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1 Introduction

In this article we study the cogrowth and distribution of geodesics in Richard
Thompson’s group F , in an attempt to decide experimentally whether or not F
is amenable.

The cogrowth of a finitely generated group G is defined as follows. Suppose
S = {a1, . . . , ak} generates G1, and consider the Cayley graph G of (G,S). Let
rn be the number of paths in this graph of length n starting and ending at the
identity element — let us call such paths returns. Since we can concatenate any
two such paths to get another we have

rnrk ≤ rn+k (1)

and then by Fekete’s lemma (see, for example, [23])

ρ = lim sup
n→∞

r
1/n
n (2)

exists. This constant is called the cogrowth for (G,S). Since we consider genera-
tors and their inverses to label distinct edges in G, then ρ ≤ 2k.

The connection between this growth rate and amenability was established by
Grigorchuk and independently by Cohen:

1 Formally, we consider G as the epimorphic image from the free monoid generated by S ∪S−1,
rather than S ∪ S−1 as being a subset of G
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Theorem 1.1 ([7, 12]). Let G,S and ρ be as above. G is amenable if and only if
ρ = 2k.

Let pn be the number of returns of length n on G which do not contain immedi-
ate reversals. Again concatenation shows that pn is supermultiplicative so Fekete’s
lemma gives

α = lim sup
n→∞

p
1/n
n (3)

exists. In this case since there are 2k(2k − 1)n−1 freely reduced words of length
n in the 2k generators and their inverses, we have α ≤ 2k − 1.

The previous theorem can then be restated as:

Theorem 1.2 ([7, 12]). Let G,S and α be as above. G is amenable if and only if
α = 2k − 1.

Note that lim sups are required since, for example, ifG has a presentation where
all relators have even length, the number of returns of odd length (with or without
immediate reversals) is 0.

In this article we compute bounds on the cogrowth rates of a number of 2-
generator groups: Thompson’s group F , the free and free abelian groups on 2
generators, Baumslag-Solitar groups, and various wreath products. Each of these
examples, apart from F , is known to be either amenable or non-amenable. We
compare the data obtained for F against these examples, to see whether F behaves
more like an amenable or a non-amenable group.

The question of the amenability of Thompson’s group F has captivated many
researchers for some time, initially since F has exponential growth but no non-
abelian free subgroups, making it a prime candidate for a counterexample to von
Neumann’s conjecture that a group is non-amenable if and only if it contains a
nonabelian free subgroup. In 1980 Ol’shanskii constructed a finitely generated
non-amenable group with no nonabelian free subgroups [14], and in 1982 Adyan
gave further examples [1]. In 2002 Ol’shanskii and Sapir constructed finitely pre-
sented examples [15]. In spite of these results the amenability or non-amenability
of F remains an intensely studied problem.

In the second half of the article we extend our techniques to study the distribu-
tion of geodesic words in Thompson’s group.

This work is in the same spirit as previous papers by Burillo, Cleary and Wiest
[5], and Arzhantseva, Guba, Lustig, and Préaux [2], who also applied computa-
tional techniques to consider the amenability of F . We refer the reader to these
papers for more background on Thompson’s group and the problem of deciding its
amenability computationally.
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The article is organised as follows. In Section 2 we compute rigorous lower
bounds on the cogrowth by computing the dominant eigenvalue of the adjacency
matrix of truncated Cayley graphs. We then extrapolate these bounds to esti-
mate the cogrowth and compare and contrast those extrapolations for F and other
groups. In Section 3 we use a weighted random sampling of random words in
the generators to estimate the exponential growth rate of trivial words in several
different groups. As a byproduct we estimate the distribution of geodesic lengths
as a function of word-length.

2 Bounding returns and cogrowth

2.1 Bounding the number of returns

Consider the Cayley graph G of some group G with finite generating set — for the
discussion at hand, let us assume that G is generated by two nontrivial elements
a, b.

As noted above, an upper bound for the cogrowth ρ is 4. We can compute lower
bounds for the number of returns, and thus the cogrowth, as follows.

Consider the following sequence of finite connected subgraphs, GN of N ver-
tices that contain the identity.

