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Abstract

In the recent literature, methods from extreme value theory (EVT) have frequently been
applied for the estimation of tail risk measures. While previous analyses show that EVT
methods often lead to accurate estimates for risk measures, a potential drawback lies in
high standard errors of point estimates of these methods as only a fraction of the data
set is used. Thus, the aim of this paper is to comprehensively study the impact of model
risk on EVT methods when determining the Value-at-Risk and Expected Shortfall. We
distinguish between first order effects of model risk, which consist of misspecification and
estimation risk, and second order effects of model risk which refer to the dispersion of
risk measure estimates. We show that EVT methods are less prone to first order effects
of model risk, however, they exhibit a higher sensitivity towards second order effects of
model risk. We find that this can lead to severe Value-at-Risk and Expected Shortfall
underestimations and should be reflected in regulatory capital models.

Keywords: Extreme Value Theory; Model Risk; Capital Requirements; Value-at-Risk;

Expected Shortfall

I. INTRODUCTION

The accurate assessment of tail risk measures such as the Value-at-Risk and Expected

Shortfall is of high relevance in practice and thus, subject to many scientific studies (see,

e.g., Berkowitz and O’Brien, 2002; Nekhili et al., 2004; Taylor, 2008; Mancini and Trojani,

2011). A possibility for the estimation of tail risk measures is given through the application

of methods from extreme value theory (EVT). Results show that these methods are capable of

estimating tail risk measures and that their application can lead to more accurate estimates

than traditional methods (see, e.g., Ghorbel and Trabelsi, 2009; Rufino and de Guia, 2011).
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A potential drawback associated with EVT methods is that they only use a fraction of the

data during the estimation process and hence, usually exhibit higher standard errors for

their parameter estimates (see McNeil et al., 2005). This feature is of special relevance in

the context of model risk which has gained increasing attention (see Basel Committee on

Banking Supervision, 2010).

The ‘true’ data generating process (DGP) which generates realizations we can observe is

unknown and has to be approximated through model assumptions and estimated model

parameters. This exposes the quantification of all measures related to this process to model

risk. In this paper we will differentiate between first order and second order effects of model

risk.

First order effects of model risk consist of misspecification and estimation risk. Misspecfica-

tion risk describes the risk of choosing the wrong DGP as the true process. Estimation risk

refers to estimating parameters which deviate to those of the true risk model. Parameter

estimates are uncertain and the dispersion of the predictions for risk measures (which are

based on parameter estimates and hence random numbers) increases with this uncertainty.

This enhances the likelihood of more severe under- and overestimations for the true risk

measure. We refer to this risk as second order effects of model risk which seem to be of special

relevance for EVT methods as in comparison to models using all available data, standard

errors and statistical quality of parameter estimates tend to be lower by nature. Thus, we

define a first order effect as an effect of model specification and estimation, and a second or-

der effect as an effect on the dispersion of a risk measure due to applying the estimated model.

The aim of this study is to comprehensively analyze first and second order effects of model

risk related to EVT methods and compare these results with traditional methods. Moreover,

we show which conclusions can be drawn with respect to the quantification of capital require-

ments and how these requirements can be determined in the presence of first and second

order effects of model risk. To achieve this goal, this paper analyzes the accuracy and model

risk of risk measures for market risk in relation to popular equity indices using in a broad

range of applications.

Various and diverse applications of EVT methods exist in the recent literature. Actuarial

studies use EVT for the estimation of losses. For example, in an early publication Rootzén

and Tajvidi (1997) show how EVT can be used to assess large insurance claims. Brodin

and Rootzén (2009) extend this analysis to a multivariate framework in which they show

that a bivariate EVT model is well suited for the quantification of wind storm losses. A

further contribution of EVT methods in the insurance literature is provided by Cébrian et al.
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(2003) who use multivariate EVT to model the dependence between medical claims and

corresponding costs for claims processing. Hereby, they show how their framework may lead

to a lower degree of mispricing as it better captures the dependence structure.

Financial studies usually try to analyze the dependency of extreme values and their asymp-

totic behavior or focus on the estimation of the Value-at-Risk for financial data. Regarding

the dependence structure, Longin and Solnik (2001) conduct an empirical analysis which

uses EVT to examine asymptotic dependence behavior among financial markets. In their

work, they find asymptotic dependence during bear markets not to converge towards zero,

which strongly speaks against a Gaussian dependence structure. A further contribution in

this field is given by Poon et al. (2004) who show how a multivariate EVT method can be used

for the assessment of portfolio risk and how the true risk situation may be underestimated

if other methods are applied, not taking into account asymptotic dependence. A similar

approach is also used by Zhou (2010) who focuses on the development of an EVT framework

in order to identify diversification effects in the presence of tail dependence.

Within these financial studies, the majority of prior contributions focuses on Value-at-Risk

estimation using methods from EVT and compares corresponding results to so called classi-

cal or traditional models (see, e.g., Longin, 2000) with respect to backtesting performance.

This approach can be seen in Longin (2000); McNeil and Frey (2000); Nekhili et al. (2004);

Marinelli et al. (2007); Hotta et al. (2008); Ghorbel and Trabelsi (2009). Traditional models

usually use time conditional methods for the mean and volatility of time series process

(mostly ARMA-GARCH models or similar structures) in combination with the normal, Stu-

dent t or empirical distribution (see, e.g., Longin, 2000; Hotta et al., 2008; Ghorbel and

Trabelsi, 2009). All these studies show that univariate EVT methods perform better with

respect to a correct risk assessment of the Value-at-Risk in almost all instances.

Furthermore, there has been steady research in the field of model risk. While Jorion (1996)

analyzes the sample error related to Value-at-Risk estimates, Gibson et al. (1999) provide

an overview for different sources of model risk of interest rate risk. Berkowitz and O’Brien

(2002) empirically backtest the performance of internal Value-at-Risk models at commercial

banks in order to draw conclusions about related estimation risk, whereas Talay and Zhang

(2002) use a game theoretic framework for the analysis of model risk. Moreover, several

analyses quantify estimation risk through determining confidence intervals for Value-at-Risk

estimates under various model assumptions, i.e., the unconditional normal distribution, his-

torical estimates, conditional GARCH models with different innovation assumptions such as

normal or Student t errors, the Hill estimator, filtered historical simulation, Gram-Charlier

and Cornish-Fisher expansion (see Pritisker, 1997; Christoffersen and Goncalves, 2005;

3



Chan et al., 2007). Besides this type of model risk quantification, Gourieroux and Zakoyan

(2013) and Boucher et al. (2014) examine model risk through adjustment factors which need

to be added to the original risk measure estimate in order to derive the desired behavior.

The former analyze a GARCH model with normal and Student t innovations and the latter

use unconditional extreme value distributions. A further domain in the literature related to

model risk deals with the determination of model risk through deriving the bias in Value-

at-Risk estimation. Bao and Ullah (2004) examine the bias in Value-at-Risk estimation in

case of an ARCH model with normal errors and show that the bias is based on the residuals

distribution assumption as well as the estimation error for the model’s parameters. Inui and

Kijima (2005) show how the bias in Value-at-Risk estimation can be reduced through using

convex combinations of the Expected Shortfall and Hartz et al. (2006) reduce the bias for

the Value-at-Risk of a normal-GARCH model through a resampling method which leads to

better estimation results of the risk measure. Another contribution to the literature related

to model risk is given by Escanciano and Olmo (2010, 2011) who analyze the impact of model

risk on backtesting methods. Hereby, they provide backtesting methods which explicitly take

into account estimation risk.

The literature has also provided capital frameworks for model risk. Kerkhof et al. (2010)

provide a general model risk framework specifying estimation, misspecification and identifi-

cation risk, in order to determine related capital charges and Alexander and Sarabia (2012)

propose how a capital buffer for model risk can be calculated in case of quantile risk measures.

In summary, despite the support in literature for EVT methods and the general acknowledg-

ment of model risk by prudential regulators, no paper exists to date that analyzes the effects

of model risk for EVT methods and the impact on regulatory capital.

We contribute to previous work in multiple ways. To the best of our knowledge we are the

first to analyze second order effects of model risk of EVT methods on corresponding capital

requirements. We combine two fields of the literature: EVT and model risk. We analyze

the potential impact of model risk using a simulation and an empirical analysis. Our work

builds on Kerkhof et al. (2010) and Boucher et al. (2014) as we quantify the amount of mis-

specification and estimation risk (first order effects of model risk) through the determination

of adjustment factors by means of numerical optimization. To the best of our knowledge, we

are the first to use conditional EVT methods in this context and additionally examine model

risk for the expected shortfall under the application of the peaks over threshold method.

