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SIMPLE GROUPS OF AUTOMORPHISMS OF TREES

DETERMINED BY THEIR ACTIONS ON FINITE SUBTREES

CHRISTOPHER BANKS, MURRAY ELDER, AND GEORGE A. WILLIS

Abstract. We introduce the notion of the k-closure of a group of automor-
phisms of a locally finite tree, and give several examples of the construction.
We show that the k-closure satisfies a new property of automorphism groups
of trees that generalises Tits’ Property P . We prove that, apart from some
degenerate cases, any non-discrete group acting on a tree with this property
contains an abstractly simple subgroup.

1. Introduction

Simple groups and their classification are a vital part of the structure theory
of the classes of groups that admit composition series, among which are the finite
groups and the Lie groups. Although totally disconnected, locally compact (t.d.l.c.)
groups do not admit composition series, it was shown in [7] that decomposing such
groups into simple pieces plays a role in their structure theory as well. In [25] the
third author showed that the local and global structures of simple t.d.l.c. groups are
linked when the group is compactly generated, and that invariants of the group,
such as the scale [22] and flat-rank [24], could possibly be parameters used in a
classification of such groups.

In this article we present a general construction that produces many new ex-
amples of simple compactly generated t.d.l.c. groups acting on trees. Particular
classes of simple compactly generated t.d.l.c. groups have been studied in various
contexts. These include:

• Lie groups over fields of p-adic numbers and over fields of formal Laurent
series over some finite residue field, where the scale is a power of the char-
acteristic of the residue field and the flat-rank equals the usual algebraic
rank;

• completions of Kac-Moody groups over finite fields [9][8], where again the
scale is a power of the characteristic of the residue field and the flat-rank
equals the algebraic rank [5];

• automorphism groups of buildings with negative curvature [15], where the
flat-rank is at most 1 [4];

• groups of almost automorphisms of trees [16], where the flat-rank is infinite
and the scale depends on valencies of the tree [23]; and
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• certain closed subgroups of automorphism groups of trees studied by Burger
and Mozes [6] and Tits [20], where the flat-rank is at most 1 and the scale
depends on valencies of the tree.

Currently it is not known how close this list is to being exhaustive, or if a
classification is possible even for those cases where the flat-rank is 1. Along with
those that do not act on trees, there are several distinct subclasses of groups acting
on trees, including the rank 1 Lie and Kac-Moody groups.

The groups constructed and studied here extend and are motivated by the last
class of examples. The constructions in [6] and [20] satisfy Jacques Tits’ Property P.
Tits showed that if a group acting on a tree has this property, then a certain closed
subgroup must be simple (apart from some obvious degenerate cases). Amann [2]
defines a slightly weaker Independence Property which coincides with Property P
for closed subgroups of the full automorphism group of the tree.

In this paper we define a family of independence properties called Property IPk

which generalise the Independence Property of Amann. We show that on closed
subgroups of the full automorphism group of the tree, this family coincides with
another family of properties called Property Pk, which generalise Tits’ Property P .
Property Pk is used in proving Theorem 7.3, which is an analogue of Tits’ theorem,
and states that groups with one of these properties (aside from the same degenerate
cases) also contain a simple subgroup.

We also provide a general method for constructing groups with these properties
from any group acting on a tree. Given any natural number k and a group G acting
on a tree T , then G(k) is defined to be the set of all automorphisms that, on each
ball of radius k in T , agree with some element of G. This forms a closed subgroup
of Aut(T ) called the k-closure of G, which satisfies Property IPk.

The article is organised as follows. In Section 2 we give the relevant terminology
on automorphism groups of trees and graphs, and recall several results from Tits’
paper. In Section 3 we define the k-closure of a group acting on a tree, giving
a simple example and proving basic facts about the construction, in particular
conditions under which the resulting groups are non-discrete. In Section 4 we apply
the k-closure construction to some known examples of groups acting on trees. In
Section 5 we define the Independence Property IPk and show that the k-closure
of a group satisfies IPk. We also show that this property characterises precisely
when the sequence of k-closures terminates at G(k) = G. In Section 6 we define
Property Pk and establish the relationship between this property and Property
IPk. In Section 7 we prove the simplicity result (Theorem 7.3) for groups satisfying
Property Pk. By this theorem, we now have a general method for finding simple
groups acting on trees, which we discuss in Section 8. We prove some results about
the simple groups obtained in this way, including the existence of infinite families
of distinct closed simple groups acting on a tree that do not have property P .

We note that in recent work Möller and Vonk [17] also define a new property of
groups acting on trees they call Property H, which is strictly weaker than Property
IPk. Groups that have Property H contain a topologically simple subgroup; that
is, it contains no non-trivial closed normal subgroups.

2. Preliminaries

For definitions and terminology concerning graphs, we refer to Serre [18]. A
graph X is determined by its vertex set V (X) and its set of directed edges E(X).
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An edge e ∈ E(X) can be written in the form (o(e), t(e)) ∈ V (X) × V (X), and
every edge has a inverse edge (t(e), o(e)), which we denote by e. The term edge-pair
refers explicitly to the pair {e, e}. In this paper all graphs are assumed to be simple
(that is, they have no loops or multiple edges) and locally finite.

Let Aut(X) denote the group of automorphisms of X . If x, y ∈ Aut(X) and
v ∈ V (X) then x.v ∈ V (X) is the image of v under x. We may write multi-
plication in Aut(X) with or without the composition symbol; in both cases it is
always performed from right to left i.e. (yx).v = y.(x.v). An edge-inversion is an
automorphism g of X satisfying g(e) = e for some e ∈ E(X).

In this paper T will denote a tree, and the regular (or homogenous) tree of
degree d (in which every vertex is adjacent to d others) is denoted Td. Given an
edge (v, w) ∈ E(T ), the semi-tree T(v,w) is defined as the connected component of
T \{(v, w), (w, v)} containing w. Let B(v, k) be the subtree formed by the closed
ball (with respect to the standard metric on T ) of radius k centered at the vertex
v ∈ V (T ).

If G ≤ Aut(X) and Y is a proper subgraph of X then the set of all g ∈ G that
stabilise Y (that is, for which g(Y ) = Y ) is denoted by StabG(Y ), and the set of
g ∈ G that fix Y (that is, g.v = v for all v ∈ V (Y )) is denoted by FixG(Y )).

We will say that a group G of automorphisms of X is vertex-transitive if for
some vertex v the orbit G.v = V (X), and edge-transitive if for some edge pair the
orbits G.e ∪ G.e = E(X). For any vertex v let E(v) := {e ∈ E(X) : o(e) = v}
denote the set of edges emanating from v; note that E(v) is stabilised by FixG(v).
We define the local action of G at v to be the permutation group induced by the
action of FixG(v) on E(v), and we say G is locally transitive if the local action at
every vertex is transitive.

Recall that an infinite path in T is represented by a sequence C = (e1, e2, ...)
of edges where t(ei) = o(ei+1) for all i. A sequence which is infinite in both
directions represents a doubly-infinite path (..., e−1, e1, e2, ...), where t(ei) = o(ei+1)
for all i ∈ N. In this paper all paths are assumed to have no backtracking, that
is, o(ei) 6= t(ei+1) for all i ∈ Z. If the graph is a tree this implies paths have
no self-intersection at all. If C,C′ are two paths then their intersection is either
empty or a path itself. The boundary, ∂T , of T is the set of equivalence classes,
[C], of infinite paths in T , where two infinite paths, C and C′, are equivalent if
and only if C

⋂

C′ is an infinite path. Elements of ∂T are known as the ends of
T , and a path C is called a representative of the end b if b = [C]. We say that an
automorphism g ∈ G ≤ Aut(T ) stabilises the end b if the image under g of any
representative of b is another representative of b, and that g fixes the end b if it
fixes some representative of b.