Set G1 to be the identity vertex. Record the list of edges incident to G1. Define
G2,G3, . . . by appending edges from this list, one at a time. Once the list is ex-
hausted (so GN = B(1)), repeat the process. It follows that for each GN there is
an R so that B(R) ⊆ GN ⊆ B(R+ 1).

We can then define rN,n be the number of returns of length n in GN . Since
GN ⊂ GN+1, the sequence {rN,n} is supermultiplicative, so ρN = lim sup

n→∞
r

1/n
N,n

exists by Fekete’s lemma. Further we must have rn ≥ rN,n and so ρ ≥ ρN . Hence
we can bound ρ by computing ρN .

Using the Perron-Frobenius theorem (in one of its many guises — Proposition
V.7 from [11] for example) the growth rate ρN of such paths on GN is given by
the dominant eigenvalue of the corresponding adjacency matrix, provided it is
irreducible. We construct GN so that it is connected and so the corresponding
adjacency matrix is be irreducible.

In some cases we can also demonstrate that the adjacency matrix is aperi-
odic, which implies that the dominant eigenvalue is simple and dominates all
other eigenvalues. This also implies that the corresponding generating function∑
pN,nz

n has a simple pole at the reciprocal of that eigenvalue. Unfortunately
many of the matrices we study are not aperiodic, but they do have period 2.

Perhaps the easiest way to prove that the matrix is aperiodic is to show the
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existence of two circuits of relatively prime length (see chapter V.5 in [11] for
example). In order to show that a matrix has period 2 it suffices (providing the
matrix is finite) to show that if there is a path of length k between any two nodes,
then there is a path of length k + 2` between those two nodes for any `.

It follows that the adjacency matrix for GN is aperiodic whenever the group G
has a presentation with an odd length relator (since aa−1 and the odd length relator
form circuits of relatively prime lengths) and if all relators have even length, the
matrix has period 2 (since a path of length k can be made into a path of length
k + 2` by inserting (aa−1)`).

In particular we have that subgraphs of Baumslag-Solitar groups BS(p, q) with
p+q odd are aperiodic, while subgraphs ofBS(p, q) with p+q even, Thompson’s
group F , Z2, Z o Z and F2 (the free group on 2 generators), all with the usual
generating sets, have period 2.

Since all of above groups except Z2 grow exponentially, and B(R) ⊆ GN ⊆
B(R + 1), then the radius of GN is O(logN). In the case of Z2 the radius of GN
is O(

√
N)

We used this method to compute ρN for a selection of groups. However, we
found significantly better bounds by considering only freely reduced words, i.e.
paths that did not contain immediate reversals, essentially since there is less to
count.

2.2 Bounding the cogrowth

Let pn be the number of returns of length n on G which do not contain immediate
reversals. We similarly define pN,n to be similar paths on the subgraph GN . Again
we define the exponential growth of these quantities by

α = lim sup
n→∞

p
1/n
n αN = lim sup

n→∞
p

1/n
N,n

and α ≥ αN .
In this case, we cannot now simply concatenate two freely reduced paths to

obtain another freely reduced path since it may create an immediate reversal. Thus
we do not have similar supermultiplicative relations. We can, however, relate rn to
pn and ρ to α using the following result of Kouksov [13] which we have specialised
to the case of 2 generator groups.

Lemma 2.1. (from [13]) Let R(z) =
∑
rnz

n and C(z) =
∑
pnz

n be the gener-
ating functions of returns and freely reduced returns respectively. Then

C(z) =
1− z2

1 + 3z2R

(
z

1 + 3z2

)
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and equivalently

R(z) =
−1 + 2

√
1− 12z2

1− 16z2 C

(
1−
√

1− 12z2

6z

)
.

A careful generating function argument gives the second equation (and the first
is simply its inverse). Consider any freely reduced returning path; it can be mapped
to an infinite set of returning paths by replacing each edge s by any returning path
in the free group on 2 generators that does start with s−1. At the level of generating
functions, this is exactly the substitution

z 7→ 1−
√

1− 12z2

6z
.