Moreover, in contrast to their work, we conduct an isolated analysis of second order effects of

model risk which is of special importance for EVT methods.
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We find a trade-off between accuracy (first order effect) and certainty (second order effect).

EVT methods exhibit more accurate point estimates and are less prone to misspecification

and estimation risk with respect to our data set. However, at the same time, we detect EVT

methods to be more sensitive to second order effects of model risk than traditional methods,

which increases the range of possible risk measure estimates and might lead to situations in

which risk measure forecasts are further away from the true value than traditional methods.

The dispersion further increases with the level of confidence.

The remainder of this paper is structured as follows. Section 2 provides a simulation study to

motivate and clarify all sources of model risk. Section 3 contains the theoretical background

for the estimation of risk measures, backtesting methods as well as the quantification of

model risk, while empirical results are analyzed in Section 4. Section 5 concludes our main

findings.

II. DIFFERENTIATION OF MODEL RISK SOURCES IN A SIMULATION STUDY

This section illustrates the two effects of model risk. We assume random losses to follow a

standardized Student t distribution with four degrees of freedom for which we know that the

true Value-at-Risk with confidence level α= 0.990, V aR0.990, equals 2.65.

1. First Order Effects of Model Risk

Consider a risk manager who is not aware of the true DGP and assumes the loss to follow a

standard normal distribution. Without any parameter estimation errors this would lead to

a point estimate of the V aR0.990 equal to 2.33 and hence to an underestimation of approxi-

mately 12.1% which could be ascribed to the model risk source of misspecification. Now, if the

risk manager correctly assumes a Student t distribution, the corresponding parameters (the

mean, standard deviation and shape parameter) need to be estimated. Given a random sam-

ple of 1,000 realizations we fit a Student t distribution to the data and get three parameter

estimates, e.g., 0.011, 0.976, 4.197 for the mean, standard deviation and shape. This leads

to ˆV aR0.990 = 2.59 and hence to an underestimation of approximately 2.26% which can be

ascribed to estimation risk. Combining misspecification and estimation risk, we fit a normal

distribution to the data. This results in estimates for the mean and standard deviation

equal to, e.g., −0.022 and 0.982, which leads to ˆV aR0.990 = 2.26 and an underestimation of

14.72%.1 In a real-world setting, an isolated consideration of misspecification and estimation

risk is not possible as we do not know the DGP and we label the combination of both effects

first order effects of model risk.

1Effects of misspecification and estimation risk can be commutated or offset each other in different situations.
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2. Second Order Effects of Model Risk

We compare the estimation process of the standardized Student t distribution with four

degrees of freedom to the peaks over threshold method from EVT which exclusively uses

data above a certain threshold and directly estimates the tail of a distribution which follows

a generalized pareto distribution (GPD) (see McNeil et al., 2005). The GPD depends on two

parameters, i.e., a shape and a scaling parameter. The corresponding shape and scaling

parameter to the assumed Student t distribution equal 0.25 and 0.50, such that for both

methods we know the true parameters and have identical true V aR0.990 values. We sample

1,000 random numbers from the true process and estimate both models. Given the estimated

models, predictions for the V aR0.990 can be made and the deviation from the true value

is quantified. We repeat this process 100,000 times which, for both methods, leads to the

distribution of deviations to the true value (in %) that can be seen in Figure 1.

Figure 1: Distributions of deviations from VaR0.990 predictions to the true value for the
Student t distribution and the GPD
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It can be observed that predicted values for the V aR0.990 of the GPD exhibit a higher degree

of dispersion than for the Student t distribution. This means that more predicted values of

the GPD are further away from the true value in comparison to the Student t distribution.2

Generally speaking, the results in Figure 1 highlight a further source of model risk that is

not captured but related to first order effects of model risk, which is why we denote it as

second order effects of model risk. To be more precise about the impact of this model risk

source, we calculate empirical probabilities for potential underestimation.

2Note that this is true for over- and underestimation, however, in the following we focus on underestimation as

this is more relevant for prudential regulation.
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The results for our base case (Student t distribution with four degrees of freedom and random

samples of size 1,000) can be seen in the upper left of Figure 2 and they show that the

probability for underestimating the true value of the V aR0.990 is higher for the GPD in

almost all cases. This seems to be a consequence from second order effects of model risk as

through the higher dispersion of the EVT method, more severe underestimations occur with

a higher frequency which increases the likelihood for such events. We find that this behavior

worsens if the general amount of data values is reduced to 500 (see plot in the upper right of

Figure 2) and is reduced for a higher amount of data, e.g., 2,000 (see plot in the lower left of

Figure 2).3

3Generally speaking, smaller time series imply a greater degree of uncertainty and longer time series may not

be representative given structural changes.
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Figure 2: Probabilities for the underestimation of VaR0.990 in case of the Student t distri-
bution and the GPD
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Note: For the results in the upper left we draw 1,000 numbers from the DGP, while 500 and 2,000 are

drawn for the results in the upper right and the lower left. Results in the lower right are generated

using a Student t distribution with ten degrees of freedom as the true DGP and random samples of

size 1,000.

In addition we find these results remain stable, if the DGP is a Student t distribution with

ten degrees of freedom which corresponds to a shape parameter of 0.10 for the GPD. This

leads to a less heavy tailed DGP. The plot in the lower right of Figure 2 exhibits that the

probability for underestimating the true value (V aR0.990 = 2.47) is still higher for the EVT

method. Overall, this section shows that a further dimension of model risk exists besides

misspecification and estimation risk which is relevant in the context of risk management

(especially for EVT methods).
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III. DETERMINATION OF RISK MEASURES AND MODEL RISK

This section presents the theory to determine risk measures and their related model risk.

First, the derivation of Value-at-Risk and Expected Shortfall is described. Second, we show

how the accuracy of these models can be analyzed and third, we provide measures to quantify

first and second effects of model risk.

1. Determination of Risk Measures — Theoretical Background

The aim of our analysis is to determine whether methods from EVT are more prone to

prediction risk than traditional methods. We focus on financial data, i.e., negative log-

returns of stock indices L t, t ∈ Z. L t is a strictly stationary time series process of the

form

L t =µt +σtX t, (1)

where µt and σt are measurable with respect to Ft−1, the information available up to

time t−1, and X t are iid innovations with unknown distribution function FX (see, e.g.,

McNeil and Frey, 2000). Moreover, we estimate µt by an ARMA (p1, q1) process and σt

by a GARCH (p2, q2) process with orders pi, qi, i = 1,2, which is estimated using a quasi-

maximum likelihood estimation. This means that the parameters for the ARMA (p1, q1)−
GARCH (p2, q2) process are estimated assuming normality with respect to the innovations,

even though we do not consider the innovations to be normally distributed. Resulting

parameters of the ARMA (p1, q1)−GARCH (p2, q2) process are consistent and asymptotic

normally distributed, if the innovations’ distribution has a finite fourth moment (see McNeil

et al., 2005). Consequently, the parameters θ for the distribution of X t are determined sepa-

rately through maximum likelihood estimation after the ARMA (p1, q1)−GARCH (p2, q2)

process is estimated. For X t, we assume a (semi-)parametric4 distribution, i.e., either the

generalized extreme value distribution (GEV) or the generalized Pareto distribution (GPD)

with respect to methods from EVT or the normal, Student t or logistic distribution with

respect to traditional methods.

Hence, given a certain distribution function for X t and some confidence level α ∈ (0,1),

estimates for the daily5 Value-at-Risk
(
V aR t,i

α

)
and Expected Shortfall

(
ESt,i

α

)
of the negative

log-returns under the distribution assumption i ∈GEV, GPD, normal, Student t, logistic, are

derived through (see, e.g., McNeil et al., 2005)
4The generalized Pareto distribution represents a semi-parametric distribution.
5Note that we use daily values as this approach is commonly chosen in practice. Usually, risk measures for

periods of V days are approximated using V aRV
α =V aR t

α ·pV .
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V aR t,i
α =µt +σtV aR i

α, ESt,i
α =µt +σtES i

α, (2)

where the unconditional Value-at-Risk and Expected Shortfall are defined through6

V aR i
α = inf {x ∈R : FX (x)≥α}, ES i

α = 1
1−α

∫ 1

α
V aR i

vdv. (3)

We focus our analysis to these two risk metrics as the Value-at-Risk is the current standard

with respect to regulatory capital requirements and an ongoing discussion exists on the

dominance of Value-at-Risk and Expected Shortfall. Note that the Basel Committee on

Banking Supervision proposes to use the Expected Shortfall instead of the Value-at-Risk for

internal models of market risk (see Basel Committee on Banking Supervision, 2013) and

the Expected Shortfall is already applied for the Swiss Solvency Test for insurers. Table 1

provides a summary of the three steps for risk measure estimation.

