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METRIC PROPERTIES OF BAUMSLAG–SOLITAR GROUPS

JOSÉ BURILLO AND MURRAY ELDER

Abstract. We compute estimates for the word metric of Baumslag–Solitar
groups in terms of the Britton’s lemma normal form. As a corollary, we find
lower bounds for the growth rate for the groups BS(p, q), with 1 < p ≤ q.

1. Introduction

In this article we investigate the word length of elements in the groups BS(p, q),
presented by

〈a, t | tapt−1 = aq〉.
We use the Britton normal form to obtain an estimate for the word length, and use
it to compute a lower bound for the growth rate.

Recall that a function f : G → R is a metric estimate for a group G with finite
symmetric generating set S if there exist constants C1, D1, C2, D2 > 0 so that for
every element g ∈ G, we have

C1f(x)−D1 ≤ ||x||S ≤ C2f(x) +D2,

where || · ||S is the word metric with respect to S.
Collins, Edjvet and Gill and independently Brazil [2, 3] showed that the groups

BS(1, q) have rational growth series, with explicit closed form series given in [3].
Edjvet and Johnson also gave rational growth series for the groups BS(q, q) [5] (see
also [13] Section 2.8). Finding an expression for the growth series or the growth rate
of BS(p, q) for 1 < p < q has proven to be a stubbornly difficult problem. Freden
et al. have made some progress in a series of papers [1, 9, 10]. Wong has also made
some progress [15], finding various estimates for the growth rate. In each case the
authors have focussed on the (difficult) problem of computing the growth of just
elements equal to a power of the generator a, the so-called horocyclic elements. In
[10] Freden and Knudson prove that the growth series of the horocyclic subgroup
is rational when p | q, and conjecture that when p ∤ q it is not D-finite.

Computing geodesics in these groups is an equally non-trivial problem. The
second author gave a linear time algorithm for the case BS(1, q) [7], and Diekert
and Laun gave a quadratic time algorithm for the case BS(p, q) when p | q [4, 13].

There has also been interest in the language of geodesics for these groups. Groves
showed that no set of geodesics surjecting to BS(1, q) can be regular [11]. The
second author constructed a context-free and 1-counter language of geodesics for
BS(1, 2) [6]. Freden and Adams give a context-sensitive combing in the case of
BS(2, 7) [1].

The paper is organised as follows. In Section 2 we compute the metric estimate
for BS(1, q), which we extend to the general case in Section 3. In Sections 4–5 we
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use the estimate to compute lower bounds for the growth rate. In Section 6 we
compare the bounds obtained with some known exact values for the growth rate.

We wish to thank Eric Freden, Antoine Gournay and Alexey Talambutsa for
helpful comments and improvements to the paper.

2. The groups BS(1, q)

We are assuming that q > 1. The group BS(1, q) admits the presentation

〈a, t | tat−1 = aq〉,
so observe that by rewriting

ta = aqt ta−1 = a−qt at−1 = t−1aq a−1t−1 = t−1a−q

we see that every element admits an expression of the type

t−maN tn

with m,n ≥ 0, and N can only be multiple of q if one of the m,n are zero. Under
these conditions, it is easy to see that this expression is unique.

From here we can find the expression of the estimate of the metric.

Proposition 2.1. There exist constants C1, C2, D1, D2 > 0 such that for every

element x = t−maN tn of BS(1, q), N 6= 0, we have

C1(m+ n+ log |N |)−D1 ≤ ||x|| ≤ C2(m+ n+ log |N |) +D2,

where ||x|| is the word metric with respect to the generators a, t.

Observe that the base of the logarithm is irrelevant, since a change of base would
only imply an adjustment of the constants, so we will work with the base that is
most convenient in each case. Also observe that when N = 0 the normal form word
tk for k ∈ Z is a geodesic.