A very general result for generating functions then links the dominant singular-
ity of R(z) to the value of ρ:

Theorem 2.2. ([11], page 240.) If f(z) is analytic at 0 and ρ is the modulus of a
singularity nearest to the origin, then the coefficient fn = [zn]f(z) satisfies:

lim sup
n→∞

|fn|−
1/n = ρ

Combining these two results (and using the positivity of rn, pn) we obtain

Corollary 2.3. The constants ρ and α are related by

ρ =
α2 + 3
α

Further if β is a lower bound for α, then β′ =
β2 + 3
β

is an lower bound for ρ.

We are unable to prove a similar exact relationship between ρN and αN , but we
do have the following bound:

Lemma 2.4. For a fixed value of N we have ρN ≤
α2
N + 3
αN

.

Proof. Consider the generating functions of returns and freely reduced returns on
Gn.

RN (z) =
∑
n≥0

rN,nz
n CN (z) =

∑
n≥0

pN,nz
n
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It suffices to show that

CN (z) ≥
1− z2

1 + 3z2RN

(
z

1 + 3z2

)
or equivalently

RN (z) ≤
−1 + 2

√
1− 12z2

1− 16z2 CN

(
1−
√

1− 12z2

6z

)

within the respective radii of convergence. Let ω be any freely reduced returning
path of length k in GN — this path contributes zk to the generating functionCN (z).

The substitution z 7→ 1−
√

1− 12z2

6z
maps ω to an infinite set of non-reduced

returning paths by replacing each edge with freely reduced words from F2. Some
of the resulting words will lie entirely within GN and so be enumerated by the
generating function RN (z). However an infinite number of these words will not
be contained in GN . These words are enumerated by

−1 + 2
√

1− 12z2

1− 16z2 CN

(
1−
√

1− 12z2

6z

)

but not by RN (z). Thus the inequality follows.

To compute αN we relate it to the dominant eigenvalue of an adjacency matrix.
Unfortunately there is no simple way to reuse the adjacency matrix of GN , in order
to enumerate paths without immediate reversal. Instead we construct a new graph
HN which encodes freely reduced paths in G as follows: HN has N vertices
labeled by pairs (1,−) or (g, s) where g ∈ G and s ∈ S. The vertex (1,−)
corresponds to being at the identity vertex of G, and (g, s) to being at the group
element g ∈ G after having just read a letter s. The edges ofHN are

E(HN ) = {((g, s), (h, t)) ∈ (V (HN ))2 | h = gt and st 6= 1} (4)

So a path (1,−), (g1, s1), (g2, s2), . . . (gk, sk) corresponds to a path in G starting
at 1 with g1 = s1, g2 = s1s2, . . . gk = s1s2 . . . sk a freely reduced word.

We constructHN using a breadth-first search similar to the construction of GN ,
starting with H1 = (1,−) and appending vertices one at a time so that {g ∈
G | (g, s) ∈ HN} lies between two balls of a given radius. It follows that HN is
necessarily connected, and the corresponding adjacency matrices are irreducible.

We then compute the growth rate of paths (and so freely reduced returns) onHN
by computing the dominant eigenvalue of the corresponding adjacency matrix.
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2.3 Exact lower bounds

Since each node of GN has outdegree at most 4 and those of the HN excluding
(1,−) have outdegree at most 3 (vertices on the boundary may have smaller de-
gree) the corresponding adjacency matrices are sparse. We found that the power
method and Rayleigh quotients (see [20] for example) converged very quickly to
the dominant eigenvalue and so the growth rate.

We constructed GN and HN for many different values of N ranging between
102 and 107. Our calculations on Thompson’s group F as well as the Baumslag-
Solitar groups BS(2, 2), BS(2, 3) and BS(3, 5), yielded the following result.

Theorem 2.5. The following are exact lower bounds on the cogrowth, α, of the
indicated groups.

BS(2, 2) ≥ 2.5904 BS(2, 3) ≥ 2.42579 BS(3, 5) ≥ 2.06357

Thompson’s group ≥ 2.17329

This implies that the growth rate of all trivial words, ρ, in these groups are bounded
as indicated.

BS(2, 2) ≥ 3.78522 BS(2, 3) ≥ 3.66250 BS(3, 5) ≥ 3.51736

Thompson’s group ≥ 3.55368

Note that all of these bounds were computed using information from HN and
Corollary 2.3. We observed that the bounds obtained from GN were worse —
typically differing in the second or third significant digit. We also note that the
above result forBS(2, 3) is improves on a result in [9] (the preprint was withdrawn
by the authors since it contained an error).