Table 1: Procedure for estimating risk measures

Step Procedure

1 Estimate the ARMA (p1, q1)−GARCH (p2, q2) process

2 Estimate the distribution function for the residuals X t from Equation 1 using

the GEV, GPD, normal, Student t or logistic distribution

3 Determine risk measures according to Equation 2

2. Assessing the Methods’ Accuracy — Backtesting

We conduct several statistical tests to analyze whether the applied models are suitable for

the determination of the Value-at-Risk and Expected Shortfall. A time span of T days is

taken into account for backtesting, for which we use a rolling window of D, D < T days

to estimate the ˆV aR t,i
α and ÊSt,i

α , i ∈GEV, GPD, normal, Student t, logistic (see Equation

2) at each point in time t = {tD , ..., tT−1}. By definition, the probability for the violation of

the Value-at-Risk equals 1−α. Thus, we introduce an indicator function I t, which is given

through

6See, e.g., McNeil et al. (2005) for a detailed explanation how to calculate the risk measures under given

distributions.
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I t =
1, if L t > ˆV aR t,i

α ,

0, if L t ≤ ˆV aR t,i
α ,

with a hypothesized success rate equal to 1−α. This can be tested with a two-sided test

under the null hypothesis that the expected success rate (violation rate, respectively) is

realized using either a binomial or likelihood ratio test (see, e.g., McNeil and Frey, 2000; An-

gelidis et al., 2004). If the analyzed method systematically under- or overestimates the ‘true’

Value-at-Risk, the null hypothesis is rejected for a given significance level. Furthermore,

we apply an additional test statistic for a likelihood ratio test, which simultaneously takes

into account unconditional coverage and independence and thus, considers effects such as

volatility clustering (see Christoffersen, 1998).

Backtesting the Expected Shortfall seems to be less straightforward than the Value-at-Risk.

More concrete, the Expected Shortfall is not elicitable, which leads to difficulties with respect

to backtesting and robust estimation (see Gneiting, 2011). However, valid methods for testing

the Expected Shortfall exist, even though a direct comparison based on these backtesting

results should be avoided (see Ziegel, 2014). We follow McNeil and Frey (2000) who present

a backtesting method for the Expected Shortfall and introduce

Rt = L t −ESt,i
α

σt
, (4)

which, conditional on L t >V aR t
α, should exhibit an expected value of zero, if the Expected

Shortfall is estimated correctly. This is tested using a bootstrap method without making any

assumptions about the distribution of Rt. We conduct a two-sided as well as a one-sided test,

while the latter, being more conservative, tests against the alternative hypothesis that the

Expected Shortfall is systematically underestimated, i.e., the conditional mean is greater

than zero. Summing up, we apply five tests, i.e., two conditional tests and one unconditional

test for the Value-at-Risk and a two- and a one-sided test with respect to the Expected

Shortfall. For each test we reject the respective model with the null hypothesis.

3. Determination of Model Risk

As the DGP is usually unknown, two important sources of model risk are (1) the choice of an

inaccurate model, i.e., misspecification risk, and (2) the deviation between the estimated and

the true parameter, i.e., estimation risk (see Boucher et al., 2014). In a real-world scenario
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both sources of risk can not be identified on an isolated basis as they relate to each other and

thus, are jointly analyzed.

In general, the realization of the parameter estimates relates to a data subset which repre-

sents random observations from the true DGP. This leads to a potential risk source that is

not captured by misspecification and estimation risk. In order to quantify this type of risk,

we analyze the distributions of possible risk measure estimates, e.g., higher ranges of risk

estimates might lead to more severe underestimations of the true risk measure in extreme

cases. In the following, we denote this risk as second order effects of model risk.

Our analysis examines first and second order effects of model risk, whereby we expect the

latter to be the most relevant for EVT methods. Parameters of the GPD and the GEV exhibit

generally higher standard errors due to their use of data during the estimation. For the

estimation of the GEV, only maxima of a predefined time period (e.g., a week, a month, etc.)

are used, while the GPD is estimated on the basis of values above a threshold such that in

both cases a certain amount of the original data is not taken into account for the estimation.

Higher standard errors reflect the sensitivity of parameter estimates to changes with respect

to the data. The corresponding question is whether this sensitivity and uncertainty is

directly reflected in corresponding risk measure estimates, and if so, what consequences

should be taken into account from a risk management’s perspective.

First Order Effects of Model Risk

To quantify first order effects of model risk, we proceed analogously to Boucher et al. (2014).

We determine a linear adjustment factor that is necessary in order to reach the desired

behavior for the risk measure’s estimate. In case of the Value-at-Risk the failure rate of I t

should equal the predefined confidence level 1−α. In case of the Expected Shortfall, the

conditional mean of Rt should be equal to zero. Moreover, the adjusted risk measures should

not be rejected for the statistical tests described in the previous subsection.7 We conduct nu-

merical optimization8 and derive a constant adjustment factor A j, j =V aR i
α, ES i

α, i ∈ GEV,

GPD, normal, Student t, logistic, which leads to an adjusted risk measure
( ˆV aR t,i

A,α, ˆESt,i
A,α

)
at time t
7The adjustment factor offsets the error in forecasting which stems from misspecification and estimation risk.

However it does not offset the potential impact of variations in risk measure forecasts, i.e., second order effects

of model risk.
8We use differential evolution to derive the adjustment factors (see Storn and Price, 1997). Moreover, to make

sure that numerical optimization results are stable, we run the same optimization problem multiple times and

find robust results which are available upon request from the authors.

12



ˆV aR t,i
A,α = ˆV aR t,i

α + AV aR i
α
· ˆV aR t,i

α , ˆESt,i
A,α = ˆESt,i

α + AES i
α
· ˆESt,i

α . (5)

Both adjustment factors are solutions for the optimization problems given through

min
AV aRi

α

|α̂−α|, min
AESi

α

|E(Rt)|,

where (1− α̂) is the empirical failure rate of I t. Solutions for the minimization are only

accepted during the optimization if the values for |α̂−α| and |E(Rt)| stay below a small

predefined border that is close to zero.9 Note that the adjustment factor, as defined in

Equation 5, should not be used for a dynamic risk adjustment as it is constant over time.

This measure allows us to get an indication which models dominate, as a higher adjustment

indicates a lower performance. We can therefore quantify the extent of misspecification and

estimation risk by one number. Moreover, this measure could be extended into a dynamic

setting through adapting the adjustment factor over time on the basis of a rolling window

of a predefined number of past risk measure estimates. The adjustment factor may be

interpreted as a capital buffer that is necessary to achieve the adjusted risk measure that

should be held by a company in order to guarantee the confidence level in the presence of

misspecification and estimation risk.

Second Order Effects of Model Risk

We analyze the range of possible estimates around the point estimate given the empirical

data to capture the possible range of risk measure estimates if the true DGP is unknown.

We capture second order effects of model risk through drawing random values for parameter

estimates. In our analysis, each model is estimated using maximum likelihood, hence, we

simulate N multivariate normally distributed random numbers for all parameter estimates

by means of the Cholesky decomposition for the estimated covariance matrix ˆCov
(
θ̂
) = Σ̂

(see, e.g., McNeil et al., 2005).10 For each point in time t, we calculate N estimates of

the Value-at-Risk and Expected Shortfall to get a distribution for each risk measure at

9See the empirical analysis for input values.
10As focus is laid on the distribution of the innovations, random numbers for their parameters are drawn

while parameters for the econometric time series models are kept constant. To analyze potential interaction

effects between second order effects of model risk of the econometric model and the innovations distributions

additional analyses are conducted in which random numbers are drawn for all the parameters. We find that

this increases the general level of model risk but does not impact our general findings.
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time t. Based on this distribution we determine an additional quantity, which helps to

quantify the degree of second order effects of model risk. This prediction buffer is denoted by

PBω

( ˆV aR t,i
α

)
, PBω

( ˆESt,i
α

)
, i ∈ GEV, GPD, normal, Student t and logistic, and for both risk

measures, it is determined through

PBω

( ˆV aR t,i
α

)
= ˆV aR t,i

α − ˆV aR t,i
α (ω) , PBω

( ˆESt,i
α

)
= ˆESt,i

α − ˆESt,i
α (ω) ,

with ω being the desired confidence level of second order effects of model risk and ˆV aR t,i
α (ω) ,

ˆESt,i
α (ω) representing the ω−quantile of the risk measures estimates distribution at time

t, such that when adding this quantity, one can be (1−ω)-confident that the adjusted risk

capital is sufficient to cover unexpected deviations with respect to changes of the parameter

estimates (see Alexander and Sarabia, 2012). The idea behind this quantity is that given

a higher degree of dispersion for risk measure estimates the ω−quantile for lower/higher

values of ω are further away from the true risk measure which increases prediction buffers.

