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Abstract. We study finitely generated groups whose word problems
are accepted by counter automata. We show that a group has word prob-
lem accepted by a blind n-counter automaton in the sense of Greibach
if and only if it is virtually free abelian of rank n; this result, which
answers a question of Gilman, is in a very precise sense an abelian ana-
logue of the Muller-Schupp theorem. More generally, if G is a virtually
abelian group then every group with word problem recognised by a G-
automaton is virtually abelian with growth class bounded above by the
growth class of G. We consider also other types of counter automata.

1. Introduction

Blind counter automata, and the languages they accept, were introduced
and extensively studied by Greibach [14, 15]. Such an automaton is a finite
state acceptor augmented with a number of integer counters; these are all
initialised to zero, and can be incremented and decremented during opera-
tion, but not read. The automaton accepts a word exactly if it the reaches
an accepting state, with the counters all returned to zero.

At the same time, an area of considerable interest in combinatorial group
theory is the study of word problems of finitely generated groups; it is now
well-known that many structural properties of groups correspond naturally
to language theoretic properties of their word problems, and vice versa [1,
19, 20, 26]. One of the main objectives of this paper is to give a complete
characterisation of the class of groups whose word problems are blind counter
languages, thus answering a question posed by Gilman [11].

1

http://arxiv.org/abs/math/0611188v1


2 ON GROUPS AND COUNTER AUTOMATA

Theorem 1. Let H be a finitely generated group. Then the word problem
for H is accepted by a blind n-counter automaton if and only if H is virtually
free abelian of rank n or less.

As well as being of interest in its own right, Theorem 1 forms an important
part of a more general framework. Blind counter automata can be viewed as
a class of G-automata or blind group automata. Recall that a G-automaton
is a finite state acceptor augmented with a memory register which stores an
element of a given monoid or group; the automaton cannot read the content
of its register, but it may change the value by multiplying on the right by
some element of the monoid. The register is initialised with the identity
element, and the automaton accepts an input word w exactly if, by reading
this word, it can reach a final state with the register returned to the identity.
Many important classes of languages can be characterised as G-automaton
languages for particular groups G; these include the context-free languages
[3, 5, 22] and the recursively enumerable languages [25]. It follows easily
from the definitions that blind n-counter automata are the same thing as
Zn-automata [22]; the latter were studied independently of Greibach’s work
by Mitrana and Stiebe [25].

Recently, a number of authors have studied connections between the struc-
tural properties of a given group G and of the collection of groups whose
word problems are recognised by G-automata [9, 10, 13, 22, 24]. The sec-
ond author [23], building upon previous work of Elston and the third author
[10], has recently given a complete characterisation of the groups whose word
problems are accepted by deterministic G-automata, for each group G.

Theorem 2 (Kambites 2006 [23]). Let G and H be groups, with H finitely
generated. Then H has word problem accepted by a deterministic G-automaton
if and only if H has a finite index subgroup which embeds in G.

An interesting question is that of the extent to which this result can be
extended to the non-deterministic case. A well-known theorem of Muller and
Schupp [26], when combined with a subsequent result of Dunwoody [7], says
that a group has context-free word problem if and only if it is virtually free.
If G is a free group of rank 2 or more than the G-automata accept exactly the
context-free languages [3, 5, 22]. Moreover, every subgroup of G is free, and
G contains every countable rank free group as a subgroup. It follows that the
result of Muller and Schupp admits the following equivalent formulation, as
a generalisation of Theorem 2 to non-deterministic automata, in the special
case that the register group G is free and non-abelian.

Theorem 3 (Muller and Schupp 1983 [26], Dunwoody 1985 [7]). Let G be
a free group of rank 2 or more, and H a finitely generated group. Then the
word problem for H is accepted by a G-automaton if and only if H has a
finite index subgroup which embeds in G.

As a consequence of Theorem 1, we deduce the following result, which
gives a complete non-deterministic analogue of Theorem 2 in the case that
the register group G is virtually abelian, and hence also an abelian analogue
of Theorem 3.
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Theorem 4. Let G be a virtually abelian group and H a finitely generated
group. Then H has word problem accepted by a G-automaton if and only if
H has a finite index subgroup which embeds in G.

This generalises and was inspired by the following recent result of Cleary
and the first and third authors [4].

Theorem 5 (Cleary, Elder and Ostheimer 2006 [4]). The word problem for
Zp is recognised by a Zq-automaton only if and only if p ≤ q.

While Theorem 5 was proved directly using only elementary linear alge-
bra, the more general Theorems 1 and 4 seem to require a more complex
argument involving growth of groups and the structure of rational sets in
Zn.

In addition to this introduction, this paper comprises six sections. Sec-
tion 2 briefly recalls some definitions and notation which we shall use in the
rest of the paper. Section 3 obtains some bounding results concerning mini-
mal elements of intersections of semilinear sets in Zn; these may be of some
independent interest. In Section 4, these bounds are applied to prove that a
group with word problem accepted by a Zn-automaton has growth bounded
above by a polynomial of degree n; it follows by Gromov’s polynomial growth
theorem [16] that such a group is virtually nilpotent. In Section 5 we use
a combinatorial result of Mitrana and Stiebe [25] to show that a virtually
nilpotent group with word problem accepted by a Zn-automaton must in
fact be virtually abelian. In Section 6 we combine the results of Sections 4
and 5 to prove Theorems 1 and 4. Finally, in Section 7, we consider groups
whose word problems are accepted by other kinds of counter automata.

