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ABSTRACT 

 
Null hypotheses in undergraduate econometrics courses are usually 
framed in terms of parameter values or distributions.  But relatively 
simple techniques can also test for violations of good scientific 
practice.  This is neatly illustrated for students by a reinterpretation 
of an influential paper by Sir Ronald Fisher, where a rejection region 
is formed on the left tail of a χ2 distribution.  This idea is extended to 
situations where dubious models fit ‘too well’.  In these cases, a high 
R2 may be taken as evidence that a non-random subset of regressions 
is being ‘adversely selected’ for publication. 
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INTRODUCTION 

In introductory econometrics courses, students learn about the logic of 
hypothesis tests.  Rare events are those realizations of the test statistic which 
make us doubt a claim (the null Hypothesis) concerning a parameter value or 
distribution. 

However, familiar statistical tests can also be used to test for data 
culling, or other improper scientific practices.  This observation may be of 
interest to upper-year undergraduates.   

 

1. THE LEFT-TAILED χ2 TEST 

We begin with a nice historical example, in which the independence of 
multinomial trials in a χ2 goodness-of-fit test was successfully challenged by 
Sir Ronald Fisher.  He could do so because the expected frequencies in the χ² 
test were based on Gregor Mendel’s theory of genetics, which was widely 
accepted by Fisher’s time.  His insights are best presented in his own words: 

“Fictitious data can seldom survive a careful scrutiny, and, since 
most men [sic] underestimate the frequency of large deviations 
arising by chance, such data may be expected generally to agree 
more closely with expectation than genuine data would.”   
(Fisher 1936, pp.  129-130) 

In the same paper he showed that the calculated χ² goodness-of-fit test 
statistics for Gregor Mendel’s plant hybridisation experiments were too small 
to be credible.  This use of the χ² statistic led him to a startling conclusion. 

“… most, if not all, of the experiments have been falsified so as to 
agree closely with Mendel’s expectations.”   
(Fisher, 1936, p. 132) 

Fisher implicitly ran a χ² goodness-of-fit test with the rejection region in 
the left hand tail. 

 
[Fig. 1] 
 
This is a test, where the null hypothesis is that the data is drawn from 

independent and identical multinomial trials (with the various success 
probabilities given by Mendel’s theory).  That is, the null is that the data is a 
true random sample.  Fisher believed that Mendel’s gardener had tampered 
with the data.  While Fisher was not sure how the gardener did it, schemes that 
‘make the data fit’ may be broadly described as a violation of independence, 



since the tamperer must cull or alter observations bearing in mind the other 
(untampered) observations.  He or she removes ‘unfavourable’ realizations, or 
even fabricates data.  Either way, independence is violated.   

In the χ²-statistic, this violation of independence will clearly show up as 
a small value; hence the left-tail rejection region.  The alternative hypothesis 
for this test of random sampling is that the distributions are not independent. 

This test for random sampling is just as rigorous as a standard goodness-
of-fit test.  The goodness-of-fit test statistic has a χ² distribution 
(approximately) if the expected frequencies are correct, and the sampling is 
random (drawn from identical and independent multinomial trials).  Both these 
conditions are necessary for the test statistic to have χ² distribution.   

Therefore, depending upon what is doubted, the test statistic can be used 
as evidence for either non-random sampling or incorrect expected frequencies, 
but not both.  If we are confident that random sampling has occurred, a high 
value of the test statistic convinces us (with probability α of making a mistake) 
that the expected frequencies are wrong.  Similarly, if we are confident about 
the expected frequencies, a rejection region like the one in Figure 1 convinces 
us (with probability α of making a mistake) that random sampling has not 
occurred.1     

This can be stated intuitively;  the data may be used differently 
depending on what is doubted.  If Mendel was not a party to the deception, 
what was in doubt was the frequency of plants with certain characteristics.  
When he saw the frequencies conforming (very closely) to his theory, his 
doubts were allayed.  From Fisher’s point of view, aided by subsequent 
scientific research which put the expected frequencies beyond reasonable 
doubt, the very same data provided conclusive evidence that the experiments 
were interfered with.   