Proof. To prove the upper bound, assume (taking the inverse if not) that N > 0,
and write N in base q as

N =

r
∑

i=0

kiq
i

with 0 ≤ ki < q and kr 6= 0. Observe that r = ⌊logq N⌋, and that

(1) t−maN tn = t−m
(

ak0tak1tak2 . . . takr t−r−1
)

tn

which has length at most m+n+2q(r+1), which gives the desired inequality (with
C2 = D2 = 2q).

For the lower bound, let b1 . . . bk be a geodesic for x. Define a sequence of
elements xk+1, xk, . . . , x1 by xk+1 = x and xi = xb−1

k . . . b−1
i for 1 ≤ i ≤ k. Let

mi, ni ∈ N, Ni ∈ Z such that xi has normal form t−miaNitni . Since x1 is the
identity, the integer sequence {mi + ni} must go from m+ n to 0 in k steps. Since
multiplying t−maN tn by a generator reduces the sum m+n by at most 1, we must
have that m + n ≤ k. The sequence |Ni| also goes to 0, with multiplication of xi

by a generator changing |Ni| as follows.
• For xit, we have that |Ni| = |Ni−1|.
• For xit

−1, we have that |Ni| = |Ni−1|, except in the case ni = 0. In this
case xi = t−miaNi and xit

−1 = t−mi−1aqNi , and

log |Ni−1| = log |qNi| = log |Ni|+ log q > log |Ni|.
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• For xi+1a
±1 we have

xi+1a
±1 = t−mi+1aNi+1tni+1a±1 = t−mi+1aNi+1a±qni+1

tni+1

so Ni+1 can be reduced by subtracting at most qni+1 .

It follows that only multiplication by a±1 can reduce |Ni|. In the worst case (to
maximize |N |) each generator reduces |N | by qni where ni ≤ n+ k ≤ 2k so |N | ≤
kq2k so

log |N | ≤ log k + 2k log q ≤ k + 2k log q = (2 log q + 1)k.

Putting this together we have

m+ n+ log |N | ≤ k + (2 log q + 1)k = (2 log q + 2)k

so C1 = 1
2(log q+1) and D1 = 0.

⊔⊓
We remark that the result also follows indirectly from recent work of Kharlam-

povich, Khoussainov and Miasnikov [12] who show that BS(1, q) is graph automatic,
which implies the normal form associated to the graph automatic structure gives a
metric estimate for the group (see Lemma 2.15 in [8]).

3. The groups BS(p, q)

In this section we prove metric estimates for the groups BS(p, q) for 1 ≤ p ≤ q.
We make use of the following normal form for group elements, based on Britton’s
lemma (see [14]).

Lemma 3.1. Any element x of BS(p, q) for 1 ≤ p ≤ q can be written uniquely as

x = w(a, t)aN where

w(a, t) ∈ {t, at, a2t, . . . , aq−1t, t−1, at−1, a2t−1, . . . , ap−1t−1}∗

and is freely reduced.

The proof is straightforward by performing the following rewritings, so that the
only large power of a appearing is on the right hand side:

• remove canceling pairs aa−1, a−1a, tt−1, t−1t;
• replace ar±dqt by arta±dp, where 0 ≤ r < q;
• replace as±dpt−1 by ast−1a±dq, where 0 ≤ s < p.

Uniqueness is an easy exercise based on Britton’s lemma. The word w(a, t) is of
the form

tm0ar1tm1ar2tm2 . . . ark tmk

where:

• mi, ri ∈ Z,
• mk = 0 only if the word w is empty,
• mi 6= 0 for i ≥ 1,
• 0 < ri < q,
• if p ≤ ri < q, then mi > 0.

We now use this normal form to obtain metric estimates. We study first the case
p < q.

Theorem 3.2. There exist constants C1, C2, D1, D2 > 0 such that for every ele-

ment x ∈ BS(p, q) for 1 ≤ p < q written as w(a, t)aN , we have

C1(|w|+ log(|N |+ 1))−D1 ≤ ||x|| ≤ C2(|w|+ log(|N |+ 1)) +D2.
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Proof. We first prove the upper bound. If N = 0 we are done. Assume (taking the
inverse of aN if not) that N > 0 and write N = d1q + r1 with 0 ≤ r1 < q. Then
aN = ar1tad1pt−1. Note that

d1p = d1q

(

p

q

)

≤ (d1q + r1)
p

q
= N

(

p

q

)

.