2. Preliminaries and Notation

In this section we recall some basic definitions which we shall need in
the rest of the paper. We assume a basic familiarity with formal languages,
with finite automata over monoids (see [8] for an introduction) and with
elementary group theory (see, for example, [28]). Throughout this paper,
we write N for the set of non-negative integers, including 0. We apply
functions on the right of their arguments, and compose them from left to
right. We denote by the empty word by ǫ.

Let G be a finitely generated group. Recall that a (finite) choice of gen-
erators for G is a surjective monoid morphism σ from a (finitely generated)
free monoid X∗ onto G. The choice of generators is called symmetric if
X comes equipped with a fixed-point-free involution x 7→ x−1 such that
(x−1)σ = (xσ)−1 for all x ∈ X; such an involution extends naturally to the
whole of X∗ by (x1 . . . xn)−1 = x−1

n . . . x−1
1 . We say that a word w ∈ X∗ is a

representative for the element wσ ∈ G. We shall often leave the morphism
σ implicit, referring to X as a choice of generators for G. Recall that the
word problem for G with respect to σ is the language of all words w ∈ X∗

such that wσ = 1 in G.
Now suppose we have fixed a choice of generators X for G. For each

g ∈ G, we define the length of g, denoted |g|, to be the length of the shortest
representative for g in X∗; if the choice of generators is symmetric then we
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have |g−1| = |g|. For n ∈ N, the ball of radius n in G is the set

Bn(G) = {g ∈ G | |g| ≤ n}.

Recall that the growth function of G (with respect to X, which we usually
leave implicit) is the function

N → N, n 7→ |Bn(G)|

while the growth of G is the asymptotic complexity class of the growth func-
tion. The latter is easily seen to be independent of the choice of generators.

We now recall the definition of an M -automaton. Let M be a monoid
with identity 1, and X be a finite alphabet. By an M -automaton A over
X, we mean a finite automaton A over the direct product monoid M ×X∗.
We say that A accepts a word w ∈ X∗ if it accepts (1, w) ∈ M × X∗ when
considered as a finite automaton in the usual sense, that is, if there is a
path from the start state to a terminal state labelled (1, w). The language
recognised or accepted by A is the set of all words w ∈ X∗ which are accepted
by A. For a more detailed introduction to M -automata, see [12] or [22].

We shall be particularly interested in the case in which the monoid M is
actually a group G, and the alphabet X is a (typically symmetric) monoid
generating set for another group H. We shall need the following elementary
proposition.

Proposition 1. Let G be a group, and let H be a finitely generated subgroup
of a finitely generated group K. If the word problem for K (with respect
to any choice of generators) is accepted by a G-automaton then the word
problem for H (with respect to any choice of generators) is accepted by a
G-automaton. If H has finite index in K then the converse holds.

Proof. Let σ : X∗ → H and τ : Y ∗ → K be finite choices of generators
for H and K respectively. For each x ∈ X choice a word wx ∈ Y ∗ such
that wxτ = xσ, and define a morphism ρ : X∗ → Y ∗ by xρ = wx. It is
readily verified that the word problem for H with respect to σ is the inverse
image under ρ of the word problem for K with respect to τ . Since the class
of languages accepted by G-automata is closed under rational transduction
[12, Theorem 6.2], and hence under inverse morphism, this suffices to prove
the direct implication.

Conversely, suppose the word problem for H is accepted by a G-automaton,
and H has finite index in K. By [10, Theorem 7], the word problem for K
is accepted by a H-automaton, and it follows by [22, Corollary 3] that the
word problem for K is accepted by a G-automaton. �

Note that, since a group is a finite index subgroup of itself, Proposition 1
implies in particular that recognisability of the word problem for H by a
G-automaton is independent of the choice of generators for H.

Corollary 1. If the word problem for H with respect to any choice of gen-
erators is accepted by a G-automaton, then the word problem for H with
respect to every choice of generators is accepted by a G-automaton.

We can prove also a similar result for subgroups of the register group.
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Proposition 2. Let G be a group, and H a subgroup of G. Then any
language accepted by an H-automaton is accepted by a G-automaton. If H
has finite index in G then the converse holds.

Proof. It follows straight from the definitions that any H-automaton can
be viewed as a G-automaton accepting the same language, so the direct
implication is immediate.

For the converse, suppose H has finite index in G and that L is accepted
by a G-automaton. By [10, Theorem 7], the word problem for G is accepted
by an H-automaton, and so by [22, Corollary 3], the language L is accepted
by an H-automaton, as required. �

3. Some Bounds for Linear Maps and Semilinear Sets

The main aim of this section is to establish a bound on the size of the
smallest element of the intersection of two semilinear sets, in terms of certain
parameters of those sets.