The automorphism group of a tree can be equipped with a topology, whose basis
is given by the collection of all sets of the form

U (x,F) := {y ∈ Aut(T ) : y.v = x.v ∀v ∈ F}

where x ∈ Aut(T ) and F is a finite vertex set. Under this topology Aut(T ) is a
topological group. The open set Fix(v) = U (1G, {v}) is a profinite group, as it
can be expressed as the projective limit of the finite groups Aut(B(v, k)). Since
profinite groups are compact and totally disconnected [26], it follows that Aut(T )
is a t.d.l.c. group, with compact open subgroups Fix(F) for all finite F .
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Recall that every neighbourhood of the identity 1G in a t.d.l.c. group G contains
a compact open subgroup U [21]. The fact that a compact group is discrete if and
only if it is finite implies the following lemma.

Lemma 2.1. A subgroup G ≤ Aut(T ) is discrete (with the subspace topology
induced by the one given above) if and only if there exists a vertex for which
StabG(v)(= Fix(v)) is a finite group.

2.1. Results of Jacques Tits. The property we will study in Section 5 is based
on a property defined by Jacques Tits, which he used to find simple groups.

Definition 2.2. [20, Section 4] Suppose G ≤ Aut(T ), C a path in T and FixG(C)
is the fixator of the path C. Define π to be the projection of V (T ) onto V (C)
where π(v) = x if x is the closest vertex in the path C to v. Let FixG(C)x denote
the action of FixG(C) restricted to π−1(x). Then G satisfies Property P if for any
such C we have FixG(C) =

∏

x∈V (C) FixG(C)x.

Remark 2.3. In the case where C is just an edge (v, w) ∈ E(T ), Property P states
that FixG((v, w)) decomposes into two independent actions on T(v,w) and T(w,v),
and consequently FixG((v, w)) = FixG(T(v,w)) × FixG(T(w,v)). This statement for
edges defines the weaker Independence Property [2, Definition 9] which is shown to
be equivalent to Tits’ Property P if G is closed.

It is also mentioned in [20] that groups that stabilise a proper subtree of T
or an end of T , contain many normal subgroups. For instance, if G = Fix(v) is
the stabiliser of a vertex in the full automorphism group of T , then the groups
Fix(B(v, r)) are normal subgroups of G for each r ∈ N. We will make use of the
following three results, which are relevant to these cases.

Lemma 2.4. [20, Lemma 4.1] Let G be a group of automorphisms of a tree T .
Then the following are equivalent:

(i) G does not stabilise a proper non-empty subtree of T ;
(ii) The orbit G.v of any vertex v ∈ V (T ) has non-empty intersection with any

semi-tree.

Proposition 2.5. [20, Proposition 3.4] If G ≤ Aut(T ) contains no translations
then G is contained in either the stabiliser of a vertex, the stabiliser of an edge or
the fixator of an end of T .

Lemma 2.6 ([20] Lemme 4.4). Suppose T is a tree that is not a doubly-infinite
path and G,H non-trivial subgroups of Aut(T ) such that G normalises H. If G
does not stabilise a proper non-empty subtree or an end of T , then H also does not
stabilise a proper non-empty subtree or an end of T .

3. The k-closure of a group of automorphisms

Let x be an automorphism of T , v a vertex and k a natural number. Since
graph automorphisms preserve distance, x maps B(v, k) to B(x.v, k). Let x|B(v,k)

denote the map B(v, k) → B(x.v, k) defined by x|B(v,k).w = x.w, which we call the
restriction of x to B(v, k). If U ⊆ Aut(T ) let U |B(v,k) = {x|B(v,k) | x ∈ U}. If
y ∈ Aut(T ) then

(yx)|B(v,k) = y|B(x.v,k) ◦ x|B(v,k)

In particular, x−1|B(x.v,k) ◦ x|B(v,k) and x|B(x−1.v,k) ◦ x
−1|B(v,k) act trivially on

B(v, k).
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Definition 3.1. For G ≤ Aut(T ) and k ∈ N, define the k-closure of G to be

G(k) =
{

x ∈ Aut(T ) | ∀ v ∈ V (T ) ∃ g ∈ G such that g|B(v,k) = x|B(v,k)

}

.

Lemma 3.2. G(k) is a subgroup of Aut(T ).

Proof. If x, y ∈ G(k) and v is any vertex, then we have g1, g2 ∈ G with g1|B(v,k) =
x|B(v,k), and g2|B(x.v,k) = y|B(x.v,k). Then

(y ◦ x)|B(v,k) = y|B(x.v,k) ◦ x|B(v,k) = g2|B(x.v,k) ◦ g1|B(v,k) = (g2 ◦ g1)|B(v,k)

so y ◦ x ∈ G(k). In addition we have g ∈ G with g|B(x−1.v,k) = x|B(x−1.v,k), so

x−1|B(v,k) = g−1|B(v,k) and hence x−1 ∈ G(k). �

The k-closure of G consists of automorphisms of T that on each ball of radius k
in T agree with some element of G. It is clear from this that the local actions of G
and G(k) are identical.

The role of the group G is to provide a list of “allowed” actions for each ball.
In this sense the construction is comparable to the universal groups defined in [6,
§3.2]. They consist of automorphisms of T that on each ball of radius 1 perform
an “allowed” permutation from some permutation group F , which is isomorphic to
the local action of the group. This idea is illustrated by the following example.

Example 3.3. Consider the following subgroup G of the automorphism group of
the ternary tree T3. Let i : E(T3) → {1, 2, 3} be an edge-labeling where i(e) = i(e)
for each edge e, and every vertex is incident on one edge of each label (see [6, §3.2]).
Then for each v ∈ V (T3) the restriction i|E(v) of i to E(v) is a bijection on {1, 2, 3},
and it follows that for any automorphism x ∈ Aut(T3) and any v ∈ V (T3) the map

πx,v = i|E(x.v) ◦ x ◦
(

i|E(v)

)−1

is a permutation of {1, 2, 3}. Let

G = {x ∈ Aut(T3) | πx,v = πx,w∀v, w ∈ V (T3)} ,

be the group of automorphisms that act as the same permutation around each
vertex. This is a subgroup of Aut(T3) since

(1) i|E((yx).v)◦(yx)◦
(

i|E(v)

)−1
= i|E((yx).v)◦y◦

(

i|E(x.v)

)−1
◦i|E(x.v)◦x◦

(

i|E(v)

)−1
.

Let S3 denote the group of permutations of {1, 2, 3}, and define π : G → S3 by
π(g) = πg,v. This is well defined (since πg,v is the same for any v) and a surjective
homomorphism by Equation (1). From this it follows that for any v, w ∈ V (T3)
and for any σ ∈ S3 there exists exactly one g ∈ G such that g.v = w and π(g) = σ.
The special case when w = v implies that StabG(v) ∼= S3 for all vertices v, and
hence by Lemma 2.1 G is discrete.

Recall any automorphism x of T3 is assigned permutations πx,v for all vertices
v. From above there always exists gv ∈ G with π(gv) = πx,v and where gv maps v
to x.v. Now x does the same permutation as gv at v, and hence they agree on the
ball B(v, 1). Therefore x ∈ G(1) and so the 1-closure of G is the full automorphism
group Aut(T3).