Fisher’s approach circumvents (at the cost of making a type I error) the 
need for so called ‘set-up experiments’, where researchers suspected of fraud 
are surreptitiously placed in experimental environments that could not possibly 
produce the outcomes that the researchers claim they do.   Such experiments 
have been criticized, because misconduct in the set-up experiment does not 
prove original misconduct (Office of Research Integrity, 2002). 

The left-tailed χ2 test could be used in other situations as well.2  
Consider the situation facing a project manager who has asked a researcher to 
collect a random sample from a population.  Suppose further that the manager 
doubts that the sample was collected randomly, but instead suspects that it was 
collected to perfectly fit a demographic characteristic of the population, say an 

                                                                  
1 One can depart from random sampling in many ways; the particular departure in mind is 

massaging observed frequencies to agree with expected ones.   
2 I am grateful to staff at the Australian Bureau of Statistics with whom I have discussed this 

section.   



age profile, but that it was otherwise poorly drawn.  This suspicion could be 
confirmed by seeing if the data classified by age fitted ‘too well’ by using the 
left-tailed χ2 test. 

As was the case for Mendel’s data, this use of the test requires a prior 
doubt in the integrity of the researcher.  The exact same data could be used, 
with a rejection region in the right-hand-tail, if the concern was that the data 
drawn was not representative enough of the population.  In that case the focus 
would not be on the researcher’s integrity, but on other features of the 
sampling procedure.   

 
2. INFLATED R2 AND INVERTED F-TESTS 

Researchers sometimes have the experience that they find an 
econometric model in a journal with a high R2, despite having tried without 
success to model the relationship in question. 

This could be explicable by adverse selection, a term coined in the 
insurance industry.  The selection of people who purchase insurance is unlikely 
to be a random sample of the population.  Instead, they are more likely to be a 
group with private information about their personal situations that makes them 
more likely to obtain a higher-than-average payout under the policy.  Women 
contemplating pregnancy are more likely to take out a health policy with 
generous maternity provisions, confounding actuarial calculations based on the 
general population (Milgrom and Roberts 1992). 

In the same way, the reported regressions arriving at the journal editor’s 
desk might not be a random sample of regressions of that particular functional 
form in the population of regression realizations (i.e. for all sensible time 
periods and cross-sections). Instead, they might be sent by authors with private 
information about, say, all the modelling attempts that failed.  Truly spurious 
models that look impressive (probably with a high R2, among other things) 
might be overrepresented on the editor’s desk.   

Naturally, the claim that high-R2 regressions might be ‘adversely 
selected’ out of the population of regressions is equivalent to claiming that 
regressions with a high F statistic are being adversely selected.  As is well 
known, for the model yt=β1+β2x2t+…βkxkt+ut the F-test for the null H0: 
β2=β3=..βκ=0  (i.e. R2=0) can be written with R2.     
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Thus, a high R2 is the same as a high F.  However, if one has solid 
grounds for believing that the purported relationship is not significant (i.e. H0: 
β2=β3=..βκ=0), then a significant R2 must be understood differently.   

 



Now we describe the new hypotheses. The null would be that the 
regression in the journal is representative of the family of such attempted 
regressions (which use variables that are not, in fact, related).  A significant R2 
leads to a rejection of that null (that the journal regression is representative), in 
favour of adverse selection. 

H0: A representative regression has been submitted to the journal 
H1: Journal ‘adverse selection’ has occured 
In this case a significant R2 leads to rejection of H0.     
That is to say, just as Mendel’s gardener might have removed 

‘troublesome observations’ so researchers might remove low-R2 regressions.  
Naturally, this is not a useful perspective unless one has solid reasons to doubt 
the model, such as one’s own fruitless attempts to model the relationship in 
question.  Otherwise a high R2 would always make one doubt the integrity of a 
researcher!  The point is just that a significant R2 can mean something quite 
different to what it is normally taken to mean, depending on what is doubted.   