Let n be a non-negative integer. We consider the group Zn as an additive
subgroup of the row vector space Qn; hence we use additive notation. Let X
be the set of free generators for Zn together with their inverses, that is, the
set of row vectors with a single non-zero component, which takes the value
1 or −1. The length function for Zn with respect to X is the restriction to
Zn of the “Manhattan taxi” norm on Qn, given by

|(x1, x2, . . . , xn)| = |x1| + |x2| + · · · + |xn|

where |xi| for xi ∈ Q denotes the absolute value of xi.
Recall that a linear set in Zn is a set of the form

{s0 + λ1s1 + · · · + λpsp | λ1, . . . , λp ∈ N}

for some vectors s0, s1, . . . , sp ∈ Zn. A semilinear set is a finite union of
linear sets. A theorem of Parikh [27] states that every context-free subset
of Zn, and in particular every rational subset of Zn, is in fact semilinear.

In order to prove the main theorem, we will need some results concern-
ing linear maps and semilinear sets in Zn. We begin with the following
elementary linear algebraic proposition concerning linear maps.

Proposition 3. Let σ : Zp → Zn be a linear map. Then there exist constants
L,M > 0 such that if v ∈ Zn lies in (Np)σ, then v = uσ for some u ∈ Np

with |u| < L|v| + M

Proof. Consider first the case in which σ is injective. It is readily verified
that σ extends uniquely to a linear map τ : Qp → Qn which is also injective.
Now τ has an inverse τ−1 : Im τ → Qp, which is also linear. Hence, there
exist vectors x1, . . . , xn ∈ Qp such that vτ−1 = v1x1 + · · · + vnxn for every
v ∈ Im τ , where of course v1, . . . , vn denote the components of v. Let L be
the greatest norm of any of the vectors xi, and let M = 0.
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Now suppose v ∈ Zn lies in Npσ. Then letting u = vτ−1, since τ is
injective, we must have u ∈ Np. Now using the triangle inequality we have:

|u| = |vτ−1|

= |v1x1 + · · · + vnxn|

≤ |v1||x1| + · · · + |vn||xn|

≤ L(|v1| + · · · + |vn|)

= L|v| + M

as required.
For the case in which σ is not injective, we proceed by induction on the

dimension p of the domain of σ. First, observe that since every map with
domain Z0 is injective, the base case p = 0 is already proven.

Now let p ≥ 1, and suppose the claim holds for lesser values of p. It is
easily checked that, since σ is not injective, we can choose a non-zero vector
z ∈ Zp which lies in the kernel of σ; by negating z if necessary, we may
assume that at least one component of z is positive. Let c be the largest
positive component of z. Let x1, . . . , xp ∈ Zn be vectors such that

uσ = u1x1 + · · · + upxp

for all u = (u1, . . . , up) ∈ Zp. For 1 ≤ i ≤ p, define

σi : Zp−1 → Zn

by currying σ with 0 in the ith position, that is, by

(x1, . . . , xi−1, xi+1, . . . , xp)σi = (x1, . . . xi−1, 0, xi+1, . . . , xp)σ.

For each σi, let Li and Mi be the constants given by the inductive hypothesis,
and let L and M ′ be the greatest of the Lis and Mis respectively. Let q be
the greatest magnitude of any of the vectors xi.

Now suppose uσ = v where u ∈ Np. Then (u − z)σ = v, and either
(u − z) ∈ Np or ui < c for some i. By subtracting z as many times as
possible while remaining in Np, we may assume the latter. Now we have

v = uσ = u1x1 + · · · + upxp

so that

v − uixi = u1x1 + · · · + ui−1xi−1 + ui+1xi+1 + · · · + upxp

= (u1, . . . , ui−1, ui+1, . . . , up)σi.

By the inductive hypothesis, there exists a vector

(u′

1, . . . , u
′

i−1, u
′

i+1, . . . , u
′

p) ∈ Np−1

such that
v − uixi = (u′

1, . . . , u
′

i−1, u
′

i+1, . . . , u
′

p)σi

and
u′

1 + · · · + u′

i−1 + u′

i+1 + · · · + u′

p < Li|v − uixi| + Mi. (1)

Letting
u′ = (u′

1, . . . , u
′

i−1, ui, u
′

i+1, . . . , u
′

p)

we have
u′σ = (u′

1, . . . , u
′

i−1, u
′

i+1, . . . , u
′

p)σi + uixi = v.
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Moreover, by the triangle inequality, we have

|v − uixi| ≤ |v| + | − uixi| = |v| + ui|xi|.

which combined with (1) yields

u′

1 + · · · + u′

i−1 + u′

i+1 + · · · + u′

p < Li|v| + Liui|xi| + Mi.

Letting u′

i = ui < c and recalling that Li ≤ L, Mi ≤ M ′ and |xi| ≤ q we get

|u′| = u′

1 + · · · + u′

p ≤ L|v| + Lcq + M ′ + c.

Since L, M ′, c and q are constants chosen independently of v, setting M =
Lcq + M ′ + c suffices to complete the proof. �

We can apply Proposition 3 to obtain a related bound on the size of the
smallest element of an intersection of linear sets in Zn.

Theorem 6. Let n, p, q ≥ 0 and suppose s1, . . . sp, t1, . . . tq ∈ Zn. Then
there exist constants P and Q such that for any s0, t0 ∈ Zn the linear sets

S = {s0 + λ1s1 + · · · + λpsp | λ1, . . . , λp ∈ N}

and
T = {t0 + µ1t1 + · · · + µqtq | µ1, . . . , µq ∈ N}

either do not intersect, or have a common element of magnitude less than
P (|s0| + |t0|) + Q.