On the other hand, if an automorphism is in the 2-closure, then it must be the
same permutation around a vertex u and an adjacent vertex v, and also the same
permutation around v and a third vertex w next to it, which means it is the same
permutation around every vertex. Hence the 2-closure G(2) is equal to G. By a
similar argument all k-closures are equal to G for k ≥ 2.
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In Section 4 we will see more interesting examples of groups arising from the
k-closure construction. The remainder of this section records several facts about
k-closures. The first results explain the sense in which these groups are a ‘closure’
of G.

Proposition 3.4. Let G ≤ Aut(T ) and k ∈ N.

(i) G(k) is a closed subgroup of Aut(T ).
(ii) G(r) ≤ G(k) for all r > k.
(iii)

⋂

k∈N
G(k) = G, the closure of G.

(iv) G(l) = (G(k))(l) whenever l ≤ k.
(v) The orbit G(k).v is equal to G.v for every v ∈ V (T ).

Proof. (i) Since

Aut(T )\G(k) = {x ∈ Aut(T ) : ∃vx ∈ V (T ) with x|B(vx,k) 6= g|B(vx,k)∀g ∈ G}

=
⋃

x/∈G(k)

U (x,B(vx, k))

is the union of open sets, G(k) is closed.
(ii) If x ∈ G(r) then for every vertex v there is some g ∈ G with g|B(v,r) = x|B(v,r),

and since r > k we have g|B(v,k) = x|B(v,k).

(iii) Since g ∈ G agrees with itself everywhere, G is contained in G(k) for every k.
Thus

⋂

k∈N
G(k) contains G, and is closed by (i), and so

⋂

k∈N
G(k) ⊇ G. For the

reverse inclusion it is enough to show that any open set containing x ∈
⋂

k∈N
G(k)

also contains some g ∈ G, which holds because the sets U (x,B(v, k)) (v ∈ V (T ),
k ∈ N) form a basis for the subspace topology on

⋂

k∈N
G(k) and each contains at

least one g ∈ G such that g|B(v,k) = x|B(v,k).

(iv) Since G ≤ G(k) then G(l) ≤ (G(k))(l). Suppose x ∈ (G(k))(l), then for all
v ∈ V (T ) there exist yv ∈ G(k) such that yv|B(v,l) = x|B(v,l). Note that since

l ≤ k we have B(v, l) ⊇ B(v, k). Since yv ∈ G(k) there exists gv ∈ G such that
yv|B(v,l) = g|B(v,l). Then x|B(v,l) = g|B(v,l) which implies that x ∈ G(l).

(v) Since every x.v ∈ G(k).v satisfies x.v = g.v for some g ∈ G, we know that
G(k).v is contained in G.v; equality follows because G ≤ G(k). �

The question of what happens to (G(k))(l) when l > k is more subtle, and will
be discussed in Section 5.

The next result gives a criterion for when the k-closure of a group is non-discrete.
This will prove to be necessary when attempting to construct new examples of
simple groups.

Theorem 3.5. Let G ≤ Aut(T ), fix k ∈ N and suppose that G does not stabilise any
proper subtree of T . Then G(k) is non-discrete if and only if there is (v, w) ∈ E(T )
and g ∈ G such that

(2) g|B(v,k)∩B(w,k) = 1 and g|B(w,k) 6= 1.

Equivalently, G(k) is discrete if and only if FixG(B(v, k)∩B(w, k)) = {1} for every
(v, w) ∈ E(T ).

Proof. If G(k) is non-discrete, then for any vertex u there is a non-identity element
h ∈ StabG(k)(u) such that h|B(u,k) = 1. Since T \ {u} =

⋃

t∈B(u,1) T(u,t), there

exists a vertex t adjacent to u such that h|T(u,t)
6= 1. There are two cases; in the
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first case h|B(u,k) = 1 and h|B(t,k) 6= 1, so set (v, w) = (u, t). Otherwise there must
be an edge (v, w) in T(u,t) such that h|B(v,k) = 1 and h|B(w,k) 6= 1. Choosing g ∈ G
such that h|B(w,k) = g|B(w,k) shows that (2) holds.

For the converse, assume that (2) holds for some (v, w) ∈ E(T ) and let u ∈ V (T )
and m ∈ N. It will be shown that there is a non-identity element h ∈ G(k) with
h|B(u,m) = 1. Note first of all that, if t is any vertex in T(v,w), then B(v, k) ∩
B(t, k) ⊆ B(v, k)∩B(w, k) and, if t is any vertex in T(w,v), then B(w, k)∩B(t, k) ⊆
B(w, k) ∩B(v, k). Since g|B(v,k)∩B(w,k) = 1, the element h1 defined by

h1|T(v,w)
= g|T(v,w)

and h1|T(w,v)
= 1|T(w,v)

is contained in G(k). Since no proper sub-tree of T is invariant under G, Lemma
2.4 implies that the orbit G.u intersects every semi-tree of T . Choose a semi-tree
T(r,s) that is contained in T(w,v) and such that d(v, r) ≥ m and choose x ∈ G such

that x.u ∈ T(r,s). Then B(x.u,m) ∩ T(v,w) = ∅ and it follows that h = xh1x
−1

belongs to G(k), is non-trivial and h|B(u,m) = 1.

For the final claim, note that, if G(k) is not discrete, then FixG(B(v, k)∩B(w, k))
is not trivial for the edge (v, w) in (2). On the other hand, if G(k) is discrete, then
g|B(v,k)∩B(w,k) = 1 implies that g|B(w,k) = 1 for every g ∈ G and (v, w) ∈ E(T ).
Hence, if g|B(v,k)∩B(w,k) = 1, then g|B(v′,k)∩B(w,k) = 1 for every v′ adjacent to
w, which in turn implies that g|B(v′,k) = 1 for every v′ adjacent to w, whence
g|B(v′,k+1) = 1. Continuing by induction shows that g|B(v′,j) = 1 for every j > k,
that is, that g = 1. �

g

v w

Figure 1. An automorphism f ∈ G that satisfies Equation (2) in
Theorem 3.5 for k = 2. In the proof the corresponding h1 ∈ G(k)

is defined to fix the left semi-tree and agree with f on the right
semi-tree.

Corollary 3.6. Suppose G ≤ Aut(T ) acts with finitely many orbits on T and does
not stabilise any proper non-empty subtree. Then G is non-discrete if and only if
G(k) is non-discrete for infinitely many (and hence all) k ∈ N.

Proof. Suppose that G(k) is non-discrete for infinitely many k. Since the action
of G on T is co-compact, there are only finitely many G-orbits in E(T ). By the
pigeonhole principle it may be assumed when applying Theorem 3.5 that the edge
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(v, w) is always the same. Then the theorem gives an infinite number of elements
g ∈ G that fix w. On the other hand, if there is any j ∈ N for which G(j) is discrete
then every subgroup, in particular G (and each G(k), k > j), is discrete. �

Corollary 3.7. Suppose G ≤ Aut(T ) does not stabilise any proper subtree of T
and also suppose that G(k) is discrete for some k ∈ N. Then G(k) = G.

Proof. By Proposition 3.4(iii) we have that G ≤ G(k). Now suppose x is in G(k)

and let (v, w) ∈ E(T ). By definition of G(k), there exist gv, gw ∈ G such that
gv|B(v,k) = x|B(v,k) and gw|B(w,k) = x|B(w,k). Then gv and gw have the same action

on B(v, k)∩B(w, k) and hence g−1
v gw fixes B(v, k)∩B(w, k). Since G(k) is discrete

Theorem 3.5 implies that g−1
v gw is the identity automorphism; that is, gv = gw.