To drive home the similarity to the Mendel case, this test can even be 
cast as a left-tailed test (as Fisher’s test was), though nothing hinges on this 
representation.  Defining a new statistic as the inverse of the old one we have: 
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And clearly as R2 becomes arbitrarily close to one, the null of no adverse 
selection could be rejected on a left tail, for an arbitrarily small α.   

 

[Fig. 2.] 

 
The final example where a high R2 raises suspicions concerns data 

averaging.   We conceive of a situation that differs slightly from one outlined 
by the Office of Research Integrity (2002, pg. 16, Section 2), where an officer 
was asked to investigate a series of rat measurements.  The data had one extra 
digit – a zero or five – compared with  other measurements from the same 
experiment.  The officer hypothesized that the series was the average of 
another two (zeros arising when the sum of the numbers had an even last digit, 
and fives when it was odd), and then confirmed that this was, in fact, the case.   

But what would have happened if the tamperer had removed the last 
digit so that the series was not exactly the average of the other two?  In this 
situation, the ghost of Fisher would urge us to run a multiple regression of each 
series suspected of being fabricated on the other series.  If the regression 
included the two ‘parent’ series as independent variables, a very high R2 (and 
coefficients very close to 0.5, or zero) would provide strong evidence of 
tampering.  Naturally, this regression technique could also uncover fabricated 



data using other kinds of linear combinations of existing data, such as 
averaging over more than two series.   

 
3. PEDAGOGICAL CONSIDERATIONS 

These ideas are suitable for presentation to students who have a very 
good grasp of the logic of hypothesis testing.  Second-year econometrics 
students can think of examples of fabricated data, but they may not be 
comfortable enough with the standard meaning of a rare event to confront them 
with a non-standard meaning.3   

Students really need to understand how hard it is to fabricate a random 
sample, before they can see the wisdom in the quote at the start of the paper by 
Sir Fisher.  Less strong students could be led to being suspicious of, say, a 
perfect fit, and even weak ones could be shown how multiple regression could 
uncover averaging.   

For the brightest students, or for upper-year undergraduates with a lot of 
experience of hypothesis testing, these examples can lead to a discussion of the 
importance of assumptions in hypothesis testing. It is impossible to test 
everything at once; Fisher regarded Mendels multinomial success probabilities 
as being accurate, and researchers suspicious of a high R2 must have reasons to 
doubt the purported relationship.  Out of the range of possible doubts, what is 
doubted specifically determines what is tested. 

                                                                  
3 I ran an experiment in an introductory regression class to see if respondents could tell if a 

cup of tea had had the milk, or tea, poured in first (following a famous experiment at 
Cambridge University).  Out of 49 students observing the experiment, only 7 were 
suspicious when I asked them to comment on (fabricated) data from an alleged similar 
experiment where someone got 100 correct identifications from 100 cups of tea.   
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Figure 1.  Fisher's logic motivates a hypothesis test.  Fisher showed that 
Mendel's observed frequencies were too close to the theoretically expected 
frequencies by calculating a χ²-goodness-of-fit test statistic.  The null 
hypothesis is random sampling, while the alternative hypothesis is that the 
data has been tampered with to make the observed frequencies close to the 
expected frequencies.  A value less than c1 is evidence that independence 
among the data has been violated.  If the sampling is random, the 
probability of this occurring by chance is α. 
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Figure 2. A left-hand-rejection-region is appropriate for an (inverted) F-
test too.  The null hypothesis is no adverse selection.  Yet for very high 
values of the reported R2, such that the inverted F statistic falls below c2, 
you believe instead that a very unrepresentative regression has made its 
way to the journal editor’s office.  If you are wrong about this, the 
probability of making a mistake is α. 
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