Hence, estimation methods which are more exposed to second order effects of model risk

should exhibit higher values for PBω

( ˆV aR t,i
α

)
, PBω

( ˆESt,i
α

)
as their risk measure estimates

exhibit a wider range of possible values. For the comparison of these measures in our

analysis, we divide them through their corresponding point estimates to make the results

comparable.11

In summary, adjustment factors AV aR i
α
, AES i

α
should give an implication for the degree

of first order effects of model risk, while prediction buffers
PBω

( ˆV aR t,i
α

)
ˆV aR t,i
α

,
PBω

( ˆESt,i
α

)
ˆESt,i
α

take into

account the degree of second order effects of model risk.

IV. EMPIRICAL ANALYSIS

1. Data Description and Input Values

Our data consists of daily negative log-returns from four indices taken from the Yahoo

Finance database, i.e., the S&P 500, Dax 30, Nikkei 225 and BSE Sensex from January

2000 until March 2014.12 Within this time frame we use a rolling window of D = 1,000

days to estimate daily risk measure forecasts according to Equation 2, such that our first

estimates refer to the day D +1 = 1,001. The whole time span T is around 3,550 days

but differs slightly for each index due to different trading days. Considering the orders of

11In addition, we took into account the standard deviation and the 95% confidence interval of risk measure

estimates at time t. The results are robust and available from the authors upon request.
12The four indices are chosen as they represent economies with different characteristics.
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the ARMA (p1, q1)−GARCH (p2, q2) process, we decide to model all time series with an

ARMA (1,1)−GARCH (1,1) model as no further autocorrelation between lags of one and

ten days for the residuals can be detected through a Box-Pierce test under this assumption.13

With respect to methods from EVT, we use a block size of n = 50 trading days for the block

maxima method and a threshold u which equals the empirical 90th percentile of the data

in case of the GPD.14 We simulate N = 100,000 random numbers to derive the distribution

for risk measure estimates at each time step and use a significance level of 5% for all statis-

tical tests, i.e., an Augmented Dickey-Fuller test to test for stationarity of the time series

before the ARMA (1,1)−GARCH (1,1) model is estimated, a Box-Pierce test to check for

autocorrelation in residuals X t, the conditional tests for the Value-at-Risk violation ratio,

the unconditional test for the Value-at-Risk violation ratio and the tests for the mean of Rt

as defined in Equation 4.

We analyze different confidence levels α= (0.975,0.990,0.995), which we consider to be of

special relevance due to regulatory requirements. Firstly, 97.5% is recommended through

the Basel Committee on Banking Supervision (2013) if the Expected Shortfall is used instead

of the Value-at-Risk. Secondly, 99% should be taken for market risk if the Value-at-Risk

is applied (see Basel Committee on Banking Supervision, 2011).15 Thirdly, the confidence

level of 99.5% plays an important role with respect to insurers’ regulation in the context of

Solvency II. With respect to the numerical optimization of adjustment factors, we accept

solutions which are up to 5% away of the expected failure rate (1−α) in case of the Value-at-

Risk and between [−0.01;0.01] in case of the Expected Shortfall.

2. First Order Effects of Model Risk

The expected failure rate equals 1−α by definition and indicates that the chosen risk model

systematically underestimates the true risk measure if the estimated failure rate is above the

expected failure rate and vice versa (see Section 3). Results for the estimated mean of Rt can

be interpreted in a similar fashion. Table 2 displays estimation results and adjustment fac-

tors for the S&P 500 and Nikkei 225 for the Value-at-Risk and Expected Shortfall. Two rows

are given for each method. The first row displays empirical failure rates for Value-at-Risk

estimates and estimated mean values of Rt given confidence levels of α= (0.975,0.990,0.995).

Corresponding outcomes for the tests related to backtesting are highlighted with symbols

13Details are available from the authors upon request.
14We conducted our analyses with different threshold levels and block sizes and detect the general findings to be

robust for varying values.
15This confidence level refers to a time horizon of ten days. Our results are calculated on a daily basis. Risk

measures may be adjusted for a longer time horizon as explained in Section 3.
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as described below in Table 2. The second row presents adjustment factors as defined in

Equation 5 in parentheses, while the smallest absolute values for adjustment factors are

additionally highlighted in bold. Adjustment factors can be interpreted as the relative

deviation from adequate to estimated capital requirements while models which exhibit the

smallest adjustment factors are less prone to first order effects of model risk, as it needs by

definition less adjustment to achieve the desired behavior of the risk measure. For example,

in case of the S&P 500 for a confidence level of 0.975, the empirical failure rate for the

GEV equals 0.02945 and thus, underestimates the true risk as the expected failure rate is

given through 0.025. Hence, from an ex-post perspective 4.041 per cent of the Value-at-Risk

estimates need to be added at each point in time to derive the expected failure rate. Results

with respect to the Dax 30 and BSE Sensex index are illustrated in Table 7 analogously to

Table 2.16

The true risk seems to be underestimated for the majority of the models. With respect to the

Value-at-Risk in only five out of 60 cases the estimated failure rate is below the expected

failure rate, while in only four out of 48 cases the estimated mean for Rt is below zero

with respect to estimating the Expected Shortfall. Among nine instances in which risk is

overestimated, results are generated using the GEV, GPD, logistic and Student t distribution.

Consistent with previous studies, this underlines the inability of the normal distribution to

model extreme events.

16We also analyzed an equally weighted portfolio of the four indices. We spare the illustration of these results as

they behave similarly and do not provide any new insights.
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Table 2: Failure rates
∑(T−1)

t=D It/(T −1−D) and estimates for the expected mean of Rt for
given confidence levels α, backtesting results and adjustment factors AVaR i

α
,

AESi
α

Value-at-Risk

S&P 500 Nikkei 225

1−α 0.025 0.010 0.005 0.025 0.010 0.005

GEV 0.02945∗†◦ 0.01627 0.00775∗†◦ 0.03001∗†◦ 0.01120∗†◦ 0.00480∗†◦

(0.04041) (0.07166) (0.04448) (0.03992) (0.02722) (-0.00291)

GPD 0.03100∗†◦ 0.01201∗†◦ 0.00620∗†◦ 0.02641∗†◦ 0.00920∗†◦ 0.00520∗†◦

(0.04495) (0.03621) ( 0.02382 ) (0.01682) (-0.03056) (0.00283)

Normal 0.04029 0.02363 0.01472 0.03441 0.01521 0.00920

(0.16166) (0.21291) (0.20850) (0.07464) (0.09784) (0.17626)

Student t 0.04029 0.01782 0.00814 0.03321 0.01281∗†◦ 0.00760∗†◦

(0.16774) (0.15977) (0.09140) (0.07280) (0.05726) (0.12459)

Logistic 0.03758 0.01744 0.00852 0.03081∗†◦ 0.01000∗†◦ 0.00560∗†◦

(0.15916) (0.14718) (0.10293) (0.04186) (-0.00176) (0.02730)

Expected Shortfall

S&P 500 Nikkei 225

1−α 0.025 0.010 0.005 0.025 0.010 0.005

GPD −0.00288•+ 0.04922•+ 0.07428•+ 0.01127•+ 0.23833•+ 0.38136•+

(-0.00085) (0.01579) (0.02151) (0.00424) (0.07492) (0.10782)

Normal 0.23636 0.22503• 0.26296• 0.19752 0.38715 0.54893

(0.10311) (0.08625) (0.09252) (0.08504) (0.10617) (0.15105)

Student t 0.00210•+ −0.06461•+ −0.05165•+ 0.09666•+ 0.28372• 0.38585•

(0.00083) (-0.02115) (-0.01485) (0.03956) (0.08166) (0.12046)

Logistic 0.08190•+ 0.01924•+ 0.03380•+ 0.00640•+ 0.25591• 0.38236•

(0.03293) (0.00643) (0.00910) (0.00248) (0.07575) (0.10992)

Note: Failure rates and expected means are given in the first row, the second row shows adjustment factors

which are displayed in parentheses where the lowest adjustment factors are highlighted in bold. With

respect to backtesting, symbols are defined as ∗ : H0 for binomial-test is not rejected; † : H0 for unconditional

Likelihood ratio test is not rejected; ◦ : H0 for conditional Likelihood ratio test is not rejected.; • : H0 for

mean is equal to zero is not rejected; + : H0 for mean is smaller than zero is not rejected.
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With respect to backtesting the Value-at-Risk, the GPD and GEV seem to be well suited

for all confidence levels as except for the S&P 500 and α = 0.990, none of the conducted

backtests are rejected. At the same time almost all tests are rejected for the normal, Student

t and logistic distribution in case of the S&P 500 and Dax 30, while the Student t and logistic

distribution perform well in most of the cases for the Nikkei 225 and BSE Sensex. With

respect to the backtesting of the Expected Shortfall, almost all statistical tests are rejected

for the normal distribution, which leads to the conclusion that the mean for Rt differs from

zero in nine out of twelve cases and is systematically underestimated (the mean of Rt is

greater than zero) in twelve out of twelve cases, respectively.

