequence ~vj
1 1 2 7 7 2 1
2 0 1 2 2 1 0
3 0 3 2 2 3 0
4 3 2 7 7 2 3
5 3 4 7 7 4 3
6 0 3 4 4 3 0
7 0 5 4 4 5 0
8 5 4 7 7 4 5
9 5 6 7 7 6 5

10 0 5 6 6 5 0
11 0 1 6 6 1 0
12 1 6 7 7 6 1

minimize the switching losses. To do this, the αβ plane is

divided into twelve sectors as depicted in Fig. 2. Each sector

is assigned to a vector sequence, ~vj = {v1, v2, v3, v3, v2, v1}
with j ∈ {1, . . . , 12} as presented in Table I. The sequence

to be applied to the converter during the sampling period, Ts,

is chosen depending on the sector in which the grid voltage

lies. For example, in Fig. 2, vsαβ lies inside sector 1, thus the

sequence to be applied is ~v1 = {vr1, vr2, vr7, vr7, vr2, vr1}.

C. Application Times

Once the switching pattern is selected, the commutation

instants t1, t2, and t3 for the three voltage vectors vi with

i ∈ {1, 2, 3} that form the switching sequence ~vj need to be

calculated. The P-DPC approach adopted in [22] is based on

the dynamic model presented in (6). To be more specific, the

predictions for the active and reactive powers at instant k+1
are calculated as

ps,k+1 = ps,0 + 2

3
∑

i=1

fpiti

qs,k+1 = qs,0 + 2

3
∑

i=1

fqiti,

(7)

where ps,k+1 and qs,k+1 are the predictions for instant k+1,

ps,0 and qs,0 are the initial values of ps and qs at instant k,

fpi, fqi are the increments for the instantaneous active and

reactive powers, and ti are the application times of vectors

vri. If it is assumed that fpi and fqi are constant during the

sampling interval, then fpi = fpi,k and fpi = fqi,k, where

fpi,k and fqi,k are the values at instant k for the vector vi.
These can be calculated from (6) as

fpi,k =
dps
dt

∣

∣

∣

∣

vr = vi,vs = vs,k,is = is,k

fqi,k =
dqs
dt

∣

∣

∣

∣

vr = vi,vs = vs,k ,is = is,k
.

(8)

To obtain the commutation instants ti, the conventional P-

DPC minimizes the quadratic function

J(ps,k+1, qs,k+1) = e2p,k+1 + e2q,k+1 (9)
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Fig. 3. Vectorial representation of the steady state. a) Simplified system. b)
Required inverter voltage. c) Constrained inverter voltage using conventional
P-DPC

with ep,k+1 = p∗s − ps,k+1 and eq,k+1 = q∗s − qs,k+1, where

p∗s and q∗s are the reference values for the instantaneous active

and reactive power respectively.

In [22], an explicit solution to the above problem is found

by considering an unconstrained problem. This yields the

following application times

t1 =
(fq2 − fq3)epk + (fp3 − fp2)eqk + (fp2fq3 − fp3fq2)Ts

2 ((fq2 − fq3)fp1 + (fq3 − fq1)fp2 + (fq1 − fq2)fp3)
,

t2 =
(fq3 − fq1)epk + (fp1 − fp3)eqk + (fq1fp3 − fq3fp1)Ts

2 ((fq2 − fq3)fp1 + (fq3 − fq1)fp2 + (fq1 − fq2)fp3)
,

t3 =
Ts

2
− t1 − t2,

(10)

where ep,k = p∗s −ps,0, eq,k = q∗s − qs,0 and Ts represents the

sampling period.

III. OSS-DPC TECHNIQUE

Conventional P-DPC, as shown in Section II, constitutes a

simple strategy that often provides good performance when

controlling grid connected power converters. However, at

times, the voltage sequence selection method used by P-

DPC will perform poorly [27]. The vectorial representation

presented in Fig. 3 illustrates this problem. In essence, vr
should be generated using the voltage vectors belonging to the

sector where vs is located. Then, at times, it is not possible

to generate the required voltage to achieve the instantaneous

active and reactive power references [32].