These computations were done on a desktop computer using about 4Gb of mem-
ory. It should be noted that while our techniques require both exponential time and
memory, it was memory that was the constraining factor. We did implement some
simple space-saving methods. Perhaps the most effective of these was to store
elements as geodesic words in the generators rather than as their more standard
normal forms (eg tree-pairs for Thompson’s group or words in the normal form
implied by Britton’s lemma for the Baumslag-Solitar groups). These geodesic
words could then be stored as bit-strings rather than ASCII strings. We believe
that by running these computations on a computer with more memory we could
improve the bounds, but the returns are certainly diminishing.
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2.4 Extrapolation and comparison

The results of the previous section can be extended by considering the sequence of
lower bounds αN and using simple numerical methods to extrapolate them toN →
∞. This required only minimal changes to our computations; after computing the
adjacency matrix of HN for the maximal value of N , we computed the dominant
eigenvalue of submatrices. The corresponding estimate of the eigenvector was
then used as an initial vector for estimating the eigenvalue of the next submatrix.
This meant that we could compute a sequence of lower bounds in not much more
time than it took to compute our best bounds.

In Figure 1 we have plottedαN against 1/logN for three non-amenable Baumslag-
Solitar groups and F . We found that this gave approximately linear plots and so

Figure 1. A plot of cogrowth lower bounds αN against 1/logN . We see that the
groups that known to be non-amenable are converging to numbers strictly below
3. The Thompson’s group sequence has a clear upward inflection (as N → ∞ or
1/logN → 0) and so it is difficult to estimate whether the limit is 3 or less than 3.

this suggests that

αN ≈ α∞ − λ/logN.

Since αN is a monotonically increasing sequence and is bounded above by 3, we
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have that αN → α∞ exists. Unfortunately we cannot prove that α∞ = α, but
certainly α∞ ≤ α.

Note that the curves terminate at N = 107 but start at different N -values. This
is because the graphs GN do not contain freely-reduced loops for small values of
N . The smallest value of N for which GN contains a freely reduced loop depends
on the length of the relations of the group and on the details of the breadth-first
search used to construct the graph.

One can observe that the Baumslag-Solitar groups all seem to behave similarly
and that the sequences of bounds are clearly converging to constants strictly less
than 3. This is completely consistent with the non-amenability of these groups.
Thompson’s group behaves quite differently — in particular we see that the curve
has some upward inflection (as x→ 0) and it makes it very unclear as to whether
or not α∞ converges to 3 or below 3.

For the sake of comparison we decided to repeat the above analysis for a set
of amenable groups and so we computed similar sequences of lower bounds for
BS(1, 2), BS(1, 3),Z2 and Z o Z. These results are plotted in Figure 2.

Figure 2. A plot of cogrowth lower bounds αN against 1/logN . We see that the
groups that known to be amenable are clearly converging to 3. Again we see that
Thompson’s group behaves quite differently.

Note that no sequence gives a perfectly straight line and so to estimate α∞ we
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fitted the data to the form

αn = α∞ + λ/(logN)δ.

We varied the number of data points by removing small-N points and we also
varied the value of δ. For any fixed number of points we varied δ to find a value
that minimised the R2 statistic. This gives an “optimal” value of α∞ and λ.

For some groups, we found that these optimal values were quite sensitive to
changes in δ, while other groups were quite robust. To include some measure of
this systematic error we moved δ through a range of values so that the R2 statistic
was allowed to move to 5% below its optimal value. These results are summarised
in Tables 1 and 2.

The results for all the groups except Thompson’s group are as one might expect
— the amenable groups all give estimates of α∞ close to 3, and the non-amenable
groups give α∞ < 3. Hence it would appear as though this technique is a rea-
sonable test to differentiate amenable and non-amenable groups. Unfortunately it
is not sufficiently sensitive to determine the amenability of Thompson’s group. In
particular we find that the results are too sensitive to variations in δ and to removal
of low-N data points. A possible reason for this atypical behaviour is the pres-
ence of nested wreath products which converge very slowly to their asymptotic
behaviour.