Otherwise, none of the tests under the null hypotheses that the mean of Rt is equal to zero

is rejected for the GPD, Student t and logistic distribution, while only in one (four, three) out

of twelve cases the null that the mean of Rt is smaller than zero is rejected in case of the

GPD (Student t, logistic) distribution. The adjustment factors are given in parentheses for

each method. They should provide an indication for the amount of first order effects of model

risk. Adjustment factors are higher the further away the failure rates are from the reference

confidence level. The adjustment factors are therefore consistent with backtesting results.

The GEV and GPD generate the lowest adjustment factors in all cases except one with regard

to the Value-at-Risk, while for the Expected Shortfall, the logistic distribution seems to be

more accurate than the other distributions as it leads to the lowest adjustment factors in

seven out of twelve cases. At the same time, the GPD exhibits the lowest adjustment factor

in four cases and the Student t distribution in one case.

The performance deterioration of the peaks over threshold method in case of the Expected

Shortfall is related to the fact that the Expected Shortfall considers all values in the tail

above the corresponding Value-at-Risk. Especially in case of the S&P 500 and Dax 30,

the GPD seems to capture the Expected Shortfall less well than the Student t and logistic

distribution. Our results show that for both indices the GPD’s shape parameter ξ is negative

at many points in time, which leads to a Pareto type II distribution.17 Figure 3 exemplary

illustrates the density distribution for a Pareto and a Pareto type II distribution. As it

can be seen the Pareto type II distribution exhibits less probability mass in the tail of the

distribution. As a consequence, even if the quantile, i.e., the Value-at-Risk, is accurately

estimated, the risk situation for values higher than the Value-at-Risk tends to be underesti-

mated such that the mean for Rt is underestimated. This seems to be true when estimating

the Expected Shortfall for the S&P 500 and Dax. In the case of the Nikkei 225 and BSE

Sensex ξ is positive at more points in time compared to the remaining indices, which leads

17Depending on the shape parameter ξ > 0 (ξ = 0, ξ < 0), the GPD is a Pareto (exponential, Pareto type II)

distribution. See McNeil et al. (2005) for more detailed information.
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to a Pareto distribution that exhibits more mass in the tail and thus captures events above

the Value-at-Risk more accurately. This is reflected in the better performance of the GPD

when estimating the Expected Shortfall for both indices.

As the results presented in Table 2 refer to the whole sample period, we additionally analyze

the performance of each model if we split the sample period into three sub-periods. We

conduct this additional analysis in order to examine how the models perform during times of

turmoil. We create three sub-periods, i.e., the first estimation period lies between 2004 and

June 2007, the second period between July 2007 and March 2010 and the last period between

April 2010 until the end of our data sample.18 Table 3 presents estimated failure rates

for the Value-at-Risk and estimates of Rt for the Expected Shortfall given each subsample,

confidence level and method in the case of the S&P 500.19

Figure 3: Comparison for the density of the GPD with a positive and a negative shape
parameter
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18Sub-periods refer to risk measure estimation, i.e., the 1,000 last observations are used to determine estimates

for risk measures.
19Results for the remaining indices are robust and available from the authors upon request.
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Table 3: Failure rates
∑(T−1)

t=D It/(T −1−D), estimates for the expected mean of Rt and adjustment factors AVaR i
α
, AESi

α
for the S&P 500

when dividing the time frame into three subsamples

Value-at-Risk

1−α= 0.025 1−α= 0.010 1−α= 0.005

2004 - 2007 2007 - 2010 2010 - 2014 2004 - 2007 2007 - 2010 2010 - 2014 2004 - 2007 2007 - 2010 2010 - 2014

GEV 0.02043 0.06364 0.02385 0.01249 0.04091 0.01033 0.00681 0.02045 0.00397
(-0.01675) (0.39485) (-0.00708) (0.01818) (0.48067) (0.00279) (0.01284) (0.29449) (-0.01984)

GPD 0.02724 0.05909 0.02385 0.01135 0.02955 0.00636 0.00568 0.01818 0.00238
(0.01638) (0.34236) (-0.00861) (0.01638) (0.26893) (-0.06150) (0.00482) (0.22741) (-0.04651)

Normal 0.02724 0.07500 0.03736 0.01362 0.04773 0.02226 0.00681 0.03864 0.01192
(0.01657) (0.46475) (0.16872) (0.04303) (0.58643) (0.17005) (0.01915) (0.52194) (0.18302)

Student t 0.02611 0.07727 0.03736 0.01249 0.04318 0.01272 0.00568 0.02273 0.00477
(0.00304) (0.48864) (0.16475) (0.01892) (0.51513) (0.07220) (0.00412) (0.34726) (-0.01602)

Logistic 0.01930 0.07500 0.03736 0.00681 0.04318 0.01590 0.00341 0.02273 0.00715
(-0.02858) (0.46719) (0.16719) (-0.07716) (0.52465) (0.08542) (-0.03139) (0.35119) (0.07293)

Expected Shortfall

1−α= 0.025 1−α= 0.010 1−α= 0.005

2004 - 2007 2007 - 2010 2010 - 2014 2004 - 2007 2007 - 2010 2010 - 2014 2004 - 2007 2007 - 2010 2010 - 2014

GPD 0.12993 0.04695 -0.15073 0.32082 -0.15811 0.04662 0.79916 -0.43611 0.22720
(0.04974) (0.01702) (-0.05323) (0.11674) (-0.04719) (0.01458) (0.28011) (-0.11289) (0.06759)

Normal 0.20410 0.32866 0.18803 0.34661 0.31013 0.10910 0.70178 0.19835 0.16067
(0.08877) (0.14250) (0.08251) (0.13306) (0.11819) (0.04196) (0.24983) (0.06940) (0.05663)

Student t 0.15212 0.09163 -0.13607 0.25663 -0.06346 -0.28683 0.66346 -0.17771 -0.43747
(0.06396) (0.03638) (-0.05227) (0.09329) (-0.02070) (-0.08822) (0.21724) (-0.05079) (-0.11533)

Logistic 0.14011 0.13884 0.02086 0.45212 -0.00418 -0.08836 0.92608 -0.08199 -0.13498
(0.05425) (0.05562) (0.00853) (0.14753) (-0.00139) (-0.02992) (0.36810) (-0.02618) (-0.04054)
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The results given in Table 3 show that the estimation performance during the financial crisis

is substantially worse than in the periods before and after the crisis for all models. This

can be seen through high deviations from the expected behavior of all models and shows

that no model seems to be capable of correctly forecasting the impact of the financial crisis.

In the period before the financial crisis, we observe no extreme events such that even the

normal distribution provides reasonable estimates for risk measures. The GPD deviates

the least from the expected behavior during the financial crisis in the majority of all cases.

Even though its risk measure estimates are too small during this period, it would have

caused the lowest degree of financial distress if such a model would have been used. In the

period after the financial crisis we find similar results as for the consideration over the whole

period between 2004 and 2014. With respect to Value-at-Risk estimation, EVT methods

exhibit the lowest adjustment factors and the logistic distribution seems to be most accurate

with respect to Expected Shortfall estimation. We conclude this part of the analysis that in

comparison to traditional methods, EVT methods seem to exhibit lower degrees of first order

effects of model risk.