Now write d1p = d2q + r2 with 0 ≤ r2 < q, where

d2p = d2q
p

q
≤ (d2q + r2)

p

q
= d1p

p

q
≤ N

(

p

q

)2

.

Repeat to obtain

aN = ar1tar2t . . . arktadkpt−k

with 1 ≤ dkp < q when the process terminates, and observe that dkp cannot be zero,

or else the process terminates in the previous step. We have 1 ≤ dkp ≤ N
(

p
q

)k

, so

we deduce that k ≤ logq/p N . Our word has length at most qk + q + k since each

ri < q and d1p < q. It follows that the length obtained for the word aN is at most

(q + 1) logq/p N + q

which yields our upper bound.
Next, the lower bound. Let x1x2 . . . xn be a geodesic for x with n = ||x||, and let

wia
Ni be the normal form for the prefix of length i. We have w0 = ǫ and N0 = 0.
If xi+1 = a±1 then wi+1 = wi, and |Ni+1| ≤ |Ni| + 1. If xi+1 = t−1, put

Ni = dp+ r with 0 ≤ r < p and d an integer.

• If r = 0 and wi ends with t, write w = uact with 0 ≤ c < q and u empty
or ending in t±1. Then wia

Nit−1 = uactadpt−1 = uac+dq. It follows that
|wi+1| = |u| < |wi| and

|Ni+1| ≤ |Ni|
(

q

p

)

+ q.

• Otherwise wia
rt−1 is freely reduced. In this case wia

Nit−1 = wia
rt−1adq

so |wi+1| ≤ |wi|+ p and

|Ni+1| ≤ |Ni|
(

q

p

)

.

If xi+1 = t, put Ni = dq + s with 0 ≤ s < q and d an integer.

• If s = 0 and wi ends with t−1, write w = uact−1 with 0 ≤ c < p and u

empty or ending in t±1. Then wia
Nit = uact−1adqt = uac+dp. It follows

that |wi+1| = |u| < |wi| and

|Ni+1| ≤ |Ni|+ p < |Ni|
(

q

p

)

+ q.

• Otherwise wia
st is freely reduced. In this case wia

Nit = wia
stadp so

|wi+1| ≤ |wi|+ q and

|Ni+1| ≤ |Ni|
(

p

q

)

.
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It follows that for multiplication by any generator we have

|wi+1| ≤ |wi|+ q and |Ni+1| ≤ |Ni|
(

q

p

)

+ q.

After nmultiplications the value of |wn| can be at most qn, while |Nn| is bounded
as follows. We have N0 = 0, |N1| ≤ q, |N2| ≤

(

q
p

)

q+ q, |N3| ≤
(

q
p

)2

q+
(

q
p

)

q+ q

and so on, so

|Nn| ≤
n−1
∑

i=0

(

q

p

)i

q = q

(

q
p

)n

− 1
(

q
p

)

− 1
< C

(

q

p

)n

where C = q

( q

p )−1
> 1 as qp > q − p. We then have

|Nn|+ 1 ≤ C

(

q

p

)n

+ 1 ≤ 2C

(

q

p

)n

since C > 1 and q
p > 1. Then logq/p (|Nn|+ 1) ≤ logq/p(2C)+n = logq/p(2C)+||x||.

The two lower bounds combine to give the result with D1 = logq/p(2C) and

C1 = 1
q+1 . ⊔⊓

The case p = q is considerably easier.

Lemma 3.3. There exists a constant C1 > 0 such that for every element x ∈
BS(p, p) for p ≥ 1 written as w(a, t)aN , we have

C1(|w|+ |N |) ≤ ||x|| ≤ |w|+ |N |.
Proof. Since |w| + |N | is the word length of the normal form, the upper bound is
immediate.