Because of this, we turn to numerical methods based on random sampling and
approximate enumeration.

2.5 An aside — cogrowth series

As a byproduct of our computations we obtained the first few terms of the cogrowth
series for all of these groups. It is well know that the number of trivial words in
Z2 is given by

(2n
n

)2
(see A002894 [22]); the corresponding generating function is

not algebraic and is expressible as a complete elliptic integral of the first kind. The
number of trivial words in F2 is just the number of returning paths in a quadtree
and its generating function is 3(1 + 2

√
1− 12z2)−1 (see A035610 [22]).

Unfortunately we have been unable to find (using tools such as GFUN [21]) any
useful explicit or implicit expressions for the cogrowth series (or the generating
functions) for any of the other groups we have examined. For completeness we
include our data in Table 3.

3 Distribution of geodesic lengths

In this section we broaden our study from the growth rate of trivial words to the dis-
tribution of geodesic lengths of all words by sampling random words. In previous
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Group Number Optimal δ range α∞ estimate
of points R2 Value

BS(2, 2)
4501 0.998 1.74± 0.05 2.682± 0.007
2500 0.998 1.85± 0.13 2.672± 0.009

BS(2, 3)
4501 0.999 1.36± 0.04 2.597± 0.012
2500 0.999 1.57± 0.07 2.562± 0.009

BS(3, 5)
4101 0.998 1.33± 0.05 2.29± 0.01
2000 0.998 1.65± 0.19 2.24± 0.03

F

3947 0.998 0.83± 0.07 2.79± 0.08
2000 0.998 0.93± 0.16 2.69± 0.12
1700 0.998 0.65± 0.21 2.95± 0.38

Table 1. Results of fitting eigenvalue data for non-amenable groups and Thompson’s
group. The Baumslag-Solitar groups all give good results, but Thompson’s group
does not. There is some upward drift in the estimate of α∞ as one cuts out small N
data, but at the same time the error in the estimates blows up.

work of Burillo et al [5], random words in Thompson’s group F were sampled
using simple sampling; words were grown by appending generators one-by-one
uniformly at random. Those authors observed only very trivial words and so then
sampled uniformly at random from a subset of those words, namely the set of
words with balanced numbers of each generator and their inverses. Again, very
few trivial words were observed. Indeed if Thompson’s group is non-amenable,
the probability of observing a trivial word using simple sampling will decay expo-
nentially quickly.

We will proceed along a similar line but using a more powerful random sam-
pling method based on flat-histogram ideas used in the FlatPERM algorithm [17,
18]. Each sample word is grown in a similar manner to simple sampling — append
one generator at a time chosen uniformly at random. The weight of a word of n
symbols is simply 1, so that the total weight of all possible words at any given
length is just 4n. As the word grows we keep track of its geodesic length. We now
deviate from simple sampling by “pruning” and “enriching” the words.

Consider a word of length n, geodesic length ` and weight W . If we have “too
many” samples of such words, then with probability 1/2 prune the current sample
or otherwise continue to grow the current sample but with weight 2W . Similarly if
we have “too few” samples of the current length and geodesic length, then enrich
by making 2 copies of the current word and then growing a sample from both each
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Group Number Optimal δ range α∞ estimate
of points R2 Value

BS(1, 2)
4501 0.99975 1.7316± 0.0225 3.0158± 0.0031642
2500 0.99981 1.9472± 0.0552 2.9975± 0.0031542

BS(1, 3)
4501 0.99894 1.354± 0.046 3.0722± 0.016473
2500 0.99855 1.54± 0.151 3.0261± 0.026664

Z2 4501 0.99613 5.1624± 0.1134 3.002± 0.000364
2500 0.99932 10.996± 0.154 3± 1.7248× 10−6

Z o Z
3947 0.99925 0.8592± 0.0436 3.1807± 0.050903
2000 0.99915 1.0237± 0.1251 3.0476± 0.082052

F

3947 0.99796 0.83± 0.072 2.7866± 0.083778
2000 0.99869 0.9344± 0.1548 2.6917± 0.12318
1700 0.99848 0.6464± 0.2016 2.9532± 0.38051

Table 2. Results of fitting eigenvalue data for amenable groups and Thompson’s
group. All the amenable groups give good results quite close to 3, though Z o Z is
not as good as the others. Also note that since balls in Z2 grow quadratically with
radius rather than exponentially, better results can be obtained by fitting against 1/Nδ

rather than 1/(logN)δ.

with weight W/2. Of course, one is free to play around with the precise meaning
of “too few” or “too many”. We refer the reader to [17, 18] for more details on
the implementation of this algorithm. The mean weight (multiplied by 4n) of all
samples of length n and geodesic length `, cn,`, is then an estimate of the number
of such words.