3. Second Order Effects of Model Risk

The degree of second effects of model risk is quantified through prediction buffers. The

conjecture that EVT methods might be more prone to second order effects of model risk is

based on the fact that these methods only use a fraction of the whole data set and thus,

usually exhibit higher standard errors for their parameter estimates. First, we examine

whether this behavior leads to more dispersed risk estimates that are quantified by EVT

methods. In a second step, we analyze how second order effects of model risk impact the

safety level for risk management. Figure 1 shows that a higher degree of second order effects

of model risk might not necessarily lead to risk measure estimates that are not sufficient to

cover critical losses. This issue will be addressed at the end of this analysis.

A risk measure distribution is generated for each method at each time step through Monte-

Carlo simulation. Prediction buffers (see Section 3) are calculated using these distributions.

The results are given in Figure 4 for the S&P 500 and the Nikkei 225, respectively. Results

with respect to the Value-at-Risk and a confidence level of α= 0.990 are illustrated in the two

upper plots, while the two lower plots correspond to results for the Expected Shortfall and a

confidence level of α= 0.975. Overall, results are comparable for each index and we focus

on the interpretation of the S&P 500 and the Nikkei 225. It can be seen that methods from

EVT (GEV and GPD) exhibit higher prediction buffers (in relation to their point estimate).
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Figure 4: Prediction buffers in case of the S&P 500 and Nikkei 225 for the Value-at-Risk
with a confidence level α= 0.990 and Expected Shortfall given a confidence level
α= 0.975 and ω= 0.05
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Note: For each method, the difference between the point estimate and the ω-quantile of the risk

measure distribution at time t is illustrated in relation to the point estimate. Here ω equals 0.05. For

all plots the order from top to bottom is: GEV, GPD, Student t, Logistic, Normal.
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Starting with the results for the Value-at-Risk, the highest degree of prediction buffers

over most of the sample period is given for the GEV, while the GPD follows most points in

time. The traditional distributions show smaller values for prediction buffers, except for

the Student t distribution which exceeds the prediction buffers of the GPD in some cases.

We find that standard errors of the distributions’ parameter estimates in relation to the

distributions’ parameter estimates are higher for the case of the GEV and GPD as compared

to the normal, Student t and logistic distribution. This might explain the higher level of

prediction buffers in the GEV and GPD cases. As the block maxima methods uses the least

amount of data it tends to have the highest standard errors, which is translated to the

variability of the Value-at-Risk estimates. The explanation for the higher level of prediction

buffers in the case of the Student t distribution differs.

While the parameters’ standard errors are low compared to the extreme value distributions,

the point estimates for the Value-at-Risk are smaller than in case of the GEV and GPD (see

results in Table 2 which indicate small Value-at-Risk estimates as the estimated failure

rates are relatively high). Thus, the relation of prediction buffers to the point estimates is

higher due to smaller values in the denominator.

Similar results can be found for the Expected Shortfall, such that the GPD leads to the

highest prediction buffers over almost the whole time span. In addition, comparing the

results of the GPD for the Value-at-Risk and the Expected Shortfall, we find higher pre-

diction buffers for the Exptected Shortfall. The development of prediction buffers through

time indicates that the degree of second order effects of model risk for the GPD seems to

vary through time, such that its behavior might be influenced by changes in the economy,

e.g., during the financial crisis, prediction buffers are relatively high. For all indices and

both risk measures our results indicate that the sensitivity towards second order effects of

model risk increases for higher confidence intervals. Figure 5 illustrates prediction buffers

for increasing confidence levels at different times. Again it needs to be highlighted that

prediction buffers relate to point estimates which allows us to better explain the results

given in Figure 5.20 We find that for the EVT distributions the level of prediction buffers

increases above-average for higher confidence levels and remains constant for the normal,

Student t and logistic distribution.

20Values for risk measures increase for each method. It is possible that the relation between prediction buffers

and the level of the point estimate decreases for higher confidence levels as a relative consideration between

prediction buffers of risk measure estimates and point estimates is taken into account.
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Figure 5: Sensitivity of prediction buffers against increasing confidence levels in case of
the S&P 500 for the Value-at-Risk and Expected Shortfall given different dates
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The results show that the absolute level of second order effects of model risk, which is

measured through prediction buffers for each method, as well as point estimates for risk

24



measures increases for higher confidence levels. However the increase of prediction buffers

and point estimates is proportionally linear in the case of the traditional distributions. In

contrast, we find that the growth of prediction buffers increases over-proportionally to the

growth in point estimates for the GEV and the GPD. This is an important result, as EVT

distributions exhibit higher prediction buffers and in addition seem to be more sensitive with

respect to an increase in the level of safety, i.e., the confidence level. These results seem to be

very relevant for prudential regulation as the choice of model methodology may determine

required capital buffers.

In summary, EVT methods are capable of estimating the Value-at-Risk and Expected Short-

fall with respect to backtesting methods in our analysis. Moreover, the degree of first order

effects of model risk is comparably small. However, due to their estimation methods (which

use only a subset of the whole data set) they exhibit higher standard errors for parameter

estimates, which leads to more dispersed risk measure estimates and thus, to higher pre-

diction buffers. The remaining question is whether this is critical from a risk management

perspective and how such a risk source could be handled within a risk management model.

4. Implications of Second Order Effects of Model Risk for Risk Management

Risk measures may be estimated well below the mean of the estimates’ distribution as a

consequence of the large parameter uncertainty. This might lead to a low amount of safety

capital that is not sufficient to protect the company against future losses. Hence, we conduct

an additional analysis for which we consider all sources of model risk analyzed in this paper

at the same time. To achieve this goal we perform the same analysis as for adjustment

factors illustrated in Table 2 and 7 and use the lower ω-quantile of risk measure estimates

instead of point estimates. Thus, an additional safety buffer is included which takes a

possible negative consequence of second order effects of model risk into account. Moreover,

it is possible through this procedure to isolate the extent of second order effects of model

risk and to examine whether risk measure estimates derived through EVT methods may

exhibit a higher potential downside with respect to the determination of capital requirements.

Results (over the whole sample period) for adjustment factors using theω= 0.025,0.050,0.100-

quantile are displayed in Table 4 with respect to the Value-at-Risk estimation and in Table 5

with respect to the Expected Shortfall estimation for the S&P 500 and Nikkei 225.21 For

each method adjustment factors decrease the higher ω and they are all higher in comparison

to those derived with the point estimates.

21See Table 8 and 9 for the Dax 30 and BSE Sensex index.
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Table 4: Adjustment factors when using theω= 0.025, 0.050, 0.100 quantile of the risk mea-
sure estimate distributions in case of the Value-at-Risk

S&P 500 Nikkei 225

1−α 0.025 0.010 0.005 0.025 0.010 0.005

ˆV aR t,GEV
α (0.025) 0.20748 0.21098 0.22477 0.18894 0.20134 0.21714

ˆV aR t,GPD
α (0.025) 0.14679 0.13968 0.15872 0.10207 0.09161 0.14552

ˆV aR t,Normal
α (0.025) 0.23189 0.27994 0.27243 0.13697 0.15830 0.23787

ˆV aR t,Student t
α (0.025) 0.27694 0.23445 0.18741 0.16477 0.14967 0.21335

ˆV aR t,Logistic
α (0.025) 0.24305 0.21790 0.14589 0.10564 0.05976 0.10246

ˆV aR t,GEV
α (0.050) 0.18300 0.18330 0.19634 0.16136 0.16043 0.17494

ˆV aR t,GPD
α (0.050) 0.12564 0.12004 0.13857 0.08456 0.07463 0.12715

ˆV aR t,Normal
α (0.050) 0.21995 0.26582 0.26219 0.12653 0.14799 0.23630

ˆV aR t,Student t
α (0.050) 0.25785 0.21330 0.16933 0.14978 0.12504 0.18780

ˆV aR t,Logistic
α (0.050) 0.23101 0.20579 0.12859 0.09647 0.05485 0.07889

ˆV aR t,GEV
α (0.100) 0.15359 0.15666 0.15928 0.12288 0.13999 0.14225

ˆV aR t,GPD
α (0.100) 0.1076 0.10501 0.11375 0.06961 0.05107 0.10546

ˆV aR t,Normal
α (0.100) 0.20575 0.25136 0.24973 0.11356 0.13641 0.21935

ˆV aR t,Student t
α (0.100) 0.23586 0.19089 0.15019 0.13288 0.10980 0.16838

ˆV aR t,Logistic
α (0.100) 0.21571 0.19213 0.12461 0.08380 0.03738 0.06306

Note: Adjustment factors for the estimation of the Value-at-Risk are displayed in this table similar to

Table 2. Lower quantiles from the distributions of risk measure estimates are used instead of point

estimates in order to analyze the impact of prediction risk. The smallest adjustment factors, given an

index and a confidence interval, are highlighted in bold.