The lower bound follows the same argument as the p < q case. Let x1 . . . xn be
a geodesic for x with n = ||x||, and define wi, Ni as before.

Multiplication by a±1 gives |wi+1| = |wi| and |Ni+1| ≤ |Ni|+ 1.
For multiplication by t±1, let Ni = dp+ r for 0 ≤ r < p and d an integer.

• If r = 0 and wi ends in t∓1 we have wi = uact∓1 (with c < p) and
wia

Nit±1 = uact∓1adpt±1 = uac+dp so |wi+1| ≤ |wi| and |Ni+1| ≤ |Ni|+ p.
• Otherwise we have wia

Nit±1 = wia
rt±1adp so |wi+1| ≤ |wi|+p and |Ni+1| ≤

|Ni|.
Then |wn| ≤ p||x|| and |Nn| ≤ p||x|| which gives our lower bound with C1 = 1

2p . ⊔⊓

4. Lower bound for the growth rate for BS(p, q)

For q > p > 1, the exact growth rate for BS(p, q) is not known. Here, we will
make use of the bounds specified above to find lower bounds for these rates. The
growth function is given by

γ(n) = #B(n) = #{x ∈ BS(p, q) : ||x|| ≤ n},
but observe that we can consider the alternate set using the upper bound given
above:

D(n) = {x = w(a, t)aN ∈ BS(p, q) : |w|+ (q + 1) logq/p N + q ≤ n}
and the bound implies precisely that D(n) ⊂ B(n). Hence, we have that #D(n) is
a lower bound for γ(n).
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To estimate the number of elements with normal form w(a, t)aN which satisfy

|w|+ (q + 1) logq/p N + q = k,

observe that if (q + 1) logq/p N + q = k, then the number N is of the order of an
exponential with base

(

q

p

)
1

q+1

which goes to 1 as q grows. The conclusion one can deduce from this is that in the
set

{x = w(a, t)aN : |w|+ (q + 1) logq/p N + q = k}
the dominant part will be the part of those elements satisfying |w| = k because it
will be an exponential with base larger than

(

q

p

)
1

q+1

at least asymptotically.
Now consider the set

E(n) = {w(a, t) : |w| ≤ n}.
Observe that if an element can be written as a word w(a, t), then its length is
bounded above by |w|, so we have that E(n) ⊂ B(n). Hence the cardinality #E(n)
is a genuine lower bound. And note also that this lower bound works as well for
the case BS(p, p).

Observe that the language used in the normal form, i.e.

{t, at, a2t, . . . , aq−1t, t−1, at−1, a2t−1, . . . , ap−1t−1}∗

is regular, so its elements can be described as the words accepted by a finite state
automaton. Since the elements are normal forms and Britton’s lemma ensures that
different normal forms will give different elements, the set E(n) is precisely the
set of words accepted by this finite state automaton with length at most n. The
number of these elements can be asymptotically estimated using the eigenvalues of
the adjacency matrix for the automaton, which gives the rough lower bounds for
the growth rate of the BS(p, q) groups as shown in Table 1. In the next section
we will obtain better bounds by choosing different normal forms, and we give more
details on how we obtain bounds from the automata there.

q = 2 3 4 5 . . . 10 . . . 20
p = 2 2 2.14790 2.20557 2.22919 . . . 2.24668 . . . 2.24698
3 2.26953 2.31651 2.33529 . . . 2.34841 . . . 2.34859
4 2.35930 2.37627 . . . 2.38786 . . . 2.38801
5 2.39246 . . . 2.40345 . . . 2.40358
. . . . . . . . . . . .
10 2.41396 . . . 2.41409
. . . . . .
20 2.41421
Table 1. Lower bounds for the growth rate of BS(p, q) groups
obtained from the metric estimate.
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5. Improving the lower bound

The normal forms obtained at the beginning of section 3 are by no means the
only ones possible. A normal form which will produce shorter normal forms, and
hence better lower bounds, is given in the following lemma.