Proof. Define a function π : Zp+q → Zn by

(λ1, . . . , λp, µ1, . . . , µq)π = λ1s1 + · · · + λpsp − µ1t1 − · · · − µqtq.

Clearly π is linear. Let L and M be the constants given for π by Propo-
sition 3. Let c be the greatest magnitude of any of the vectors si. Let
P = Lc + 1 and Q = cM .

Now suppose S and T intersect, and choose v ∈ S ∩ T . Then there exist
λ1, . . . , λp, µ1, . . . , µq ∈ N such that

v = s0 + λ1s1 + · · · + λpsp = t0 + µ1t1 + · · · + µqtq.

Now we have

(λ1, . . . , λp, µ1, . . . , µp)π = λ1s1 + · · · + λpsp − µ1t1 − · · · − µqtq = t0 − s0.

so that t0 − s0 lies in the image of the function π. Now by Proposition 3,
there exist λ′

1, . . . , λ
′

p, µ
′

1, . . . , µ
′

q ∈ N such that

λ′

1 + · · · + λ′

p + µ′

1 + · · · + µ′

q < L|t0 − s0| + M (2)

and
(λ′

1, . . . , λ
′

p, µ
′

1, . . . , µ
′

q)π = t0 − s0.

Using the definition of π, it follows that the element

v′ = s0 + λ′

1s1 + · · · + λ′

psp = t0 + µ′

1t1 + · · · + µ′

qtq.

lies in S ∩ T . Moreover, using the triangle inequality, we have

|v′| = |s0 + λ′

1s1 + · · · + λ′

psp|

≤ |s0| + λ′

1|s1| + · · · + λ′

p|sp|

≤ |s0| + (λ′

1 + · · · + λ′

p)c
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Now by (2), we have

λ′

1 + · · · + λ′

p ≤ λ′

1 + · · · + λ′

p + µ′

1 + · · · + µ′

q ≤ L(|t0 − s0|) + M

so that

|v′| ≤ |s0| + Lc|t0 − s0| + cM

≤ |s0| + Lc|t0| + Lc|s0| + cM (by the triangle inequality)

≤ (Lc + 1)(|s0| + |t0|) + cM

= P (|s0| + |t0|) + Q

as required. �

Corollary 2. Let R be a finite set of vectors in Zn. Then there exist positive
integers P and Q such that any linear sets

S = {s0 + λ1s1 + · · · + λpsp | λ1, . . . , λp ∈ N}

and

T = {t0 + µ1t1 + · · · + µqtq | µ1, . . . , µq ∈ N}

with s1, . . . , sp, t1, . . . tq ∈ R either do not intersect, or have a common ele-
ment of magnitude less than P (|s0| + |t0|) + Q.

Proof. Let R′ denote the (finite) set of all finite sequences of elements from
R which do not contain the same element twice. For each pair of sequences
s = (s1, . . . , sp) ∈ R′ and t = (t1, . . . , tq) ∈ R′, let Pst and Qst be the values
given by Theorem 6, and choose P and Q to exceed all the Pst and Qst

respectively.
Now let S and T be as given in the statement, and suppose that they

intersect. Let s = (s1, . . . , sp) and t = (t1, . . . , tq). Clearly, we may assume
without loss of generality that si 6= sj for 1 ≤ i < j ≤ p so that s ∈ R′, and
similarly t ∈ R′. By Theorem 6, S and T have a common element of norm
less than Pst(|s0| + |t0|) + Qst, which in turn is less than P (|s0| + |t0|) + Q,
as required. �

We now introduce some terminology for certain parameters of linear and
semilinear sets of Zn. Let p be a non-negative integer. We say that a linear
subset S of Zn has constant bound p if there exist s0, . . . , sq ∈ G with |s0| ≤ p
such that

S = {s0 + λ1s1 + · · · + λqsq | λ1, . . . , λq ∈ N}.

Similarly, S has generator bound p if there exist s0, . . . , sq ∈ G satisfying the
above equation with |si| ≤ p for 1 ≤ i ≤ q. A semilinear set has constant
bound p [respectively, generator bound p], if it is a finite union of linear
sets with constant bound p [generator bound p]. We state two elementary
properties of these parameters, which follow directly from the definitions.

Proposition 4. Let S be a linear [semilinear] subset of Zn with constant
bound P and generator bound Q. Then the set

−S = {−s | s ∈ S}

is a linear [semilinear] set with constant bound P and generator bound Q.
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Proposition 5. Suppose S and T are linear [semilinear] sets with constant
bounds P and Q respectively, and generator bounds R and S respectively.
Then the set

S + T = {s + t | s ∈ S, t ∈ T}

is a linear [semilinear] set with constant bound P + Q and generator bound
max(R,S).

Theorem 7. Let K be a positive integer. Then there exist positive integers
C and D such that for any semilinear sets S and T in Zn with constant
bound m and generator bound K, either S and T do not intersect, or they
have a common element of magnitude less than Cm + D.

Proof. Let R be the (finite) set of all vectors in Zn of norm less than K, and
let P and Q be the values given by Corollary 2. Let C = 2P and D = Q.