Applying this to every edge, it follows that x agrees with the same element of G
on every ball of radius k, and hence x ∈ G. �

The last results in this section gives general criteria for two subgroups of Aut(T )
to produce the same k-closures.

Proposition 3.8. Two groups G,H ≤ Aut(T ) satisfy G(k) = H(k) if and only if
for each g ∈ G and v ∈ V (T ) there is hv ∈ H such that (h−1

v g)|B(v,k) belongs to
StabH(v)|B(v,k), and similarly for h ∈ H.

Proof. Assume that G(k) = H(k) and consider g ∈ G and v ∈ V (T ). Since g ∈ G(k)

there exists hv ∈ H such that hv|B(v,k) = g|B(v,k). Hence (h−1
v g)|B(v,k) = 1, which

belongs to StabG(v)|B(v,k). A similar argument applies for each h ∈ H .
Conversely, assume that for each g ∈ G and v ∈ V (T ) there is hv ∈ H such that

(h−1
v g)|B(v,k) belongs to StabH(v)|B(v,k) and consider x ∈ G(k). For each v ∈ V (T )

there is gv ∈ G such that gv|B(v,k) = x|B(v,k) and then, by assumption, there is

hv ∈ H such that (h−1
v gv)|B(v,k) ∈ StabH(v)|B(v,k). Suppose that (h−1

v gv)|B(v,k) =

a|B(v,k) with a ∈ H . Then hva ∈ H and hva|B(v,k) = x|B(v,k). Hence x ∈ H(k) and

it has been shown that G(k) ≤ H(k). That H(k) ≤ G(k) may be shown similarly. �

Corollary 3.9. Suppose we have two groups G,H ≤ Aut(T ). If

(i) StabG v|B(v,k) = StabH v|B(v,k) for all v ∈ V (T ); and
(ii) G,H and G ∩H act on T with the same orbits,

then G(k) = H(k).

Proof. Consider g ∈ G and v ∈ V (T ). By (ii), there is hv ∈ G ∩ H such that
hv.v = g.v, so that h−1

v g ∈ G and belongs to StabG(v). Then (i) implies that
h−1
v g|B(v,k) ∈ StabH(v)|B(v,k) as required by Proposition 3.8. A similar argument

applies for h ∈ H and hence the criterion for G(k) to equal H(k) is established. �

Remark 3.10. (i) The definition of G(k) constrains its elements to act in the same
way as those of G up to distance k from each vertex of T . It is thus a closely related
construction to the ‘finitely constrained’ groups of automorphisms of rooted trees
studied in [19]. In the case of k-closures, basing the constraints on the group G
ensures that there do exist automorphisms of the tree that satisfy them. The
problem then becomes to determine how much larger G(k) is than G.

(ii) The k-closure is a special case of a much more general construction. Let
G ≤ H be groups of permutations of some set X . Then G and H act on P(X),
the power set of X . Let C ⊆ P(X) be invariant under the G-action and define the
C -closure of G in H to be

GC = {x ∈ H | for each C ∈ C , ∃g ∈ G such that x|C = g|C} .
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Then GC is a subgroup of H and leaves C invariant. Returning to the case treated
here when H = Aut(T ), the set C could be any isomorphism class of subtrees.
These subtrees could be finite or infinite such as, for example, the set of infinite
paths in T or the set of doubly-infinite paths. The proof of Proposition 3.4(i)
applies to show that each of these C -closures yields a closed subgroup of Aut(T ).

4. Examples

In this section we discuss some examples of groups acting on trees, and apply the
k-closure construction in each case. These examples illustrate some of the results
in the previous section, and cover three general constructions that produce a wide
variety of groups acting on trees.

We briefly note that Example 3.3 is one of a family of discrete groups acting
vertex-transitively and locally-transitively on a ternary tree, of which there are
exactly seven [10, 12]. These seven examples show some interesting behaviour in
terms of their k-closures for small k, however the details are quite technical – see
the first author’s thesis [3].

4.1. An infinite series of k-closures. In this subsection we show that the group
G = PSL(2,Qp) acting on its Bruhat-Tits tree has distinct non-discrete k-closures
for all k ∈ N. This is an example of a matrix group over a local field, which is the
general case discussed in [18, §II.1].

We begin by giving the structure of the Bruhat-Tits tree. Let 〈e1, e2〉 denote
the span over Zp of two independent vectors e1, e2 ∈ Q2

p (these are called lattices

of Q2
p). One such example is Lp :=

〈(

1
0

)

,

(

0
p

)〉

.

Let V be the set of all such lattices, and define an equivalence relation ∼ on V

such that

L ∼ L′ ⇔ L′ = λL for some λ ∈ Q∗
p.

Then G acts on V by M : 〈e1, e2〉 7→ 〈Me1,Me2〉, which preserves the equivalence
relation since λMei =Mλei.

Define a graph X with vertex set V/ ∼ and with an edge (L,L′) if there exist
e1, e2 such that L ∼ 〈e1, e2〉 and L′ ∼ 〈e1, p±1e2〉. The action of G preserves edges
since 〈Me1,M(p±1e2)〉 = 〈Me1, p

±1(Me2)〉.

Set v :=

[〈(

1
0

)

,

(

0
1

)〉]

, then clearly v is adjacent to [Lp]. For any f ∈

{0, 1, . . . , p − 1} we have

[〈(

1
0

)

,

(

f
1

)〉]

=

[〈(

1
0

)

,

(

0
1

)〉]

and hence [Lf ] :=
[〈(

p
0

)

,

(

f
1

)〉]

is adjacent to v for all f ∈ {0, 1, . . . , p− 1}. Indeed the vertex v

has valency p+ 1, and it follows from [18] that X = Tp+1.
If M is a matrix fixing v, then one can write the basis vectors of L0 as com-

binations of the column vectors in M , which must be in (Zp)
2. Hence FixG(v) =

PSL(2,Zp). Similar calculations (involving writing column vectors of M in terms
of the basis vectors of a lattice) show that for any r ≥ 0

FixG(B(v, r)) =

{

(aij) ∈ PSL(2,Zp) :M ≡

(

1 0
0 1

)

(mod pr)

}

.
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Fix k ∈ N and set M =

(

1 pk

0 1

)

. Then M fixes B(v0, k) but not B(v0, k +

1). For any f ∈ {0, . . . , p − 1} let a = f + a1p + ... + akp
k. Then the vertices

{[〈(

pk+1

0

)

,

(

a
1

)〉]}

lie in the ball centred at the vertex [Lf ] (which is adjacent

to v0) of radius k. But then

M

(

a
1

)

=

(

f + a1p+ ...+ (ak + 1)pk

1

)

which implies thatM has non-trivial action on B([Lf ], k) for any f ∈ {0, . . . , p−1}.
The same calculation shows any matrix fixing B(v, k) but not B(v, k+1) has non-
trivial action on B([Lf ], k) for almost all f ∈ {0, . . . , p−1} (i.e. all but possibly one
such f). Hence an automorphism α of Tp+1 that fixes B(v, k), agrees with M on
B([Lf ], k) (for a fixed f 6= 0) and fixes B([Lf ′ ], k) for all f ′ 6= f does not agree with

any element of G on B(v0, k+1), and hence is not in G(k+1). Thus G(k+1) 6= G(k).

4.2. Baumslag-Solitar groups. Recall that the graph of groups construction pro-
duces a group that acts on an associated Bass-Serre tree [18]. An example of a group
arising from this construction is the Baumslag-Solitar group

BS(m,n) = 〈a, t | tamt−1 = an〉.