To overcome this problem, [32] proposed an algorithm to

optimally obtain the sector in which the inverter voltage, vr,

will be synthesized. The key idea of this method, named OSS-

DPC, is to calculate the local optimal times in (10), for every

sector, i.e., Tj = [ t1, t2 , t3] for all j ∈ {1, . . . , 12}. These

times are used to evaluate, in each sector j, the cost function

Jj(t1, t2, t3) ,

i=6
∑

i=1

(p∗s − psi)
2
+ (q∗s − qsi)

2
, (11)

qs0
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qs1
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t
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Fig. 4. Active and reactive power trajectories during one sampling period.
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Fig. 5. Flow diagram of the proposed OSS-DPC strategy.

where psi and qsi are defined as

psi = ps(i−1) + fpiti

qsi = qs(i−1) + fqiti,
(12)
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Fig. 6. System response to an instantaneous reactive power command step
from q∗s = 0 kVAr to q∗s = 10 kVAr: (a) P-DPC algorithm, (b) OSS-DPC
algorithm.
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Fig. 7. Steady state grid currents for instantaneous reactive power reference
q∗s = 10 kVAr: (a) P-DPC algorithm, (b) OSS-DPC algorithm.

with ps0 = ps,0, qs0 = qs,0, t4 = t3, t5 = t2, t6 = t1,

fp4 = fp3, fp5 = fp2 and fp6 = fp1. Fig. 4 illustrates the

evolution of ps and qs from instant k to k + 1
The twelve resulting cost values, Jj , are local minima. The

optimal sector, jop, is chosen as the one which minimizes the

cost function in (11). The optimal times for this sector are

Top, whereas ~vop is the global optimal switching sequence. In

Fig. 5, a flow diagram of the OSS-DPC algorithm is presented.

The main advantage of using (11) when compared to (9) is

that it evaluates the predictions for the instantaneous active and

reactive powers at six different instants within the sampling

period. This improves the inter-sample behavior, cf. [34].

To show the benefits of using the OSS-DPC, a simulation

has been carried out using the parameters presented in Table II.

Fig. 6 compares the response to a step reference change in

TABLE II
SYSTEM PARAMETERS

Parameter Value

Smoothing inductor L = 2 mH

DC-Link capacitor C = 2200 µF

Grid phase voltage van, vbn, vcn = 230 Vrms

Grid frequency f = 50 Hz

Sampling frequency fs = 10 kHz

Switching frequency fsw = 10 kHz

Fig. 8. Converter prototype.

q∗s using conventional P-DPC and the proposed OSS-DPC

algorithms. Fig. 6a and Fig. 6b show that both strategies

present similar dynamic responses, although a slightly faster

response can be observed when OSS-DPC is used. However,

OSS-DPC offers a clear improvement when compared with

standard P-DPC in the steady state. To highlight this, Fig. 7

presents the grid current waveforms. Fig. 7a illustrates that

conventional P-DPC periodically selects an incorrect switching

sequence. This generates spikes in the grid currents, which

increase their total harmonic distortion (THD). On the other

hand, the grid currents obtained by OSS-DPC do not have

spikes, as shown in Fig. 7b. This is due to the fact that OSS-

DPC explores all vector sectors when obtaining the optimal

switching sequence.

IV. EXPERIMENTAL RESULTS

The proposed OSS-DPC algorithm has been tested on a

laboratory prototype system comprising a power converter

connected to the grid. The experimental setup consists of a

three-phase two-level converter working as a STATCOM. The

electrical scheme of the system is shown in Fig. 1. The main

system parameters are summarized in Table II.

The converter prototype is shown in Fig. 8. The core of

the control hardware is based on the TMS320F28335 DSP

where the OSS-DPC algorithm has been coded. During the

experiments, instantaneous reactive power command steps

have been introduced in order to evaluate performance.

Fig. 9 shows the transient response of the OSS-DPC when

a command step is produced in the instantaneous reactive
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Fig. 9. System response to an instantaneous reactive power command step
from 0 kVAr to 10 kVAr.

(a)

(b)

Fig. 10. Steady state output currents for an instantaneous reactive power
command of 10 kVAr: (a) Output currents, (b) Harmonic content.

power from no load to 10 kVAr. The system response is very

fast and the new reference is reached almost instantaneously.

However, in steady state, there exists a difference between

the command and actual value of q. This is mainly caused

by model inaccuracies, and the delay introduced by the digital

platform. The latter issue can be compensated in the algorithm

design as will be shown later in Section IV-B. The output

currents of the VSI are shown in Fig. 10. It should be noted

that the low order harmonics in the output currents are due to

the grid voltage in the laboratory utility, which contains 5th

and 7th harmonics. The THD value of the output current is

4.1 %.

(a) (b)

Fig. 11. Execution time of the control strategies: (a) OSS-DPC algorithm,
(b) ROSS-DPC algorithm.
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Fig. 12. Sectors considered in the ROSS-DPC algorithm.

A. Analysis of the computational burden

One of the major concerns about MPC algorithms is the

computational cost. In general, MPC strategies rely upon

significant online computations and therefore require powerful

hardware platforms for real time applications.

