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Bloch-mode extraction from near-field
data in periodic waveguides
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We demonstrate that the spatial profiles of both propagating and evanescent Bloch modes in a periodic
structure can be extracted from a single measurement of an electric field at the specified optical wavelength.
We develop a systematic extraction procedure by extending the concepts of high-resolution spectral methods
previously developed for temporal data series to take into account the symmetry properties of Bloch modes
simultaneously at all spatial locations. We illustrate the application of our method to a photonic crystal
waveguide interface and confirm its robustness in the presence of noise. © 2009 Optical Society of America
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Periodically modulated optical waveguides offer new
possibilities for controlling the propagation of light.
Resonant scattering from periodic modulations can
be used to tailor the dispersion, enabling in particu-
lar a dramatic modification of the group velocity and
realization of slow-light propagation. Such funda-
mental effects can be directly visualized in experi-
ment with near-field measurements, which can be
used to recover the amplitude, phase, and polariza-
tion of the electric field at all spatial locations in the
plane of the waveguide [1]. In this Letter, we demon-
strate how this information can be used most effi-
ciently to determine the dispersion characteristics of
the guided modes. Our method can also be useful for
processing data of numerical simulations.

A commonly used approach to the dispersion ex-
traction is through the spatial Fourier transform
(SFT) of the field profiles, since peaks in the Fourier
spectra correspond to the wavenumbers of guided
modes [2–4]. However, there exists a fundamental
limitation on results obtained with SFT: �k�2� /L,
where �k is the resolution of the wavenumber and L
is the structure’s length. Therefore accurate disper-
sion results can be obtained only for long waveguides,
extending over many periods of the underlying pho-
tonic structure. Another limitation of the SFT
method is that it cannot provide information on the
dispersion of evanescent waves, which may play an
important role close to the structure boundaries or
interfaces between different waveguides [5]. More-
over, all waves have decaying amplitudes in lossy me-
dia such as metal–dielectric metamaterial and plas-
monic structures.

Alternative methods for dispersion extraction have
been developed to overcome the shortcomings of the
SFT method. An interference pattern of two counter-
propagating modes in photonic crystals was used to
extract their wavenumbers [6]. It was shown that in
metamaterials, the effective refractive index can be
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determined through the extracted phase velocity of a
single propagating or evanescent wave [7,8]. How-
ever, these techniques do not apply in the presence of
multiple propagating or evanescent modes.

Recently, it was demonstrated that dispersion ex-
traction in multimode waveguides with in principle
unbounded resolution is possible even for short wave-
guide sections [9,10], using approaches based on an
adaptation of high-resolution spectral methods previ-
ously developed for the analysis of temporal dynam-
ics [11,12]. In this Letter, we introduce an important
generalization of such methods, taking into account
the spatial symmetry properties of modes in periodic
waveguides. We show that beyond the dispersion re-
lations, it is possible to extract the spatial profiles of
all guided modes. Our method is applicable to an ar-
bitrary combination of propagating and evanescent
waves. We illustrate the application of this general
approach by analyzing light dynamics at an interface
between photonic crystal waveguides designed for
coupling into a slow-light mode [5].

Let us consider a periodic waveguide section,
where the light propagation in a particular frequency
range is primarily determined by a finite total num-
ber of guided modes �M�. The value of M can be es-
tablished based on numerical modeling, taking into
account both propagating and evanescent waves.
Since each of the modes of a periodic waveguide sat-
isfies the Bloch theorem [13], the complex electric
field envelope of a waveguide mode with the index
m at the frequency � can be expressed as
�m�r ;��exp�ikmz /d�. Here km are the complex Bloch
wavenumbers; r= �x ,y ,z�, where x and y are the or-
thogonal directions transverse to the waveguide and
z is the direction of periodicity; d is the waveguide pe-
riod; and �m are the periodic Bloch-wave envelope
functions: �m�z�=�m�z+d�. Then, the total field inside
the waveguide can be presented as a linear superpo-

sition of M guided modes with amplitudes am,
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E�r;�� = �
m=1

M

am�m�r;��exp�ikmz/d� + w�r;��. �1�

Here w�r ;�� can account for the radiation field due to
the excitation of nonguided waves and for vanish-
ingly small evanescent waves that are excluded from
consideration, and this term can also appear owing to
noise in experimental measurements.

We now present the procedure for the simulta-
neous extraction of the wavenumbers and profiles of
the guided modes. Let us separate the spatial domain
in a number of unit cells, �x ,y ,z+nd−d�. We assume
here that z belongs to a single unit cell �zmin�z
�zmin+d�, and n=1:N, where N is the number of
cells in the waveguide section. Let us denote with
Un�r ;��=E�x ,y ,z+nd−d ;��, Am�r ;��=am�m�r ;��
�exp�ikmz /d�, and wn�r ;��=w�x ,y ,z+nd−d ;��.
Then, taking into account the periodicity of Bloch-
wave envelopes, Eq. (1) can be written as