The degree of second order effects of model risk can be quantified on an isolated basis when

examining absolute deviations between the adjustment factors using point estimates and

adjustment factors using the ω-quantile of the risk measure distributions. For example,

with respect to the Value-at-Risk estimation of the S&P 500 with a confidence level of 97.5%

through the GPD results in an adjustment factor of 0.04495 when using the point estimate

(see Table 2) and 0.14679 when using the 2.5% quantile of the Value-at-Risk distribution for

the GPD. Hence, the impact of second order effects of model risk can be quantified through

an additional adjustment equal to 0.14679−0.04495= 0.10184.

The consideration of second order effects of model risk might alter the decision for the best

method. Given the results for Value-at-Risk estimation in Table 2 and 7, EVT methods ex-

hibit the lowest adjustment factors in eleven out of twelve cases. For ω= 0.025 (0.050, 0.100)
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this changes such that EVT methods have the lowest adjustment factors in six (seven, nine)

cases out of twelve. This shows that there is a potential downside risk, which could result

in using over-optimistic estimates for the true risk measure. This also holds true for the

estimation of the Expected Shortfall. Comparing Table 2 and 7 with 5 and 9 shows that with

respect to EVT methods, the number of lowest adjustment factors decreases from four to

zero for all values of ω taken into account in the analysis.

Table 5: Adjustment factors when using theω= 0.025, 0.050, 0.100 quantile of the risk mea-
sure estimate distributions in case of the Expected Shortfall

S&P 500 Nikkei 225

1−α 0.025 0.010 0.005 0.025 0.010 0.005

ˆV aR t,GPD
α (0.025) 0.10370 0.11913 0.15783 0.09638 0.15499 0.22796

ˆV aR t,Normal
α (0.025) 0.12259 0.11955 0.11002 0.10863 0.13183 0.17549

ˆV aR t,Student t
α (0.025) 0.04376 -0.00468 -0.00316 0.05952 0.10888 0.16042

ˆV aR t,Logistic
α (0.025) 0.04216 0.01425 0.01078 0.02648 0.08213 0.12132

ˆV aR t,GPD
α (0.050) 0.09321 0.09253 0.14606 0.07895 0.14200 0.18763

ˆV aR t,Normal
α (0.050) 0.12014 0.10298 0.10079 0.10762 0.12156 0.16577

ˆV aR t,Student t
α (0.050) 0.03019 -0.00533 -0.00424 0.05742 0.08579 0.15124

ˆV aR t,Logistic
α (0.050) 0.03610 0.01401 0.01043 0.01650 0.08010 0.11078

ˆV aR t,GPD
α (0.100) 0.07722 0.06548 0.12184 0.06170 0.13890 0.17112

ˆV aR t,Normal
α (0.100) 0.11877 0.09558 0.09530 0.10234 0.11783 0.16408

ˆV aR t,Student t
α (0.100) 0.02589 -0.01179 -0.00434 0.05373 0.08322 0.15092

ˆV aR t,Logistic
α (0.100) 0.03577 0.01064 0.01011 0.01049 0.07684 0.11003

Note: Adjustment factors for the estimation of the Expected Shortfall are displayed in this table

similar to Table 2. Lower quantiles from the distributions of risk measure estimates are used instead

of point estimates in order to analyze the impact of prediction risk. The smallest adjustment factors,

given an index and a confidence interval, are highlighted in bold.

For the Expected Shortfall it can be observed that for ω= 0.025 (0.050, 0.100) adjustment

factors are higher than those necessary for the normal distribution in seven (seven, five) out

of twelve cases. However, in some cases EVT methods still perform better than traditional

methods in the presence of second order effects of model risk, especially in the case of the

Value-at-Risk estimation.
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Table 6: Adjustment factors AVaR i
α
, AESi

α
according to Table 4 for the S&P 500 when dividing the time frame into three subsamples and

using the ω= 0.025,0.010 quantile of the risk estimate distribution

Value-at-Risk

1−α= 0.025 1−α= 0.010 1−α= 0.005

2004 - 2007 2007 - 2010 2010 - 2014 2004 - 2007 2007 - 2010 2010 - 2014 2004 - 2007 2007 - 2010 2010 - 2014

GEV (ω= 0.025) 0.07726 0.57199 0.12981 0.14951 0.67802 0.13561 0.10224 0.84064 0.09238
GEV (ω= 0.100) 0.04262 0.50916 0.06736 0.10494 0.61849 0.09347 0.07222 0.79091 0.05554
GPD (ω= 0.025) 0.09702 0.47254 0.09165 0.13231 0.55208 0.04982 0.07081 0.72407 0.06304
GPD (ω= 0.100) 0.06854 0.42532 0.05585 0.09017 0.51039 0.01135 0.04210 0.66482 0.01543

Normal (ω= 0.025) 0.07331 0.54210 0.24025 0.10019 0.71078 0.21094 0.05331 0.88903 0.25820
Normal (ω= 0.100) 0.05548 0.50779 0.20949 0.07778 0.68247 0.20544 0.03942 0.85088 0.19035

Student t (ω= 0.025) 0.08267 0.59764 0.27603 0.10593 0.64731 0.18925 0.03029 0.81033 0.06558
Student t (ω= 0.100) 0.05204 0.53117 0.23274 0.06611 0.60822 0.13361 0.02412 0.77402 0.05794

Logistic (ω= 0.025) 0.03196 0.53444 0.25433 -0.00585 0.58271 0.16450 -0.01039 0.76022 0.14535
Logistic (ω= 0.100) 0.01084 0.51118 0.22269 -0.06826 0.54709 0.13778 -0.02183 0.74289 0.11069

Expected Shortfall

1−α= 0.025 1−α= 0.010 1−α= 0.005

2004 - 2007 2007 - 2010 2010 - 2014 2004 - 2007 2007 - 2010 2010 - 2014 2004 - 2007 2007 - 2010 2010 - 2014

GPD (ω= 0.025) 0.19420 0.09334 0.05976 0.26611 0.06129 0.08638 0.33111 0.03512 0.13827
GPD (ω= 0.100) 0.15038 0.06220 0.04422 0.19187 0.02453 0.05638 0.30415 0.02368 0.12279

Normal (ω= 0.025) 0.10766 0.16809 0.09470 0.14871 0.15081 0.09712 0.27916 0.14236 0.09365
Normal (ω= 0.100) 0.09636 0.15525 0.08449 0.13880 0.13246 0.08056 0.26642 0.12484 0.08476

Student t (ω= 0.025) 0.08227 0.09101 -0.00511 0.12096 0.03680 -0.05083 0.25198 0.05657 -0.07898
Student t (ω= 0.100) 0.07374 0.07278 -0.02674 0.11858 0.01622 -0.06112 0.21975 0.04354 -0.10575

Logistic (ω= 0.025) 0.06951 0.08778 0.02352 0.17214 0.03881 0.00333 0.42763 0.02439 -0.00368
Logistic (ω= 0.100) 0.06121 0.07285 0.01952 0.15221 0.02728 -0.00942 0.40279 0.02039 -0.01402
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This is in line with the observation of Figure 4 which illustrates that estimates for the

Expected Shortfall are more prone to prediction risk. These findings can also be observed for

the consideration of three periods. We exemplary show adjustment factors for the S&P 500

when using the ω= 0.025,0.100 quantile of the risk measure estimates distribution in Table

6.22 Overall, our results emphasize the potential impact of second order effects of model risk

and how original risk measure estimates could be adjusted, in order to improve a risk model

and protect it against the potential impact of first and second order effects of model risk.

V. CONCLUSION

This paper examines model risk for EVT methods. In the recent literature, EVT methods

are often applied to estimate tail risk measures and compared to traditional methods and

good backtesting results are detected in most of these analyses. An attribute associated with

methods from EVT is that they produce higher standard errors for parameter estimates as

less data is used compared to traditional methods. The question of interest is whether this

increases model risk with respect to risk measure estimates of these methods and if so, how

this behavior should be handled with respect to the quantification of the risk situation and

capital adequacy.