To evaluate the computational burden of the proposed OSS-

DPC algorithm, its execution time has been measured. Fig. 11a

shows graphically the execution time of the algorithm. To

do this, one of the DSP pins is set to ’1’ when the internal

interruption stars. Then it is toggled to ’0’ when the algorithm

is finished. It can be observed that the time needed to perform

all the calculations is roughly 90 µs. This shows that the

proposed OSS-DPC strategy requires intensive computations.

Taking into account that, in the experiment, the sampling

period is 100 µs, it turns out that OSS-DPC uses 90 % of the

available time. Thus, it is not possible to increase the sampling

frequency in the selected hardware platform. Consequently,

the control strategy cannot take advantage of PWM-SVM

optimizations including its ability to duplicate the sampling

frequency and maintain the switching frequency to increase the

system performance without increasing the switching losses.

In order to reduce the number of computations needed, the

following observations can be made. In the αβ frame vr0 =
vr7. Therefore, evaluations of sectors 1 and 2 lead to the same

control action value. The same conclusion can be obtained for

sectors pairs 3-4, 5-6, 7-8, 9-10 and 11-12. Thus, the control

algorithm only needs to be evaluated for six sectors, from A

to F, as presented in Fig. 12.
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TABLE III
PARAMETERS fpi AND fqi TO BE APPLIED WITH ROSS-DPC.

Sector fp1 fp2 fp3 fq1 fq2 fq3
A fp,vr0 fp,vr1 fp,vr2 fq,vr0 fq,vr1 fq,vr2
B fp,vr0 fp,vr3 fp,vr2 fq,vr0 fq,vr3 fq,vr2
C fp,vr0 fp,vr3 fp,vr4 fq,vr0 fq,vr3 fq,vr4
D fp,vr0 fp,vr5 fp,vr4 fq,vr0 fq,vr5 fq,vr4
E fp,vr0 fp,vr5 fp,vr6 fq,vr0 fq,vr5 fq,vr6
F fp,vr0 fp,vr1 fp,vr6 fq,vr0 fq,vr1 fq,vr6

p
s0
,q
s0

i = 0

Calculate fp;vri;fq;vri
Eq. (8) 

i < 6

i = i+1

yes

j = A

fpi;fqi , i∈{1,2,3} 

Table III 

no

Calculate Tj = [t
1;t2;t3]

Eq. (10) 

Saturate Tj

Calculate psi;qsi , i∈{1,...,6}

Eq. (12)

j < Fj = j+1
yes

yes

no

no

Fig. 13. Flow diagram of the proposed ROSS-DPC algorithm.

On the other hand, vector vr1 is common to sectors A and

F. Similarly, vr2 belongs to sectors A and B, vr3 to sectors B

and C, vr4 to sectors C and D, vr5 to sectors D and E, and

vr6 to sectors E and F. Further, vr0 and v7 are included in
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Fig. 14. Experimental results for the ROSS-DPC algorithm: (a) System
response for an instantaneous reactive power command step from 0 kVAr
to 10 kVAr. (b) Harmonic content of the output currents.

Fig. 15. Harmonic content of the output currents for the ROSS-DPC with fs
= 20 kHz and fsw = 10 kHz.

all sectors. In this way, the values fpi and fqi for vector vri,
denoted as fp,vri and fq,vri respectively, can be calculated in

advance to the switching times corresponding to each sector,

thereby providing a more efficient algorithm. Once a sector

is selected, Table III can be used to choose the corresponding

values of fpi and fqi.

The above considerations lead to the reduced OSS-DPC

(ROSS-DPC) algorithm. The flow diagram of the proposed

ROSS-DPC strategy is shown in Fig. 13. The execution time of

the ROSS-DPC has also been assessed graphically as presented

in Fig. 11b. which demonstrate that the new algorithm only

needs roughly 40 µs for computing all calculations. Therefore,

the computational burden of the OSS-DPC has been reduced
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kk - 1 k + 1 k + 2 ...

qs;k qs;k+1(vop,Top) qs;k+2(sector(A))
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Fig. 16. Sampling delay compensation for the proposed predictive control
strategy.
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Fig. 17. Steady state response for an instantaneous reactive power command
of 10 kVAr: (a) ROSS-DPC algorithm without delay compensation. (b) ROSS-
DPC algorithm with delay compensation.

by 55 %. It is important to emphasize that only the number

of computations have been reduced. The performance remains

the same as shown in Fig. 14. Both transient and steady state

responses are equal to those exhibited by OSS-DPC.