Lemma 5.1. Any element x of BS(p, q) for 1 ≤ p ≤ q can be written uniquely as

x = w(a, t)aN where

w(a, t) ∈ { t, at, a2t, . . . , aαt,
a−1t, a−2t, . . . , a−βt,

t−1, at−1, a2t−1, . . . , aγt−1,

t−1, a−1t−1, a−2t−1, . . . , a−δt−1}∗

and is freely reduced. The exponents are

α =
⌊ q

2

⌋

β =

⌊

q − 1

2

⌋

γ =
⌊p

2

⌋

δ =

⌊

p− 1

2

⌋

For clarity, the exponents are given by the following table:

α β γ δ

p = 2k + 1 q = 2ℓ+ 1 ℓ ℓ k k

p = 2k + 1 q = 2ℓ ℓ ℓ− 1 k k

p = 2k q = 2ℓ+ 1 ℓ ℓ k k − 1
p = 2k q = 2ℓ ℓ ℓ− 1 k k − 1

and finally observe that since p ≤ q, we have that γ ≤ α and δ ≤ β.
The proof is straightforward by performing the following rewritings, so that the

only large power of a appearing is on the right hand side:

• remove canceling pairs aa−1, a−1a, tt−1, t−1t;
• replace ar±dqt by arta±dp, where −β ≤ r ≤ α;
• replace as±dpt−1 by ast−1a±dq, where −δ ≤ s ≤ γ.

Uniqueness is an easy exercise based on Britton’s lemma. The word w(a, t) is of
the form

tm0ar1tm1ar2tm2 . . . ark tmk

where:

• mi, ri ∈ Z,
• mk = 0 only if the word w is empty,
• mi 6= 0 for i ≥ 1,
• −β ≤ ri ≤ α,
• if ri < −δ or ri > γ, then mi > 0.

The words will then be accepted by a finite state automaton. As an example,
the case for BS(2, 3) has words in

{t, at, a−1t, t−1, at−1}∗

and freely reduced, which are accepted by the automaton in Figure 1 where the
accept states are S, 1 and 2. Note that:

• The word starts at the state S with any letter a, a−1, t or t−1.
• The word is in state 1 if the last letter was a t, and the next letters allowed
are a, a−1 or t.
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S1 2

3

4

t t−1

a

a−1

t t−1

aa

t t−1

t

a−1 a−1

Figure 1. The automaton for the words w in BS(2, 3)

• The word is in state 2 if the last letter was a t−1, and the next letters
allowed are a, a−1 or t−1.

• The word is in state 3 if the last letter was an a but the last two were not
a2, and then the next letters allowed are a, t or t−1.

• The word is in state 4 if the last letter was a−1, and the next letter allowed
is only t.

It is a standard procedure (either by computing the dominant eigenvalue of the
adjacency matrix, or by writing down a regular grammar for the language of the
automaton and applying the Chomsky–Schützenberger theorem) to compute the
asymptotics of lengths of words accepted by this automaton. We obtain:

Proposition 5.2. The growth rate for BS(2, 3) is bounded below by

1 +
√
13

2
= 2.30278 . . . .

This construction readily extends to the general case. See Figure 2 for an exam-
ple, the automaton for BS(4, 7), which gives a bound of 2.85502. By analyzing the
automaton we can compute the lower bounds for the growth rates for all groups.

Theorem 5.3. The growth rate for the Baumslag–Solitar group BS(p, q) for the

case 4 ≤ p ≤ q is bounded below by the largest zero of the polynomial

Ppq(x) = xℓ+1−xℓ−2(xℓ−1+xℓ−2+. . .+xℓ−k+1)−Ckx
ℓ−k−2(xℓ−1+xℓ−2+. . .+x)−Cℓ

where

Ck =

{

1 if p = 2k
2 if p = 2k + 1

Cℓ =

{

1 if q = 2ℓ
2 if q = 2ℓ+ 1
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S1 2