As discussed in [13], the vertices of the Bass-Serre tree are given by cosets w〈a〉,
where w is a freely reduced word over the alphabet

{t, at, . . . , an−1t, t−1, at−1, . . . , am−1t−1},

and directed edges (u〈a〉, v〈a〉) labelled by t±1 if v〈a〉 = uait±1〈a〉 for some i. The
resulting tree TBS(m,n) is graph isomorphic to Tm+n, and the group acts vertex-
transitively on TBS(m,n) by acting on the left of cosets.

Lemma 4.1. Let w〈a〉 be a vertex and define i (resp. j) to be the number of t’s

(resp. t−1’s) in w. Then the subgroup 〈am
jni

〉 is contained in the fixator of w〈a〉
under the action of BS(m,n). Consequently, if A is a finite subtree of TBS(m,n)

then Fix〈a〉(A) is nontrivial.

Proof. The relations defining BS(m,n) imply that acnt = tacm and acmt−1 =

t−1acn for c ∈ Z. By definition am
jni

contains enough am’s and an’s to commute

past w; that is, am
jni

w = wam
inj

.
Since A is a finite set of vertices, we can let I (resp. J) be the maximum number

of t’s (resp. t−1’s) in any word w where w〈a〉 ∈ A. Then am
JnI

fixes each vertex
in A. �

Note that some infinite paths in the Bass-Serre tree also have nontrivial fixators.
For instance, for each nonnegative integer i the vertex (atat−1)i〈a〉 is fixed by an,
so the infinite path spanned by these vertices starting at 〈a〉 has a nontrivial fixator.

Let ρ denote the homomorphism from BS(m,n) to Z that sends a word w to
its t-exponent sum. Then BS(m,n) preserves the level sets of ρ, which form a
partition we denote by P .

Proposition 4.2. Let G = BS(m,n). Then

(i) The local action of G(k) at any vertex is isomorphic to Z/(lcm(m,n))Z;
(ii) G(k) preserves P.
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Proof. To prove (i) we consider the local action of G at the vertex v = 〈a〉. This
is sufficient since G(k) and G have the same local actions and G acts vertex-
transitively. The set B(v, 1) contains vertices w〈a〉 where w has at most one t, t−1

letter. Thus aj fixes these vertices if and only if j is divisible by both m and n,
so the fixator of B(v, 1) in G is 〈alcm(m,n)〉. Then the local action is equal to the
quotient group FixG(v)/FixG(B(v, 1)) which is isomorphic to Z/(lcm(m,n))Z.

To prove (ii) it is enough to show that G(1) preserves P , since G(k) ⊆ G(1). Since
any two are connected by a finite directed path, where each edge is labelled by t or
t−1, it is sufficient to show that G(1) preserves the labels of the directed edges. This
follows immediately from the definition of G(1) since G preserves labelled directed
edges. �

In Section 8.4 we will be restricting our attention to the groups BS(m,n) where
m,n are relatively prime, in which case lcm(m,n) = mn and the local action is
isomorphic to Z/mZ× Z/nZ.

Now we discuss the structure of automorphisms x ∈ BS(m,n)(1) that fix the
vertex labelled by 〈a〉, assuming that m,n are coprime. For each vertex v ∈
V (TBS(m,n)) there exists a word w ∈ BS(m,n) whose action agrees with x on
B(v, 1). Since x fixes a vertex then x.v and v lie in the same part of P for all
v ∈ V (TBS(m,n)) (see Proposition 4.2). Hence w preserves the t-exponent sum of
v, and hence ρ(w) = 0. Indeed we can assume that w ∈ 〈a〉.

To construct any such automorphism, begin by assigning to the vertex 〈a〉 an
element ai where 0 ≤ i ≤ mn − 1. Then proceeding inductively, assign a number
σv to each vertex v〈a〉 adjacent to an already assigned vertex u〈a〉 such that

• σv ∈ Z/nZ if the edge (u〈a〉, v〈a〉) is labelled t, and
• σv ∈ Z/mZ if the edge (u〈a〉, v〈a〉) is labelled t−1.

Then inductively define x ∈ BS(m,n)(1) to agree with ai on B(〈a〉, 1), and to agree
with acv on B(v〈a〉, 1), where (u〈a〉,v〈a〉) is an edge, l is the smallest integer such
that al fixes the word v, and cv = cu + lσv. These conditions ensure that acv and
acu agree on the edge (u〈a〉,v〈a〉) and hence that x is an automorphism of TBS(m,n),
which is uniquely identified by the collection {σv : v ∈ V (TBS(m,n))}.

4.3. Automorphism groups of graphs. Let Γ be any graph, and let T be the
universal covering tree T of Γ. There exists a surjection ψ : T → Γ such that the
restriction of ψ to B(v, 1) is a bijection for all v ∈ V (T ). Then the fundamental
group π1(Γ) of Γ acts naturally on T (it is precisely the set of automorphisms g for
which ψ ◦ g = ψ) and there exists G ≤ Aut(T ) for which

π1(Γ) →֒ G
φ
։ Aut(Γ).

is a short exact sequence, where φ(g) : ψ(v) 7→ ψ(g.v) defines the group homomor-
phism induced by the covering map ψ [11].

It is important to note that whilst π1(Γ) is a normal subgroup of G, it is generally
not normal in G(k).

Proposition 4.3. If Γ is a finite graph then G is discrete, and G(k) = G for all
k ≥ diam(Γ).

Proof. Suppose k ≥ diam(Γ). Then for some v ∈ V (T ) we have ψ(B(v, k)) = Γ,
and hence if g ∈ G fixes B(v, k) then φ(g) is the identity automorphism of Γ, and
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hence g is the identity automorphism of T . Hence {1G} is open in the topology
which implies that G is discrete, and hence by Corollary 3.7 G(k) = G. �

0

1

2

34

5

6

Figure 2. The graph C(3, 7, 1) referenced in Example 4.4

Example 4.4. Let Γ := C(p, r, 1) be one of the graphs introduced in [14]. Vertices
of Γ are labelled {(i, j) : i ∈ Cr, 1 ≤ j ≤ p} with (i, j) adjacent to (k, l) if and only
if k = i ± 1 (see Figure 2). Allow also the extension to r = ∞, defined to be the
infinite graph with vertex set {(i, j) : i ∈ Z, 1 ≤ j ≤ p} and the same adjacency
relation. Then Γ is regular of degree 2p and has diameter ⌊ r

2⌋. The universal cover
of Γ is T2p, and there exists a vertex-transitive group Gp,r ≤ Aut(T2p) completing
the exact sequence

π1(Γ) →֒ Gp,r

φ
։ Aut(Γ).

Assume r ≥ 4, then the local action of Gp,r at v ∈ V (T ) is isomorphic to S2
p ⋊C2,

which is independent of r.
It turns out that for r 6= ∞ the groups Gp,r and Gp,∞ have the same k-closures

for all k < r
2 (exactly the values for which StabGp,r

(v)|B(v,k) = StabGp,∞
(v)|B(v,k)).

We present the argument for k = 1; the other cases are very similar.
First take v0 ∈ V (T2p) to be the base point of the universal cover ψ : T2p →

C(p,∞, 1). Then Gp,∞ acts vertex-transitively, and so for any v ∈ V (T2p) there
exists h ∈ Gp,∞ with h.v0 = v, and φ(h) ∈ Aut(C(p,∞, 1)). To see that h ∈
Gp,r, take the labelling on T2p given by ψ and construct a new labelling (i, j) 7→
(i mod r, j). We have constructed a universal cover ψ′ of C(p, r, 1) with base point
v0, and a corresponding φ′ : Gp,r ։ Aut(C(p, r, 1) such that h ∈ Gp,r. Hence
Gp,r ∩Gp,∞ acts vertex-transitively on T2p. We have already established that both
groups have the same local action, and hence by Corollary 3.9 they have the same
1-closure.