In order to run the above algorithm we need to be able to compute the geodesic
length of the element generated by a given random word. Computing geodesic
lengths from a normal form is, in general, a very difficult problem and remains
stubbornly unsolved for many interesting groups, such as BS(2, 3). Because of
this we restrict our studies to Thompson’s group and a number of different wreath
products.

• Thompson’s group — a method for computing the geodesic length of an ele-
ment from its tree-pair representation was first given by Fordham [4], though
we found it easier to implement the method of Belk and Brown [3].

• Wreath products — we use the results of [6] to find the geodesic lengths in
Z o Z, Z o (Z o Z) and Z o F2.
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n F BS(1,2) BS(1,3) BS(2,2) BS(2,3) BS(3,5) Z o Z
0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 10 0 0 0 0 0
6 0 0 12 12 0 0 0
7 0 20 0 0 14 0 0
8 0 64 40 40 0 0 16
9 0 96 0 0 28 0 0

10 20 338 264 224 60 20 72
11 0 736 0 0 84 0 0
12 64 2052 1604 1236 240 64 272
13 0 5208 0 0 564 0 0
14 336 13336 9748 7252 1090 280 1504
15 0 36330 0 0 2760 0 0
16 1160 92636 61720 41192 6492 1048 8576
17 0 248816 0 0 13496 0 0
18 5896 665196 412072 247272 33728 4660 46080
19 0 1771756 0 0 75768 0 0
20 24652 4776094 2750960 1491136 174760 17964 257160
21 0 12848924 0 0 411234 0 0
22 117628 34765448 18725784 9119452 958364 77508 1475592

Table 3. The first few terms of the cogrowth series C(z) for various groups, i.e. the
number of freely reduced words equivalent to the identity. The first few terms of the
returns series R(z) can be obtained from the above using Lemma 2.1.

We note that the geodesic problem for Baumslag-Solitar groups has recently been
solved in the cases BS(1, n) [10] and BS(n, kn) [8], but we have not imple-
mented these approaches.
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3.1 Distributions

We used the random sampling algorithm described above to estimate the distri-
bution of geodesic lengths in Thompson’s group F , as well as Z o Z, Z o F2 and
Z o (Z o Z). Each run took approximately 1 day on a modest desktop computer.
To visualise the results, we started by normalising the data by dividing by the total
number of words (i.e. 4n or 6n). The resulting peak-heights still decay with length,
and we found that multiplying by

√
n compensated for this. The normalised dis-

tributions are plotted in Figures 3, 4 and 5.
In each case we see similar behaviour. At short word lengths (i.e. small n)

the distribution of geodesic lengths is quite wide, but settles to what appears to
be a bell-shaped distribution at moderate lengths. This suggests that the geodesic
length has an approximately Gaussian distribution about the mean length and that
the tails of the distribution are exponentially suppressed. This also explains why
the normalising factor of

√
n works well.

If this is indeed the case, then we expect that trivial words, having geodesic
length zero, will be exponentially fewer than 4n — implying that Thompson’s
group is non-amenable. Unfortunately things cannot be so simple, because the
same reasoning would imply that Z o Z is non-amenable.

One obvious difference between the graphs is the movement of the peak of the
distribution, that is the rate of growth of the mean geodesic length. It is clear
that the mean geodesic length of Z o F2 grows linearly, and so the group has a
nontrivial rate of escape — exactly as one would expect of a non-amenable group.
Similarly we see that the mean geodesic lengths of the other wreath products grow
sublinearly, so their rates of escape are zero. When we examine the movement
of the peak of Thompson’s group’s distribution, things are less clear; the mean
geodesic length appears to be very nearly linear.