Now suppose S and T are intersecting semilinear sets with constant bound
m and generator bound K. Then each is a finite union of linear components
with constant bound m and generator bound K, where some component S′

of S intersects with some component T ′ of T . Writing

S′ = {s0 + λ1s1 + · · · + λpsp | λ1, . . . , λp ∈ N}

and

T ′ = {t0 + µ1t1 + · · · + µqtq | µ1, . . . , µq ∈ N},

by Corollary 2 there is an element in S′∩T ′, and hence in S ∩T , with norm
less than

P (|s0| + |t0|) + Q ≤ P (m + m) + Q = 2Pm + Q = Cm + D.

�

4. The Growth of Counter Groups

In this section, we apply the main result of Section 3 to show that a group
with word problem accepted by a Zn-automaton has growth bounded above
by a polynomial of degree n. It follows by Gromov’s polynomial growth
theorem [16] that such a group is virtually nilpotent; in Sections 5 and 6 we
shall see that every such group is in fact virtually abelian.

Theorem 8. Let H be a group. If the word problem for H is accepted by a
Zn-automaton then H has growth bounded above by a polynomial of degree
n.

Proof. Fix a finite, symmetric choice of generators X for H; then by Corol-
lary 1 we may let A be a Zn-automaton accepting the word problem WX(H)
of H with respect to X. Clearly, we may assume without loss of general-
ity that every edge in A has label of the form (g, x) for some g ∈ Zn and
x ∈ X ∪ {ǫ}.

To prove the lemma, it will suffice to demonstrate the existence of a
function σ : H → Zn (which need not be a morphism) and constants P , Q
and R such that:

(i) the pre-image gσ−1 of each element g ∈ Zn contains at most R
elements; and

(ii) for any h ∈ H, we have |hσ| ≤ P |h| + Q.
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Indeed, suppose σ, P , Q and R satisfy these properties. Then clearly,
|Bn(H)| ≤ R (|BPn+Q(Zn)|) for all n. Since the growth function of Zn

is a polynomial of degree n, and the composition of a polynomial of degree
n with a linear function is a polynomial of degree n, this suffices to show
that the growth of H is bounded above by a polynomial of degree n, as
required. The rest of this section, then, is concerned with finding a function
σ and constants P , Q and R with the above properties.

We begin with a definition. For each pair of states p, q in the automaton
A, let Rpq denote the set of all element g ∈ Zn such that (g, ǫ) labels a path
from p to q. By removing from A all edges with label of the form (g,w)
for w 6= ǫ and then ignoring the second components of the edge labels, we
can clearly obtain a finite automaton over Zn which, with initial state p and
terminal state q accepts Rpq. Thus, each Rpq is a rational subset of Zn, and
so by Parikh’s theorem [27] is semilinear.

Since there are finitely many sets of the form Rpq, there clearly exist
constants F and K such that every Rpq has constant bound F and generator
bound K. Moreover, since A has only finitely many edges, we can choose
F also to be greater than any |g| such that A has an edge with label of
the form (g, x). Let C and D be the constants given by Theorem 7 for our
chosen value of K. Let P = 2CF and Q = CF + D. Let R be the number
of states in the automaton A.

The main work of the proof is done in three lemmas.

Lemma 1. Let w ∈ X∗, and suppose the automaton A has a path from p
to q labelled (g,w). Then there exists a subset S ⊆ Zn such that

(i) S is linear with constant bound (2|w|+ 1)F and generator bound K;
(ii) g ∈ S;
(iii) for every s ∈ S, (s,w) labels a path from p to q in A.

Proof. Suppose w = w1 . . . wm with each wi ∈ X, so that m = |w|. Let π
be a path from p to q labelled (g,w). It follows from our assumption above
about the edge labels in A that the path π can be decomposed as

π = p0e1p1e2 . . . empm

where

• each pi is a path with label (ki, ǫ) for some ki ∈ Zn, and
• each ei is an edge with label (gi, wi) for some gi ∈ Zn.

where of course k0 + g1 + k1 + · · · + gm + km = g.
We define

T = {g1} + · · · + {gm} + Rp0α,p0ω + · · · + Rpmα,pmω

where piα and piω denote respectively the start state and the end state of
the path pi. It is immediate from the definitions that each element ki lies in
the semilinear set Rpiα,piω. Hence, we see that g = k0+g1+k1+ · · ·+gn+kn

lies in T .
Notice that T is the sum of 2m + 1 semilinear sets each of which has

constant bound F and generator bound K. It follows by Proposition 5 that
T is a semilinear set with constant bound (2m + 1)F and generator bound
K. But this means that T is a finite union of linear sets with constant bound
(2m + 1)F and generator bound K, at least one of which must contain k;
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choose S to be such a set. Finally, it follows immediately from the definition
of the sets Rpq that for every element of s ∈ T , and hence certainly for every
element s ∈ S, we have that (s,w) labels a path from p to q, as required. �

Lemma 2. Let w ∈ X∗. Then there exists a state q in A and an element
g ∈ G with |g| < P |w| + Q such that (g,w) labels a path from the initial
state to q, and (−g,w−1) labels a path from q to some terminal state.