5. Independence Properties IPk

In this section we define a series of properties, denoted by IPk for k ∈ N, that
will be satisfied by the k-closure of any group of tree automorphisms. They provide
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a condition under which the descending series of k-closures terminates at G = G(k)

for some k ∈ N.

Definition 5.1. [Property IPk] Suppose G ≤ Aut(T ) and fix k ∈ N and an edge
e = (v, w). Define

Fk,e := FixG(B(v, k) ∩B(w, k)).

Then G satisfies Property IPk if for any choice of edge e = (v, w),

Fk,e = FixFk,e
(T(v,w)) FixFk,e

(T(w,v)).

fv

T(w,v) T(v,w)

v w

fw

T(w,v) T(v,w)

v w

Figure 3. Let f ∈ FixG(B(v, 2) ∩B(w, 2)) be the automorphism
of T3 indicated in Figure 1, and define fv, fw as above. Then
f = fvfw, and if G satisfies Property IP2 then fv, fw ∈ G.

Note that when k = 1 then B(v, 1) ∩ B(w, 1) is just the edge e = (v, w) and
F1,e = FixG(e). Hence Property IP1 is equivalent to the Independence Property of
Amann as discussed in Remark 2.3). Also, Property IPk is stronger than Property
H [17], which just requires FixG(T(v,w)) to be non-trivial for every edge in T .

Proposition 5.2. Let G ≤ Aut(T ) and k ∈ N. Then G(k) has Property IPk.

Proof. Let e = (v, w) be an edge. Clearly Fk,e ⊇ FixFk,e
(T(v,w)) FixFk,e

(T(w,v)).
Conversely, suppose f ∈ Fk,e. Construct an automorphism f1 by setting f1 = f
on all B(u, k) where u ∈ T(w,v), and f1 trivial on all B(t, k) where t ∈ T(v,w).
Similarly construct f2 by setting f1 = f on all B(t, k) where t ∈ T(v,w), and f2
trivial on all B(u, k) where u ∈ T(w,v). It is clear that f = f1f2, and since f1
and f2 agree with either f or the identity on every ball, each is in G(k). Hence
f = f1f2 ∈ FixFk,e

(T(v,w)) FixFk,e
(T(w,v)) as required. �

Proposition 5.3. Let G ≤ Aut(T ) and k ∈ N. If G satisfies Property IPk then it
also satisfies Property IPk+1.

Proof. Let e = (v, w) be any edge, and suppose x ∈ Fk+1,e. Since Fk+1,e ≤ Fk,e

and G satisfies Property IPk then x = x1x2, where x1 ∈ FixFk,e
(T(v,w)) and x2 ∈

FixFk,e
(T(w,v)). Then x1x2 fixes B := B(v, k + 1) ∩ B(w, k + 1), but since x2 fixes

B ∩ T(w,v) then so must x1. But x1 also fixes B ∩ T(v,w) and hence x1 ∈ Fk+1,e.
Similarly x2 ∈ Fk+1,e, and therefore Fk+1,e = FixFk+1,e

(T(v,w)) FixFk+1,e
(T(w,v));

that is, G satisfies Property IPk+1. �
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As mentioned earlier, taking the l-closure of G(k) when l ≤ k obtains the l-
closure of G. On the other hand, if l > k the above result implies that G(k) satisfies
Property IPl. The following theorem implies that the l-closure of G(k) is equal to
G(k).

Theorem 5.4. Let G ≤ Aut(T ). If G satisfies Property IPk then G(k) = G, and
if G(k) = G then G satisfies Property IPk.

Proof. Suppose G has property IPk; it will be proven by induction that G(r) = G(k)

for all r ≥ k. For the inductive hypothesis, assume for some such r that G(r) = G(k),
and take g ∈ G(k) and v a vertex. It will be shown that there exists y ∈ G such
that y |B(v,r+1)= g |B(v,r+1) and hence g is in the (r + 1)-closure of G.

By the inductive hypothesis g ∈ G(r), and hence there exists z ∈ G so that
z |B(v,r)= g |B(v,r), which also implies z−1g ∈ G(r) fixes B(v, r). Let v1, . . . , vm be
the vertices that are distance exactly r−k+1 from v. Then for all i = 1, . . . ,m there
exists ai ∈ G such that ai |B(vi,k)= (z−1g) |B(vi,k). Each ai fixes the intersection
B(vi, k) ∩ B(v, r), which is equal to B(vi, k) ∩ B(wi, k) where wi is the vertex
adjacent to vi that is closest to v. Since G has property IPk then ai = bici where
bi fixes T(vi,wi) and ci fixes T(wi,vi).

Now b1b2 · · · bm fixes the ball of radius r around v, and in each ball B(vi, r) it
acts like z−1g (since each bi only acts non-trivially on just one B(vi, r)). Therefore
(zb1b2 · · · bm)−1g ∈ G fixes B(v, r + 1). Taking y = zb1b2 · · · bm proves that g ∈
G(r+1), so by induction G(r) = G(k) for all r ≥ k. By Proposition 3.4 we have
G(k) =

⋂

G(r) = G.
The second assertion follows directly from Proposition 5.2. �

The main result of [1] implies that there exist free groups acting on regular trees
which are dense in either Aut(T ) or the simple subgroup Aut(T )+ (see Section 7).
Such a group cannot have Property IP1 but its closure does.

Corollary 5.5. Let G ≤ Aut(T ) and k ∈ N. Then G does not satisfy Property
IPk for any k if and only if G has infinitely many distinct k-closures.

Proof. If G has finitely many k-closures there is a smallest one G(j). But then
G(j) =

⋂

k∈N
G(k) which by Proposition 3.4(iii) is equal to G. Hence by Theorem

5.4 G has Property IPj . On the other hand if G has infinitely many k-closures then

the sequence of G(k) is never constant. Hence for all k we have G(k) 6= G, and so
by Theorem 5.4 G does not satisfy Property IPk. �

5.1. Examples. Recall that in Section 4.1 we showed that the k-closures of the
group G = PSL(2,Qp) are all distinct. It follows that the closure of PSL(2,Qp) is
not equal to any of its k-closures, and hence does not satisfy Property IPk for any
k.

Proposition 5.6. When m,n are coprime, G = BS(m,n) acting on its Bass-Serre
tree (as discussed in Section 4.2) does not satisfy Property IPk for any k ∈ N.

Proof. Consider the edge (v, w) := (〈a〉, t〈a〉). We show that for this edge the
fixators of the two semitrees T(v,w) and T(w,v) under G are both trivial. Since by
Lemma 4.1 FixG(B(v, k) ∩ B(w, k)) is non-trivial, it then follows that G does not
satisfy Property IPk.
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Suppose acn
j

(c > 0 and not divisible by n) is a non-trivial automorphism in the
fixator of the semitree T(v,w). Such an automorphism must have this form since it

fixes the vertex 〈a〉. The semitree T(v,w) contains vertices (ta)it〈a〉 for all i ∈ N.

Assume that i ≥ j, then acn
j

(ta)it = (ta)jacm
j

(ta)i−jt. To continue passing acm
j

through this word we require cmj to be a multiple of n. Since c is not divisible
by n then mj is a multiple of n, which contradicts our assumption that m,n are
coprime.