We apply two EVT and three traditional methods to estimate the Value-at-Risk and Expected

Shortfall and examine different sources of model risk in this context. Our empirical results

show that EVT methods are less prone to misspecification and estimation risk (first order

effects of model risk), but exhibit higher degrees of second order effects of model risk in

most of the cases. Furthermore, the sensitivity towards second order effects of model risk

increases for higher safety levels.

The economic impact of these results has to be evaluated in the context of the respective

regulatory regime. For example, according to the Basel regulation, regulatory capital for

market risk is generally calculated as the sum of a specific risk charge plus the maximum of

the previous day’s 99%-VaR and the average 99%-VaR multiplied by a punitive factor that

is generally equal to three and increases from three to four for more than five exceedance

events in a year. In other words, if the number of exceedance events is less than five no

punitive capital charges are expected as the avarage VaR is underestimated by less than 2%

(i.e., 5 events over 250 trading days).

When analyzing second effects of model risk, we find that certain events exist in which EVT

22Results for the remaining indices are robust.
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methods might underestimate the true risk to a higher degree than the traditional models

applied in this analysis. This is even true for the normal distribution which seems not to

be well suited for risk estimation in most of the cases. Regulators may require additional

capital for this kind of risk and this may imply an economic capital advantage for traditional

models relative to EVT techniques. Such capital buffers have been discussed and can be

determined by means of the quantification measures provided in this paper.
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APPENDIX

Table 7: Failure rates
∑(T−1)

t=D It/(T −1−D) and estimates for the expected mean of Rt for
given confidence levels α, backtesting results and adjustment factors AVaR i

α
,

AESi
α

Value-at-Risk

Dax 30 BSE Sensex

1−α 0.025 0.010 0.005 0.025 0.010 0.005

GEV 0.02621∗†◦ 0.01177∗†◦ 0.00684∗†◦ 0.02330∗†◦ 0.00948∗†◦ 0.00611∗†◦

(0.02413) (0.05130) (0.02901) (-0.04477) (-0.00682) (0.07632)

GPD 0.02545∗†◦ 0.01215∗†◦ 0.00570∗†◦ 0.02607∗†◦ 0.01106∗†◦ 0.00711∗†◦

(0.00513) (0.06058) (0.02583) (0.00519) (0.03694) (0.09511)

Normal 0.03836 0.01709 0.01291 0.03239 0.01698 0.01224

(0.10284) (0.19730) (0.19138) (0.06971) (0.09784) (0.34756)

Student t 0.03798 0.01519 0.00912 0.03233 0.01383∗† 0.00829

(0.09201) (0.13148) (0.08440) (0.06328) (0.08899) (0.22215)

Logistic 0.03608 0.01443◦ 0.00836 0.03002∗†◦ 0.01303∗†◦ 0.00869

(0.07563) (0.07346) (0.05165) (0.04623) (0.08632) (0.22865)

Expected Shortfall

Dax 30 BSE Sensex

1−α 0.025 0.010 0.005 0.025 0.010 0.005

GPD 0.08909•+ 0.15331•+ 0.43071• 0.04259•+ 0.10442•+ −0.08161•+

(0.03385) (0.05044) (0.13365) (0.01604) (0.03291) (-0.02241)

Normal 0.19391 0.36517 0.32103• 0.27066 0.38419 0.39064

(0.08485) (0.14013) (0.11328) (0.11798) (0.10217) (0.13749)

Student t 0.01598•+ 0.08417•+ 0.03631•+ 0.08064•+ 0.17072• 0.15750•

(0.00647) (0.02837) (0.01096) (0.03246) (0.05747) (0.04725)

Logistic 0.00679•+ 0.06498•+ 0.02976•+ 0.09271•+ 0.16162• 0.04907•+

(0.00271) (0.02156) (0.00877) (0.03685) (0.05353) (0.01441)

Note: Failure rates and expected means are given in the first row, the second row shows adjustment factors

which are displayed in parentheses where the lowest adjustment factors are highlighted in bold. With

respect to backtesting, symbols are defined as ∗ : H0 for binomial-test is not rejected; † : H0 for unconditional

Likelihood ratio test is not rejected; ◦ : H0 for conditional Likelihood ratio test is not rejected.; • : H0 for

mean is equal to zero is not rejected; + : H0 for mean is smaller than zero is not rejected.
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Table 8: Adjustment factors when using theω= 0.025, 0.050, 0.100 quantile of the risk mea-
sure estimate distributions in case of the Value-at-Risk

Dax 30 BSE Sensex

1−α 0.025 0.010 0.005 0.025 0.010 0.005

ˆV aR t,GEV
α (0.025) 0.14297 0.29536 0.22749 0.14061 0.17224 0.28360

ˆV aR t,GPD
α (0.025) 0.10077 0.17121 0.15274 0.11234 0.14080 0.26751

ˆV aR t,Normal
α (0.025) 0.16360 0.24978 0.26003 0.14037 0.22833 0.41944

ˆV aR t,Student t
α (0.025) 0.20172 0.34109 0.17969 0.15245 0.19736 0.32648

ˆV aR t,Logistic
α (0.025) 0.14932 0.14642 0.11825 0.11547 0.15204 0.25611

ˆV aR t,GEV
α (0.050) 0.12720 0.20059 0.19137 0.10466 0.13916 0.23169

ˆV aR t,GPD
α (0.050) 0.08389 0.14965 0.10268 0.09105 0.11420 0.24433

ˆV aR t,Normal
α (0.050) 0.15995 0.23582 0.25219 0.12653 0.21799 0.40630

ˆV aR t,Student t
α (0.050) 0.18165 0.21837 0.15863 0.13655 0.18160 0.31627

ˆV aR t,Logistic
α (0.050) 0.13686 0.12724 0.10007 0.10471 0.13286 0.24288

ˆV aR t,GEV
α (0.100) 0.10479 0.17149 0.14241 0.06464 0.10236 0.17963

ˆV aR t,GPD
α (0.100) 0.06468 0.12501 0.08772 0.08668 0.10299 0.21325

ˆV aR t,Normal
α (0.100) 0.14179 0.22936 0.23586 0.10840 0.20881 0.39169

ˆV aR t,Student t
α (0.100) 0.15951 0.19799 0.14905 0.11901 0.16170 0.29827

ˆV aR t,Logistic
α (0.100) 0.12289 0.11479 0.09464 0.08884 0.13140 0.22968

Note: Adjustment factors for the estimation of the Value-at-Risk are displayed in this table similar to

Table 7. Lower quantiles from the distributions of risk measure estimates are used instead of point

estimates in order to analyze the impact of prediction risk. The smallest adjustment factors, given an

index and a confidence interval, are highlighted in bold.
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Table 9: Adjustment factors when using theω= 0.025, 0.050, 0.100 quantile of the risk mea-
sure estimate distributions in case of the Expected Shortfall

Dax 30 BSE Sensex

1−α 0.025 0.010 0.005 0.025 0.010 0.005

ÊSt,GPD
α (0.025) 0.10471 0.17951 0.20815 0.11756 0.17608 0.19704

ÊSt,Normal
α (0.025) 0.10555 0.16955 0.12763 0.12950 0.15839 0.15364

ÊSt,Student t
α (0.025) 0.03955 0.05245 0.03668 0.06433 0.06913 0.05231

ÊSt,Logistic
α (0.025) 0.01886 0.05041 0.04457 0.04910 0.06810 0.05688

ÊSt,GPD
α (0.050) 0.09530 0.17177 0.19877 0.10927 0.15343 0.15336

ÊSt,Normal
α (0.050) 0.10042 0.15546 0.12523 0.12569 0.15233 0.14821

ÊSt,Student t
α (0.050) 0.03179 0.05020 0.02856 0.05269 0.06881 0.05111

ÊSt,Logistic
α (0.050) 0.01294 0.04551 0.03461 0.04773 0.05785 0.04692

ÊSt,GPD
α (0.100) 0.07716 0.15421 0.17644 0.10354 0.12358 0.12042

ÊSt,Normal
α (0.100) 0.09881 0.14043 0.12496 0.12484 0.14897 0.14452

ÊSt,Student t
α (0.100) 0.03155 0.04735 0.02845 0.05066 0.06758 0.04931

ÊSt,Logistic
α (0.100) 0.01144 0.04472 0.03139 0.04530 0.05547 0.04460

Note: Adjustment factors for the estimation of the Expected Shortfall are displayed in this table

similar to Table 7. Lower quantiles from the distributions of risk measure estimates are used instead

of point estimates in order to analyze the impact of prediction risk. The smallest adjustment factors,

given an index and a confidence interval, are highlighted in bold.
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