3

4

5

6

7

8

t t−1

a

a−1

a

a

a−1

a−1

t t−1

aa

t t−1

t t−1

a−1 a−1

t

t

t

t

t−1

Figure 2. The automaton for the words w in BS(4, 7)
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The remaining cases for 2 ≤ p ≤ 3 are:

P22(x) = x2 − x− 2
P23(x) = x2 − x− 3
P2q(x) = xℓ+1 − xℓ − xℓ−1 − 2(xℓ−1 + xℓ−2 + . . .+ x)− Cℓ, for q ≥ 4
P33(x) = x2 − x− 4
P3q(x) = xℓ+1 − xℓ − 2xℓ−1 − 2(xℓ−1 + xℓ−2 + . . .+ x) − Cℓ, for q ≥ 4

with the same Cℓ as above.

Table 2 contains some bounds for growth rates for BS(p, q) using this method,
which are significantly improved compared to those obtained in the previous section.

q = 2 3 4 5 . . . 10 . . . 20
p = 2 2 2.3028 2.4142 2.5115 . . . 2.6083 . . . 2.6180
3 2.5616 2.6511 2.7321 . . . 2.8071 . . . 2.8136
4 2.7321 2.8063 . . . 2.8739 . . . 2.8794
5 2.8751 . . . 2.9365 . . . 2.9413
. . . . . . . . . . . .
10 2.9917 . . . 2.9952
. . . . . .
20 2.999966
Table 2. Improved lower bounds for the growth rate of BS(p, q)
groups.

6. Some upper bounds and some exact values

In his Master’s thesis, Tom Wong computes the size of spheres of small radius in
various Baumslag-Solitar groups (Table 5.1 in [15]). Using this data and Fekete’s
Lemma (see page 63 of [15]) he obtains upper bounds for the spherical growth rates
of the following groups. (Note that the spherical growth sequence is submultiplica-
tive in any finitely generated group, so Fekete’s Lemma applies.)

• For BS(2, 2) the sphere of radius 18 contains 3014654 elements, so an upper

bound for the growth rate is 18
√
3014654 which is approximately 2.290.

• For BS(2, 3) the sphere of radius 18 contains 38595072 elements, so an

upper bound for the growth rate is 18
√
38595072 which is approximately

2.639.
• For BS(3, 5) the sphere of radius 15 contains 11615210 elements, so an

upper bound for the growth rate is 15
√
11615210 which is approximately

2.958.

Recall that if S(z) is the generating function for the spherical growth series and
B(z) is the generating function for the growth series, then

B(z) =
S(z)

1− z
.

If the dominant singularity (radius of convergence) of B(z) is r then the exponential
growth rate of the growth series is 1

r . Since by Theorem 5.3 the growth rate of

BS(p, q) is bounded below by 2, the dominant singularity of B(z) is at most 1
2 , so
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the factor 1 − z in the denominator does not affect the dominant singularity, that
is, the spherical growth rate is the same as the growth rate for all 2 ≤ p ≤ q.

Combining these bounds we have the following estimates.

• For BS(2, 2) the growth rate is between 2 and 2.290 (in fact it is exactly 2,
see below).

• For BS(2, 3) the growth rate is between 2.302 and 2.639.
• For BS(3, 5) the growth rate is between 2.732 and 2.958.

In the case p = q the exact growth rates can be obtained from the generating
functions obtained by Edjvet and Johnson [5]. For BS(2, 2) the generating function
is

1− z − 2z3

(1− z)(1− 2z)2

which has a dominant singularity of 1
2 , so the growth rate is exactly 2. It follows that

the lower bound obtained in Proposition 5.2 is sharp. For BS(3, 3), the generating
function is

(1 + z)2(1− 2z)(1 + z + 2z3)

(1− z)(1− z − 4z2)(1 − z − 2z2 − 2z3)

whose dominant singularity is 0.39039, giving a growth rate of 2.5616, the same
one we obtain in Theorem 5.3. The exact values also agree with our lower bounds
for p = 4, 5, 6.
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