Proof. Certainly ww−1 ∈ X∗ lies in the word problem of H and so is ac-
cepted by the Zn-automaton A. It follows that there is an element k ∈ Zn

and a vertex q in A, such that A has

• a path π1 from the initial state to q labelled (k,w); and
• a path π2 from q to a terminal state labelled (−k,w−1).

By Lemma 1, there exist linear sets S and T , each with constant bound
(2|w| + 1)F = (2|w−1| + 1)F and generator bound K, such that

• k ∈ S;
• −k ∈ T ;
• for every s ∈ S, there is a path from the initial state to q labelled

(s,w);
• for every t ∈ T , there is a path from q to a terminal state labelled

(t, w−1);

By Proposition 4, the set −T is also linear with constant bound (2|w|+1)F
and generator bound K. Moreover, k ∈ S ∩ (−T ). Hence, by Theorem 7
and the choice of C and D above, there exists an element g ∈ S∩ (−T ) with

|g| < C(2|w| + 1)F + D = 2CF |w| + CF + D = P |w| + Q.

Now g ∈ S and −g ∈ T , so that g has the required properties. �

Lemma 3. Let g ∈ Zn, and let S ⊆ X∗ be such that for every w ∈ S,
there exists a state qw in A such that (g,w) labels a path from the initial
state to qw, and (−g,w−1) labels a path from qw to a terminal state. Then
S contains representatives for at most R elements of H.

Proof. Suppose for a contradiction that S has the given properties, but
contains representatives for strictly more than R elements of H. Then by the
pigeon hole principle, since A has only R states, there exist words u, v ∈ S
such that u and v represent distinct elements of H, but qu = qv. But now
there is a path from the initial state to qu labelled (g, u), and a path from
qu = qv to a terminal state labelled (−g, v−1). Hence, the Zn-automaton A
accepts the word uv−1, so we must have that uv−1 lies in the word problem
for H. But this means that u and v represent the same element of H, giving
the desired contradiction. �

We are now ready to define our function σ : H → Zn. For each h ∈ H,
we choose some word w ∈ X∗ of minimal length representing h. Lemma 2
guarantees the existence of at least one element g with |g| < P |w| + Q =
P |h| + Q such that (g,w) labels a path from an initial state to some state
q, and (−g,w−1) labels a path from q to a terminal state. We choose hσ
to be one such element. It is immediate that σ satisfies the desired bound
restriction. Moreover, by Lemma 3, no more than R choices of h can give
rise to the same hσ; indeed otherwise setting S to be the set of all the words
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w chosen for such values of h would contradict Lemma 3. This completes
the proof of Theorem 8. �

5. From Virtually Nilpotent to Virtually Abelian

The objective of this section is to show that a group which is virtually
nilpotent and which has word problem recognised by a blind counter automa-
ton is in fact virtually abelian. Our main tool is the following “interchange
lemma” of Mitrana and Stiebe [25].

Lemma 4 (Mitrana and Stiebe 1997 [25]). Let G be an abelian group and
L a language. Suppose L is accepted by a G-automaton. Then there exists
a constant p such that for any word w ∈ L of length at least p, and for any
factorisation

w = v1w1v2w2 . . . wpvp+1

with each |wi| ≥ 1, there exists integers r and s with 1 ≤ r < s ≤ p such
that the word obtained from w by interchanging the factors wr and ws lies
in L.

We now apply Lemma 4 to prove the main result of this section.

Theorem 9. Suppose H is a finitely generated virtually nilpotent group with
word problem accepted by a Zn-automaton. Then H is virtually abelian.

Proof. We claim first that it suffices to prove the result for the case that H
is nilpotent and torsion-free. Indeed, if H is virtually nilpotent then let K
be a nilpotent subgroup of finite index in H. Now by [29, Theorem 5.5] K
embeds in GL(n, Z) for some n; now by [6, Lemma 9] K has a finite index
subgroup L which is torsion-free. Since a subgroup of a nilpotent group
is nilpotent, L is also nilpotent. By Proposition 1, the word problem for
L is also accepted by a Zn-automaton. If the result holds for torsion-free
nilpotent groups we may deduce that L is virtually abelian and hence, since
L has finite index in H, that H is virtually abelian.

Suppose, then, that H is not abelian, but is torsion free nilpotent with
centre Z. Choose an element a in the second term of the upper central series
for H, that is, such that a is not central in H but aZ is central in H/Z.
Let b ∈ H be an element which does not commute with a. Let c = [a, b] =
a−1b−1ab. Notice that c is central; indeed abZ = aZbZ = bZaZ = baZ so
that ab = bac ∈ baZ, from which it follows that c ∈ Z.

Choose a monoid generating set X for H with elements x, y and z repre-
senting to a, b and c respectively. By Corollary 1, the word problem for H
with respect to X is accepted by a Zn-automaton. Let p be the interchange
constant for AG posited by Lemma 4.

Let w = w1 . . . wm ∈ {x, y}∗. We define the exchange index of w to be
the number of distinct pairs (i, j) with 1 ≤ i < j ≤ m such that wi = y
and wj = x; it is the minimum number of times one would have to replace

a factor yx by xy in order to obtain a word of the form xkyl.