Estimating the mean geodesic length for Thompson’s group was substantially
easier. We constructed 212 random words of length 216. As each word was con-
structed generator-by-generator, the geodesic length was computed and added to
our statistics. So while there is correlation between the geodesic lengths at differ-
ent word lengths within a given sample, there is no correlation between samples.
This took approximately 3 days on a modest desktop computer. Our data is plotted
in Figure 6.

We assume that the mean geodesic length grows as nν . Linear regression on a
log-log plot estimates ν ≈ 0.98. Further, if we fit a moving “window”, we find
that the local estimates of ν increase as the positioning of the window increases.
This strongly suggests that the mean geodesic length grows linearly.

To test linearity further, we generated a small number words of length 220 =
1048576. It took approximately 1 hour to generate each word and compute the
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Figure 3. A plot of the normalised distribution of the number of words cn,` of length
n and geodesic length ` in Thompson’s group F . Notice that the peak position is
quite stable, indicating that the mean geodesic length grows roughly linearly with
word length.

corresponding geodesic length, so this was too slow to generate meaningful statis-
tics. In each case we observed that the ratio /̀n appeared to converge to approx-
imately 0.28. Of course, this does not preclude more exotic sublinear behaviour
such as nν(logn)θ. Such logarithmic corrections are extremely difficult to detect
or rule out.

We now estimate the rate of escape by assuming linear growth with a polyno-
mial subdominant correction term

〈`〉n = An+ bnδ. (5)

Our estimates were quite sensitive to changes in δ:

δ 0 1/4 1/3 1/2 2/3 3/4

A 0.281 0.279 0.279 0.276 0.272 0.267
b 176 17 8.0 1.8 0.47 0.25

. (6)

Hence we conclude that the rate of escape is approximately 0.27 with an error of
±0.01.
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Figure 4. A plot of the normalised distribution of the number of words cn,` of
length n and geodesic length ` in Z o Z. Observe that the peak position is clearly
moving towards the left of the plot suggesting that the mean geodesic length grows
sublinearly.

We would like to conclude that this positive rate of escape implies that Thomp-
son’s group is non-amenable, however there are examples of amenable groups
with nontrivial rate of escape. The group Z3 o Z2 is amenable but has positive rate
of escape [19]. Unfortunately, computing geodesics in this group is equivalent to
solving the traveling salesman problem on Z3 [16] and so beyond these techniques.

4 Conclusions

We have computed exact lower bounds on the cogrowth of several groups includ-
ing Thompson’s group F . In particular, the cogrowth (α) of Thompson’s group
must be greater than 2.17329. By extrapolating the sequences of lower bounds we
see that the bounds for the amenable groups clearly converge to 3, while those of
the non-amenable groups converge to numbers strictly less than 3. Thompson’s
group appears to behave quite differently from the other groups we examined. Our
extrapolations do not give clear results, though perhaps they point towards non-
amenability.
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Figure 5. Plot of the normalised distribution of the number of words cn,` of length n
and geodesic length ` in Z oF2 (left) and Z o (Z oZ) (right). Observe that the peak is
quite stable in the left-hand plot indicating the mean geodesic length is linear, while
the right-hand plot the peak shows clear a left drift indicating that the geodesics
grow sublinearly.

To further probe this group we used flat histogram methods to estimate the
distribution of geodesic lengths in random words. The data suggests that geodesic
lengths have an approximately Gaussian distribution about their mean length. Sim-
ilar Gaussian distributions were observed for other groups, both amenable and
non-amenable.

The mean geodesic length of the amenable groups studied grow sublinearly,
while those of Z o F2 and Thompson’s group are observed to grow linearly. Using
simple sampling we estimate that the mean geodesic length of Thompson’s group
does indeed grow linearly and that the rate of escape is 0.27± 0.01.

Acknowledgments. We thank the anonymous reviewers for their helpful com-
ments, and WestGrid for computer support.
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Figure 6. Plot of the mean geodesic length divided by nν ; for ν = 0.98, 0.99 and 1.
This data strongly suggests that Thompson’s group has a nontrivial rate of escape.
Note that the statistical error was smaller than the symbols used.
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