Due to the computational savings, it is possible to run the

ROSS-DPC using a sampling frequency of fs = 20 kHz and a

switching frequency of fsw = 10 kHz. This improves the THD

of the output current without increasing the switching losses.

The harmonic spectrum of the output currents is presented in

Fig. 15. It should be noticed that the THD is 2.9 %. Thus, a

reduction of about 30 % has been achieved by increasing the

sampling frequency.

B. Delay compensation

The implementation of the control algorithm on a digital

platform introduces a delay in the control action which deteri-

orates the closed-loop performance of the system. This is due

Fig. 18. Harmonic content of the output currents for the ROSS-DPC with
delay compensation, fs = 20 kHz and fsw = 10 kHz.

to the fact that, to account for computation times, the control

action is applied one sampling period after it is calculated.

In the case of MPC strategies, this can be easily handled

by considering predictions at instant k + 2 instead of instant

k + 1, [35], [36]. This is shown in Fig. 16 for the instanta-

neous reactive power variable. The value of the instantaneous

reactive power at instant k (qs,k) can be calculated from the

measurements vsαβ,k and isαβ,k. The value of this variable

at instant k + 1 only depends on vsαβ,k and isαβ,k and the

switching function applied to the power converter. This switch-

ing function was calculated in the previous sampling instant by

the ROSS-DPC and is defined by ~vop and Top. Therefore, it is

possible to obtain a prediction of qs,k+1. Predictions at instant

k+2 are needed to compute the algorithm. It should be noted

that qs,k+2 depends on the sector evaluated and therefore it is

necessary to calculate predictions for the values fpi and fqi at

k + 1, fpi,k+1 and fqi,k+1 respectively.

Taking into account the definitions for the instantaneous ac-

tive and reactive power, fpi,k+1 and fqi,k+1 can be calculated

by

fpi,k+1 =
vsα,k+1

L
(vrα − vsα,k+1)

+
vsβ,k+1

L
(vrβ − vsβ,k+1) (13)

− ωqs,k+1

fqi,k+1 =
vsβ,k+1

L
(vrα − vsα,k+1)

−
vsα,k+1

L
(vriβ − vsβ,k+1) (14)

+ ωqs,k+1.

From (13) and (14), it is clear that predictions for vsαβ,k+1

are needed. These values, under input balanced grid voltage

can be easily obtained as

[

vsα,k+1

vsβ,k+1

]

=

[

cos (2πfTs) −sin (2πfTs)
sin (2πfTs) cos (2πfTs)

] [

vsα,k
vsβ,k

]

, (15)

where Ts = 1/fs is the sampling period.

The effect of the delay compensation on the performance of

the ROSS-DPC strategy has been experimentally tested. For

this purpose, the steady state response of the system for an
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instantaneous reactive power command of 10 kVAr has been

analyzed.

Fig. 17a and Fig. 17b present the steady state system re-

sponse, without and with the delay compensation respectively.

In both cases the controller behaves correctly. However, when

the average value of qs is analyzed it shows that without

delay compensation qs,av is 9.723 kVAr whereas qs,av with

delay compensation is 9.909 kVAr. Therefore, the relative

error, defined as 100∗(q∗s − qs,av) /q
∗

s , is reduced from 2.77 %

to 0.91 %. The compensation of the delay also improves the

harmonic spectrum of the output current as depicted in Fig. 18.

It can be noticed that the THD has been further reduced to

2.8 %.

V. CONCLUSION

Direct power control (DPC) strategies are a good alternative

to control grid connected converters. Model predictive control

(MPC) for power converters and drives has shown its ability to

provide highly effective solutions. In this way, the predictive

DPC (P-DPC) was developed in the literature in order to take

advantage of both DPC and MPC features. However, there are

still some issues to be addressed. In this paper, a new P-DPC

controller, named optimal switching sequence DPC (OSS-

DPC), is proposed, solving the problem of conventional P-

DPC with the selection of the optimal sequence from the grid

voltage sector information. The proposed OSS-DPC algorithm

takes advantage of the discrete nature of the power converter

by obtaining a local optimum for each of the six voltage

sectors. Since only a finite number of local optima exist, the

global optimum can be obtained in a similar fashion as in the

FCS-MPC case.

Experiments have been conducted and the results show

that the proposed control method performs well. A careful

analysis of OSS-DPC showed that it is possible to reduce

the number of calculations needed to implement the control

strategy without reducing its performance. Additionally, the

effect of the delay introduced due to digital implementation

was also studied. Both considerations were addressed by

deriving a new algorithm called reduced OSS-DPC (ROSS-

DPC), showing that the resulting predictive control strategy

provides excellent closed-loop performance in both transient

and steady states.
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