Lemma 5. Let u, v ∈ {x, y}∗ be words each containing i copies of the letter
x, and j copies of the letter y. If u and v represent the same element of H,
then they have the same exchange index.
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Proof. Suppose u and v have exchange indices p and q respectively. Since
the commutator c of a and b is central, we have

gabh = gbach = (gbah)c

for all g, h ∈ H. It follows by an easy inductive argument that u represents
the element aibjcp while v represents the element aibjcq. If u = v then we
have cp = cq and hence, since H is torsion free, p = q as required. �

Consider now the word

t1 = xyxy2xy3 . . . xyn,

and let w be any word for its inverse, so that t1w lies in the word problem
of H. Choose n > p and set vi = x,wi = yi for 1 ≤ i ≤ n and vn+1 = u.
Then by Lemma 4 for some r and s we have that

xyxy2xy3 . . . xys . . . xyr . . . xynw

is also in the word problem for H, from which it follows that t1 and

t2 = xyxy2xy3 . . . xys . . . xyr . . . xyn

both represent the same element of H. But t1 and t2 contain the same
number of xs and ys respectively, while a simple calculation shows that
their exchange indices differ by (r − s)2. This contradicts Lemma 5, and
hence completes the proof. �

6. Proofs of the Main Theorems

Combining the results of Sections 4 and 5 yields our first main result.

Theorem 1. Let H be a finitely generated group. Then the word problem
for H is accepted by a blind n-counter automaton if and only if H is virtually
free abelian of rank n or less.

Proof. Suppose the word problem for H is accepted by a blind n-counter
automaton, that is, a Zn-automaton. By Theorem 8, H has growth bounded
above by a polynomial of degree n. In particular, H has polynomial growth,
and so by a famous theorem of Gromov [16] is virtually nilpotent. It follows
by Theorem 9 that H is virtually abelian. It follows easily from the structure
theorem for finitely generated abelian groups [28, Theorem 4.2.10] that H
has a finite index subgroup isomorphic to Zk for some k ∈ N. Moreover, the
asymptotic growth of H is a polynomial of degree k, so we must have k ≤ n.

Conversely, if H is virtually free abelian of rank n then it has a finite index
subgroup isomorphic to Zn; now by [10, Theorem 7], the word problem for
H is accepted by a Zn-automaton, that is, a blind n-counter automaton, as
required. �

Theorem 1 leads to our second main result.

Theorem 4. Let G be a virtually abelian group. Then a group H has
word problem accepted by a G-automaton if and only if H has a finite index
subgroup which embeds in G.
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Proof. Suppose first that the word problem for H is accepted by a G-
automaton. Since G has a finite index abelian subgroup, it follows easily
from the structure theorem for finitely generated abelian groups [28, Theo-
rem 4.2.10] that G has a finite index subgroup isomorphic to Zn for some
n ∈ N. Now by Proposition 2, the word problem for H is accepted by a Zn-
automaton, so by Theorem 1, H has a finite index subgroup isomorphic to
Zk for some k ≤ n. Now Zk embeds in Zn, which embeds in G as required.

Conversely, if H has a finite index subgroup which embeds in G then by
[10, Theorem 7], the word problem for H is accepted by a G-automaton. �

We also obtain an answer to a question of the second author [23, Ques-
tion 10] for the class of virtually abelian groups.

Corollary 3. Let G be a virtually abelian group. Then a group word problem
is accepted by a deterministic G-automaton if and only if it is accepted by a
non-deterministic G-automaton.

Proof. Suppose H has word problem accepted by a non-deterministic G-
automaton. Then by Theorem 4, H has a finite index subgroup which
embeds in G. Now by [10, Theorem 7], the word problem for H is recognised
by a deterministic G-automaton. The converse implication is immediate. �

7. Other Counter Automata

In this section, we discuss the relationships between blind counter au-
tomata, that is, Zn-automata, and other notions of counter automata.

First, we consider the difference between blind and non-blind counter
automata. The latter differ from the automata we have studied in that they
are endowed with the extra ability to test whether the value of a register is
zero; for a formal definition see [17], [18] or [21, Chapter 7]. It is well known
that a non-blind automaton with two or more counters can simulate an
arbitrary Turing machine [21, Theorem 7.9]. Since, for a counter automaton
to accept a language, we do not require that the machine should “terminate”
on words not contained in the language, it follows that 2-counter non-blind
automata can accept all the recursively enumerable languages and hence,
by Higman’s embedding theorem [19], word problems of exactly the finitely
presented groups and their finitely generated subgroups.

The remaining case of 1-counter non-blind automata was studied by Herbst
[17]; he showed that a group has word problem accepted by such an au-
tomaton if and only if it is virtually cyclic (see also [18]). Combining with
Theorem 4, we see that, when attention is restricted to word problems for
groups, there is no difference in accepting power between blind and non-blind
1-counter automata.

Corollary 4. A group word problem is accepted by a non-blind 1-counter
automaton if and only if it is accepted by a blind 1-counter automaton, that
is, a Z-automaton.

The proof of Herbst’s result [17], and hence that of Corollary 4, depends
upon the Muller-Schupp theorem [26] and thus also on Stallings’ theory of
ends [30] and the accessibility of finitely presented groups [7]. One is drawn
is ask if there is an easier approach.
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Problem 1. Find an elementary proof of Corollary 4.