Un�r;�� = �
m=1

M

Am�r;��exp�ikm�n − 1�� + wn�r;��, �2�

where r belongs to the first unit cell. If one considers
this relation for only a single point r in the unit cell,
it becomes mathematically equivalent to the prob-
lems considered in spectral analysis of temporal se-
ries [11,12], and high-resolution spectral methods
can be used to extract the mode wavenumbers [10].
However, the special property of periodic waveguides
is that Eq. (2) shall be satisfied simultaneously for all
spatial locations r in the unit cell. This allows us to
determine the values of km and Am�r ;��, provided
that the number of measurements exceeds the num-
ber of unknowns: N�Np�M�Np+Mk, where Np is
the number of measurement points per unit cell and
Mk is the number of independent wavenumber val-
ues. Then we seek the parameter values that de-
scribe most accurately the entire measured field and
apply the least-squares method to find a minimum of
the functional W=�r�n=1

N �wn�2 /�r�n=1
N �Un�2, where

summation �r is performed over all sampling points
in one unit cell. For given wavenumbers, the mini-
mum WA��km��=minA W is achieved when �W /�Am
=�W /�Am

* =0. It follows that for each point r in a unit
cell, the optimal amplitudes satisfy the linear matrix
equation CH ·C · Ã�r ;��=CH ·Ũ�r ;��, where compo-
nents of vector Ã�r ;�� are the optimal amplitude val-
ues, components of the matrix C are Cnp=exp�ikp�n
−1��, and vector Ũ�r ;�� components are Un�r ;�� for
p=1:M and n=1:N. We can show that WA��km��
=WA=Ã=1−�rŨH�r ;�� ·C · Ã�r ;�� /�rŨH�r ;�� ·Ũ�r ;��.
The remaining task is to find the absolute minimum
Wmin=min�km�WA (by definition, WA is real and posi-
tive). This can be done numerically, for example by
using the FMINSEARCH function in MATLAB.

We apply our method to the two-dimensional �r
= �x ,z�� photonic crystal waveguide shown in Fig.
1(a), where we indicate the unit cell with shading

and illustrate the definition of Un. Photonic crystals
are viewed as effective media for generating slow
light, because their dispersion characteristics can be
controlled with design parameters. However, cou-
pling light into a slow-light waveguide can be a key
practical challenge owing to the field mismatch be-
tween the incoming mode with high group velocity vg
and the slow mode. The photonic crystal waveguide
being analyzed here mediates efficient coupling into
and out of a slow mode without any matching region,
where an evanescent mode (PC2) helps match the
fields of the incoming mode (PC1) and the slow mode
(PC2) without carrying any energy itself [5]. We aim
to extract the individual modes of PC2 from a nu-
merical data of E�x ,z ;��, such as shown in Fig. 1(b).
These electric field profiles were calculated using a
Bloch mode scattering matrix approach [14,15], and
for our extraction procedure we used the sampling
resolution of eight points per period in both x and z
directions. In PC2, the dispersion relation contains
an inflection point and therefore the total number of
modes that primarily define the light dynamics is
M=6, accounting for the forward and backward slow-
light �m=1,2� and evanescent modes �m=3,4,5,6�.
The fact that the waveguide has multiple modes and
a relatively short length provides a good testing en-
vironment for our method.

The spatial spectral analysis can benefit through
the application of additional constraints owing to the
symmetry of modes in lossless dielectric waveguides,
wavenumbers of which are related as k2=−k1, k4=
−k3, k5=k3

*, and k6=−k5=−k3
*. Therefore k1 and k3

are the independent parameters that fully define
the mode dispersion �Mk=2�, and we take this into

Fig. 1. (Color online) (a) Schematic of a two-dimensional
photonic crystal waveguide. The Bloch-wave extraction is
performed in the PC2 section. (b) Numerically calculated
amplitude (left) and phase (right) of a complex electric field
profile at the normalized frequency d/�	0.2662.
account for numerical minimization of the func-
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tional W. We note that under the presence of losses,
the wavenumbers would no longer form pairs of com-
plex conjugate numbers. The appearance of such
spectral asymmetry could then be used to distinguish
between the evanescent mode decay and the ampli-
tude decrease owing to losses.

The extracted wavenumbers km are shown in Fig.
2, and they are in good agreement with exact disper-
sion curves obtained with the scattering-matrix ap-
proach [14,15]. Most importantly, we simultaneously
extract the profiles of the corresponding Bloch waves,
which amplitudes reflect the excitation dynamics.
The mode profiles Am�x ,z ;�� at the slow-light fre-
quency d/�	0.2662 are presented in Fig. 3. The pro-
files clearly show the propagating �m=1,2� and eva-
nescent �m=3,4,5,6� modes. This provides an
essential insight into the light dynamics, which can-
not be inferred directly from the field profiles as
shown in Fig. 1(b), or from their SFT spectra.

To test our method in a possible experimental situ-
ation where noise is present, we add a normal distri-
bution of random complex numbers to the electric
field Un�x ,z� with a mean of zero and a standard de-
viation of 0.05. We have also considered the effect of a
random 1% perturbation to the radius of the cylin-
ders. We have successfully recovered the mode pro-
files in the slow-light dispersion region under the ef-
fect of such perturbations.

In conclusion, we have presented a general ap-
proach for the simultaneous extraction of wavenum-
bers and amplitude profiles of Bloch waves in peri-
odic waveguides using near-field measurement data
or numerical simulation results. We have demon-
strated the application of this method for character-
ization of multiple propagating and evanescent
modes, and its robustness under the effect of noise.
This approach may provide essential insight into the
light dynamics in complex photonic crystal circuits.
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Fig. 3. (Color online) Extracted magnitudes and phases of
mode profiles Am�x ,z ;�� at the slow-light frequency based
on the original electric field data shown in Fig. 1(b).