A similar argument holds for the semitree T(tv,v), which contains vertices labelled

by (t−1a)it−1〈a〉 for all i ∈ N. �

Remark 5.7. Recall that for any discrete group G ≤ Aut(T ) there exists an edge
(v, w) and a value of k for which FixG(B(v, k) ∩ B(w, k)) is trivial. In this case
Property IPk is trivially satisfied and G(k) = G. In our illustrative example from
Section 3 (Example 3.3) this holds for k = 2. For the examples obtained from the
automorphism group of some finite graph (see Example 4.4) this holds for k greater
than or equal to half the diameter of the graph.

6. Property Pk.

In this section we define the natural generalisation of Tits’ Property P , which we
call Property Pk, and relate it to the independence properties defined in the previous
section. Property Pk will be used in the next section to prove our simplicity result.
The notation defined in the next two definitions will be used throughout both
sections.

Definition 6.1. If X is a subtree of T then let Xk denote the subtree of T spanned
by the set {x ∈ V (T ) : d(x,X) ≤ k} of vertices at distance at most k from X .

Definition 6.2. Suppose G ≤ Aut(T ), let C be any path (finite or infinite) in T
and define π to be the projection of V (T ) onto V (C). For each x ∈ V (C) define Fx

to be the permutation group acting on π−1(x) induced by FixG(C
k−1). Then we

say G satisfies Property Pk if and only if for all such C the natural homomorphism
Φ : FixG(C

k−1) →
∏

x∈V (C) Fx is an isomorphism.

It is immediate from this definition that if a group satisfies Property Pk then it
must also satisfy Property IPk.

Proposition 6.3. Suppose G ≤ Aut(T ) satisfies Property IPk, and let C be any
finite path in T . Let π denote the projection of V (T ) onto V (C), and for each
x ∈ V (C) define Fx to be the permutation group acting on π−1(x) induced by
FixG(C

k−1). Then Φ : FixG(C
k−1) →

∏

x∈V (C) Fx is an isomorphism.

Proof. Let C be a path of length N defined by vertices x0, ..., xN . We show by
induction onN that if G satisfies Property IPk then Φ is bijective. When N = 1 the
path C is a single edge (x0, x1) and Property IPk implies that Φ is an isomorphism.

For the inductive hypothesis let N > 1 and assume Φ is bijective for all paths of

length N − 1. It is clear that Φ is injective. Now take any
∏N

i=1 fi, fi ∈ Fxi
. Let

C′ denote the path x0...xN−1 of length N − 1, let π′ denote the projection of V (T )
onto V (C′), define F ′

x to be the permutation group acting on π′−1(x) induced by
FixG(C

′k) and let Φ′ denote the natural homomorphism.
Since π′−1(xN−1) is the disjoint union of π−1(xN−1) and π

−1(xN ) define f ′
N−1 ∈

F ′
xN−1 to agree with fN−1 on π−1(xN−1) and with fN on π−1(xN ). By inductive
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hypothesis there exists f ∈ FixG(C
′k−1) such that Φ′(f) = f1...fN−2f

′
N−1. But

since f agrees with fN on π−1(xN ) then it fixes π−1(xN ) ∩ Ck−1. Hence f ∈

FixG(C
k−1) and Φ(f) =

∏N
i=1 fi as required. �

Corollary 6.4. Let G be a closed subgroup of Aut(T ). Then G satisfies Property
IPk if and only if G satisfies Property Pk.

Proof. From Proposition 6.3 it remains to show that if G satisfies Property IPk,
and C is either an infinite or doubly-infinite path, then Φ is an isomorphism. We
give the proof for the second case only, as this is the case we will encounter in the
next section and both proofs are essentially the same.

Index the vertices xi in C and consider an element
∏

fi of
∏

i∈Z
Fxi

. Define
Cn to be the path from x−n to xn. Apply Proposition 6.3 to Cn, in each case
denoting the projection of V (T ) onto V (Cn) by πn and the natural isomorphism
by Φn. This results in a sequence {gn}n∈N where gn ∈ FixG(C

k−1
n ), and Φn(gn) =

f ′
−nf−n+1...fn−1f

′
n, where f

′
n is the permutation on π−1

n (xn) that, for j ≥ n, agrees
with each fj on π−1(xj) (and similarly for f ′

−n). Since G is closed the sequence

{gn} converges to some g ∈ FixG(C
k−1). But Φn(gn) and Φ(g) agree on the sets

π−1(x) for all x ∈ V (Cn−1). Hence Φ(g) is equal to the limit of the sequence
{Φn(gn)}, which is

∏

fi. �

7. Simplicity

In this section we will prove our main simplicity result (Theorem 7.3), which
utilises Property Pk. The proof of this theorem follows the same process as the
proof of [20, Theoreme 4.5]. The following lemma, which is our analogue of [20,
Lemme 4.3], is required.

Lemma 7.1. Suppose G ≤ Aut(T ) is a closed subgroup and fix k ∈ N. Let h ∈ G
induce on some doubly-infinite path C in T a non-trivial translation. Let K denote
the fixator of Ck−1 in G. If G satisfies Property Pk then

K = [h,K] := {hgh−1g−1 : g ∈ K}.

Proof. Clearly h stabilises Ck, and hence hgh−1 ∈ K. This implies thatK ⊇ [h,K].
Now suppose that f ∈ K; we must find g ∈ K such that hgh−1g−1 = f . Let a
be the amplitude of the translation h and form a natural bijection between V (C)
and Z. By Definition 6.2 f =

∏

fz where fz ∈ Fz, and g can be defined by
finding appropriate gz ∈ Fz for all z ∈ Z. For each z ∈ Z notice that h induces an
isomorphism ηz : Fz → Fz+a defined by ηz(x) = hxh−1. We define gz inductively
as follows: if 0 ≤ z ≤ a − 1 then gz is arbitrarily chosen in Fz ; if z ≥ a then
gz = f−1

z .ηz−a(gz−a); if z < 0 then gz = η−1
z (fz+agz+a). It is easy to check that

g =
∏

gz satisfies hgh−1g−1 = f as required. �

We define the following subgroup of a group of tree automorphisms, which will
be shown to be simple in the theorem below.

Definition 7.2. Let G ≤ Aut(T ) be closed and fix k ∈ N. Then G+k is the
subgroup of G generated by all elements g ∈ G for which there exists (v, w) ∈ E(T )
such that g fixes B(v, k) ∩ B(w, k) (which is equivalent to g fixing B(v, k − 1) ∪
B(w, k − 1)).

Recall that if G is discrete then it can only satisfy Property Pk trivially for any
k ∈ N; in this case G+k is trivial. On the other hand it is immediate from the
topology on G < Aut(T ) that if G is non-discrete then G+k is nontrivial.
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Theorem 7.3. Let T be a tree and fix k ∈ N. Suppose G ≤ Aut(T ) does not
stabilise a proper non-empty subtree or an end of T , and satisfies Property Pk.
Then every nontrivial subgroup of G normalised by G+k contains G+k ; in particular
G+k is simple (or trivial).