Such a proof combined with our proof of Theorem 1 above would yield
also a purely combinatorial proof of the fact that every finitely generated
group with word problem accepted by a non-blind 1-counter automaton has
linear growth. Since there is also an elementary proof that the only finitely
generated groups of linear growth are the virtually cyclic groups [31], it
would also give a straightforward combinatorial proof of the result of Herbst
itself.

Another notion of counter automaton has been studied by Cho [2]. We
use here a definition easily seen to be equivalent in accepting power to his,
although our notation is chosen to make clearer the relationship between his
automata and G-automata. A k-counter Cho automaton over an alphabet
X consists of

• a finite automaton over the direct product monoid Nk × X∗, with
edge labels drawn from Nk × X; and

• for each state v in the automaton, a semilinear subset Sv of Nk.

A word w ∈ X∗ is accepted by the automaton if there is a path from the ini-
tial state to some state v with label (g,w), such that g ∈ Sv. The automaton
is called deterministic if for each state p and letter x ∈ X, there is at most
one edge leaving p with label of the form (g, x). For a detailed discussion
of these automata, and the languages they accept, see [2]. The following
theorem characterises the groups whose word problems are accepted by Cho
automata.

Theorem 10. Let H be a finitely generated group. Then the following are
equivalent

(i) the word problem for H is accepted by a deterministic Cho automa-
ton;

(ii) the word problem for H is accepted by a Cho automaton;
(iii) H is virtually abelian.

Proof. That (i) implies (ii) is immediate, so suppose that (ii) holds, and let
A be a k-counter Cho automaton accepting the word problem for H. We
view Nk as embedded in the natural way into Zk, so that A can be viewed
as a Zk-automaton. We construct from A a new Zk-automaton by adding
some extra states and edges as follows.

For each state p, write the semilinear set Sp as a union

Sp = S1
p ∪ S2

p ∪ · · · ∪ Sj
p

where each set Si
p is linear. For each i, let vi

0, v
i
1, . . . , v

i
m be such that

Si
p = {vi

0 + λ1v
i
1 + · · · + λmvi

m | λ1, . . . , λm ∈ N}

For each i, the new automaton B has an extra state pi, an edge from p to
pi labelled (−vi

0, ǫ), and edges from pi to pi labelled (−vi
q, ǫ) for 1 ≤ q ≤ m.

The initial state of B is the initial state of A, while the terminal states of B
are the new states of the form pi.

If a word w is accepted by the Cho automaton B then B has a path from
the initial state to a some state p labelled (g,w) for some g ∈ Sp. Since A
contains all the states and edges of B, we deduce that A also has a path
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from the initial state to p labelled (g,w). Now g must lie in one of the sets
Si

p. It follows easily that A has a path from p to pi labelled (−g, ǫ). Thus,
A has a path from the initial state to the terminal state pi with label (1, w),
so that A accepted w.

Conversely, if A accepts a word w then it must have a path from the
initial state to some state p labelled (g,w) and then a path from p to some
terminal state pi labelled (−g, ǫ) Clearly the former path must exist also in
B and we must have g ∈ Si

p ⊆ Sp, so that w is also accepted by B.

Thus, the Zk-automaton B accepts the same language as the Cho au-
tomaton A, that is, the word problem for H, and so (iii) holds.

Finally, suppose (iii) holds. Then by Theorem 4 and Corollary 3, H has
word problem accepted by a deterministic Zk-automaton A for some k. We
shall construct from A a deterministic Cho automaton with 2k counters
recognising the same language.

Suppose Zk is generated by

{v1, . . . , vk}

and N2k is generated by

{v1, v1, . . . , vk, vk}.

We define a surjective morphism σ : N2k → Zk by viσ = vi and viσ = v−1
i

for 1 ≤ i ≤ k. Define a set

S = {λ1(v1 + v1) + λ2(v2 + v2) + · · · + λk(vk + vk) | λ1, λ2, . . . , λk ∈ N}.

Then S is semilinear, and it is easily seen that S = 1σ−1.
We now define an 2k-counter Cho automaton B with the same state set

as A, the same designated initial state, and edges constructed as follows.
For each edge in A from p to q with label (g,w), we choose some element
v ∈ N2k with vσ = g, and give B an edge from p to q with label (v,w). We
define Sq = S if q is a terminal state in A, and Sq = ∅ otherwise.

An easy inductive argument shows that A has a path from p to q with
label (g,w) if and only if B has a path from p to q with label (v,w) for
some v such that vσ = g. In particular, A has a path from an initial state
to a terminal state with label (1, w) if and only if B has a path from the
initial state to a state q with Sq = S having label (v,w) for some v with
vσ = 1, that is, for some v ∈ S. Hence w is accepted by A if and only if w
is accepted by B, as required to complete the proof. �

Note that Theorem 10 does not quite provide a complete characterisation
of groups with word problems recognised by k-counter Cho automata for
each value of k. The proof of Theorem 10 shows only that a group which is
virtually free abelian of rank k has word problem accepted by a 2k-counter
Cho automaton, while a group with word problem accepted by a k-counter
Cho automaton is virtually free abelian of rank k or less. We conjecture
that the former bound is tight while the latter can be strengthened.

Conjecture 1. Suppose H is a group with word problem accepted by a 2k-
counter or (2k+1)-counter Cho automaton. Then H is virtually free abelian
of rank k.
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