Proof. Assume G+k is non-trivial, let H be a nontrivial subgroup of G normalised
by G+k , and e = (v, w) be any edge of T . To prove the theorem it suffices to show
thatH contains the fixator of the semi-tree T(v,w) in Fk,e := FixG(B(v, k)∩B(w, k))
(H will contain the fixator of T(w,v) in Fk,e by a similar argument). Then it follows
from Property IPk that H contains Fk,e = FixFk,e

(T(v,w)) FixFk,e
(T(w,v)) for any

edge e, and hence H contains all generators of G+k .
Since G+k is normal in G, by Lemma 2.6 G+k does not stabilise a proper non-

empty subtree or an end of T . We assumed that H is normalised by G+k , so
again by Lemma 2.6 H does not stabilise a proper non-empty subtree or an end
of T . Therefore by Proposition 2.5 there exists a doubly-infinite path C of T and
a non-trivial translation h ∈ H on C. We will show that it may be assumed that
C ⊂ T(v,w).

For any vertex v of C the orbit H.v has non-empty intersection with T(v,w) by
Lemma 2.4; that is, there exists g ∈ H with g(C)∩T(v,w) 6= ∅. By replacing C, h by

g(C), ghg−1 we can assume that C ∩ T(v,w) is non-empty. In particular this means
C∩T(v,w) is at least an infinite path. Let b, b′ be the ends of T for which C contains
representatives, at least one of which, say b, has representatives in C ∩T(v,w). Since
H does not stabilise a proper non-empty subtree or an end of T , there exists some
l ∈ H such that l(b′) /∈ {b, b′}. In addition, l−1(C) is a doubly-infinite path that
does not contain any representative of b′ (since l(b′) /∈ {b, b′}).

Now let π represent the projection of T onto C; that is, for all x ∈ V (T ) define
π(x) to be the vertex of C closest to x. There are two possibilities for the image
π(T(w,v)) of the other semi-tree; either π(T(w,v)) is a single vertex in T(v,w) (when
C is contained in T(v,w)), or C

′ := π(T(w,v)) is the representative of b′, an end of

T(w,v), that begins at w. Now since l−1(C) does not contain any representative

of b′ the image π(l−1(C)) must be contained in some representative of b, which
is also contained in C. Define C′′ to be the shortest such representative of b (i.e.
π(l−1(C)) ⊆ C′′ ⊆ C). Choose an integer n such that hn(C′′) and C′ are as far
away as we like, say distance k. Given such n the chain hn(l−1(C)) is disjoint from
T(w,v) and hence contained in T(v,w). Replacing C, h by hn(l−1(C)), hnl−1hlh−n we

can assume that C ⊂ T(v,w), as is C
k−1 := span{x ∈ V (T ) : d(x,C) ≤ k} (by our

choice of n).
Let K denote the fixator of Ck−1 in Fk,e; clearly K ⊂ G+k . Lemma 7.1 implies

that K = [h,K], which is in H (since H is normalised by G+k). Also since Ck ⊂
T(v,w) then K contains the fixator of T(v,w) in Fk,e. Therefore FixFk,e

(T(v,w)) ⊂ H
as required. �

8. Constructing Simple Groups

The preceding results underpin a general method for constructing simple groups
acting on trees that, beginning with some arbitrary group G, constructs its k-
closure (which has Property IPk) and applies Theorem 7.3 to obtain the simple
group (G(k))+k . In this section further properties of (G(k))+k are proven.
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Lemma 8.1. Suppose G ≤ Aut(T ) does not stabilise any proper subtree of T .
Then:

(i) (G(k))+k is an open (hence closed) subgroup of G(k);
(ii) (G(k))+k is non-discrete if and only if G(k) is non-discrete; and
(iii) (G(k))+k satisfies Property IPk.

Proof. (i) This follows since the group is generated by the open sets FixG(k)(B(v, k)∩
B(w, k)).

(ii) If G(k) is discrete then all of its subgroups are discrete. Similarly if G(k) is
non-discrete then all of its open subgroups are non-discrete.

(iii) Consider an edge e = (v, w) and let Fk,e := FixG(k)(B(v, k) ∩ B(w, k)).

By Proposition 5.2 G(k) has Property IPk, which implies that Fk,e is equal to the
product FixFk,e

(T(v,w)) FixFk,e
(T(w,v)). By definition Fk,e and the factors belong to

(G(k))+k , and are therefore equal to their counterparts in (G(k))+k . Hence (G(k))+k

also satisfies Property IPk. �

Theorem 8.2. Suppose G ≤ Aut(T ) does not stabilise any proper subtree of T .
Then (G(r))+r ≤ (G(k))+k for all r > k, with equality if and only if G(r) = G(k).

Proof. For the first part, note that G(r) ≤ G(k), and hence every generator in
(G(r))+r is a generator in (G(k))+k .

Suppose G(r) = G(k) and let g ∈ (G(k))+k be a generator. Then there exists an
edge (v, w) such that g fixesB(v, k)∩B(w, k). By Lemma 8.1(iii) (G(k))+k has Prop-
erty IPk and hence g = g1g2, where g1 ∈ FixFk,e

(T(v,w)) and g2 ∈ FixFk,e
(T(w,v)).

Since g1 ∈ G(k) (and hence G(r)) and g1 fixes T(v,w), then there exists some edge

(t, u) ∈ T(v,w) such that g fixes B(t, r)∩B(u, r). Hence g1 is a generator in (G(r))+r .

Similarly g2 is a generator in (G(r))+r , and hence g ∈ (G(r))+r .
On the other hand assume (G(r))+r = (G(k))+k . Let x ∈ G(k), v ∈ V (T ) and

pick some g ∈ G such that x|B(v,k) = g|B(v,k). Then g−1x fixes B(v, k) and hence

is in (G(k))+k . Then from the assumption g−1x ∈ G(r), and since g ∈ G(r) then
gg−1x = x ∈ G(r). �

Corollary 8.3. Suppose that G ≤ Aut(T ) does not stabilise any proper subtree of
T , and does not satisfy Property IPk for any k. Then there are infinitely many
distinct non-discrete simple groups (G(k))+k .

Proof. By Corollary 5.5 there are infinitely many distinct G(k), which implies that
G(k) 6= G for all k. By Theorem 8.2 there are infinitely many distinct simple groups
(G(k))+k . By Corollary 3.7 every G(k) is non-discrete, and hence by Lemma 8.1
each (G(k))+k is non-discrete. �

Example 8.4. Recall from Section 4.1 that the k-closures of PSL(2,Qp) are all
non-discrete and distinct. Also recall from Proposition 5.6 that the Baumslag-
Solitar group BS(m,n) acting on its Bass-Serre tree does not satisfy Property IPk

for any k ∈ N, assuming that m,n are relatively prime. Hence in these examples
there are infinitely many distinct (as subgroups of Aut(Tm+n)) non-discrete simple
groups (G(k))+k found by our construction.

We can describe the generators of the simple group (BS(m,n)(1))+1 using the
structure of automorphisms in the 1-closure. In Section 4.2 we constructed all
automorphisms of the 1-closure that fix the vertex labelled by 〈a〉. Such an auto-
morphism fixes an edge incident on 〈a〉 (and hence is a generator) if and only if
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the permutation c assigned to 〈a〉 is a multiple of either m or n. Note that since
the group is vertex-transitive, any other generator is the conjugate of one of these
automorphisms by a translation, which we can assume to be contained in BS(m,n).

In order to explicitly describe (and possibly classify) simple groups arising from
this process, there are two issues which still need to be addressed. The first problem
is obtaining an algebraic description of a group’s k-closure. This has been deter-
mined for the class of universal groups in [6], which satisfy Property P1. However
we expect this will become increasingly difficult as k increases. Secondly, whilst
we can show that two simple groups are distinct as subgroups of Aut(T ), this does
not ensure they are non-isomorphic as topological groups. We require a method
of determining when two groups have isomorphic k-closures, and hence contain
isomorphic simple subgroups.
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