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ON GROUPS WHOSE GEODESIC GROWTH IS POLYNOMIAL

MARTIN R. BRIDSON, JOSÉ BURILLO, MURRAY ELDER, AND ZORAN ŠUNIĆ

Abstract. This note records some observations concerning geodesic growth
functions. If a nilpotent group is not virtually cyclic then it has exponential
geodesic growth with respect to all finite generating sets. On the other hand,
if a finitely generated group G has an element whose normal closure is abelian
and of finite index, then G has a finite generating set with respect to which
the geodesic growth is polynomial (this includes all virtually cyclic groups).

1. Introduction

Growth for finitely generated groups is a concept that has been studied exten-
sively in the last fifty years, providing landmarks for modern group theory, most no-
tably Gromov’s theorem characterizing groups that have polynomial volume growth
as virtually nilpotent groups [9]. Volume growth functions count the number of el-
ements in the ball of radius n about the identity in the Cayley graph of a finitely
generated group, while geodesic growth functions count the number of geodesics of
length at most n that begin at the identity (cf. [7], [10], [2]). The geodesic growth
function of a group with respect to any finite generating set is bounded above by
an exponential function. The purpose of the present note is to record some ele-
mentary observations concerning groups that have subexponential geodesic growth
functions.

Previous work on geodesic growth functions has focussed mainly on the issue of
rationality of the associated formal power series. Gromov ([8], p.137) and Epstein et

al. ([5] p.80) established rationality for hyperbolic groups with respect to arbitrary
finite generating sets. There are similar rationality results for families of non-
hyperbolic groups, but examples of Cannon, described in [10], show that rationality
depends heavily on the choice of generators in the non-hyperbolic case. Our results
concerning polynomial geodesic growth1 exhibit a similar dependency. Shapiro [11]
considered the function pX : G → N which counts the number of geodesics for each
group element, with respect to some finite generating set X . He gives an explicit
formula for pX for abelian groups, from which a formula for the geodesic growth
function can easily be obtained. We make use of his study of these functions in
Section 3 below.

In Section 2 we define geodesic growth carefully and present some basic properties
and examples. In Section 3 we prove that any nilpotent groupG that is not virtually
cyclic has exponential geodesic growth with respect to all finite generating sets. In
the following sections we restrict our attention to groups that have polynomial
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1i.e. the geodesic growth function is bounded above by a polynomial
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geodesic growth with respect to some generating set; such groups are virtually
nilpotent with virtually cyclic abelianization. In Section 4 we present two groups of
the form Z

2
⋊C2; both have virtually cyclic abelianization but one has exponential

geodesic growth with respect to every generating set while the other has polynomial
growth with respect to some finite generating sets. In Section 5 we establish the
following sufficient condition for polynomial geodesic growth.

Theorem 1 (Main Theorem). Let G be a finitely generated group. If there exists

an element x ∈ G whose normal closure is abelian and of finite index, then there

exists a finite generating set for G with respect to which the geodesic growth of G
is polynomial.

In Section 6 we present a sharpening of this result in the virtually cyclic case.

Theorem 2. Let G be a virtually cyclic group generated by a finite symmetric

set X. The geodesic growth function ΓG,X is either bounded above and below by

an exponential function, or else is bounded above and below by polynomials of the

same degree.

2. Definition and elementary properties

Throughout this paper we consider groups G equipped with a finite generating
set X = {x1, . . . , xm} that is symmetric (i.e. if x ∈ X then x−1 ∈ X). We often
think of X as a subset of G but there are times when we must be more formal and
regard the choice of generators as an epimorphism F (X) → G from the free monoid
generated by X ; in particular this is necessary when we want to allow repetitions
in our generating sets, i.e. allow that certain elements of X have the same image
under F (X) → G.

The central concept of study in this paper is geodesic growth.

Definition 3. The geodesic growth of a group G with respect to the symmetric
generating set X is the function ΓG,X(n) counting, for each n, the number of
geodesics of length at most n starting at 1 in the Cayley graph of the group G with
respect to X .

There is an obvious upper bound on ΓG,X(n), namely ΓG,X(n) ≤ |X |n. We say
that Γ has exponential geodesic growth with respect to X if there exists b > 1 such
that ΓG,X(n) ≥ bn for all n ∈ N. We say that Γ has polynomial geodesic growth
with respect to X if there exist c, d ∈ N such that ΓG,X(n) ≤ cnd for all n ∈ N. (At
present, it is unclear if this is equivalent to demanding upper and lower bounds of
the same polynomial degree, cf. [9].)

The more usual (volume) growth, γG,X(n), counts the number of vertices in the
Cayley graph of G that are at distance at most n from the identity. Since each
vertex is connected to the identity by a geodesic, this function provides a lower
bound for ΓG,X(n).

Lemma 4. Let G be a group with finite generating set X. The geodesic growth

function ΓG,X(n) is bounded below by the word growth function γG,X(n): for all

n ∈ N,

ΓG,X(n) ≥ γG,X(n).

The following examples show that geodesic growth is heavily dependent on the
choice of generating set.



ON GROUPS WHOSE GEODESIC GROWTH IS POLYNOMIAL 3

Example 5. Consider the group G = Z×C2. (Throughout this paper, Ck denotes
the cyclic group of order k.) We present G as 〈t, a|a2 = 1, at = ta〉. With respect
to the symmetric generating set {t±1, a}, the geodesics of length n are tn, t−n,
tiatn−i−1, and t−iati+1−n, for i = 0, . . . , n − 1. Thus the number of geodesics of
length n is, for n ≥ 2, equal to 2n+2, so the number of geodesics of length at most
n is O(n2).

Now consider the presentation 〈t, c|c2 = t2, ct = tc〉, obtained from the previous
one by the substitution c = at. With respect to the generating set {t, t−1, c, c−1}
each word x1x2 . . . xn with xi ∈ {tt, cc} is a geodesic for the element t2n. The
number of such strings for each n is 2n, so the geodesic growth is exponential.

Figure 1. Cayley graphs for Example 5.

Note that both generating sets are minimal: one cannot generate the group with
fewer than two generators.

Example 6. Consider Z with the presentation 〈t | 〉 and generating set {t±1}. For
n = 0 there is one geodesic of length n, and for n > 0 there are exactly two, so
the geodesic growth function is linear. Now consider the presentation 〈t, s | t = s〉.
With respect to the generating set {s±1, t±1}, there are 2n geodesics joining 1 to
the group element tn, namely those labelled by positive words of length n in the
symbols s and t.

A similar doubling trick shows that, with respect to some finite generating set,
the geodesic growth of every finitely generated infinite group is exponential. Thus
if one wants to make non-trivial statements about groups with subexponential geo-
desic growth, then one has to be content with imposing this constraint with respect
to some finite generating set (not an arbitrary one). We would like to understand
which groups have subexponential (polynomial or intermediate) geodesic growth in
this sense.

The bound recorded in Lemma 4 tells us that if a group has polynomial geodesic
growth with respect to some generating set then its word growth must be polyno-
mial. Hence, by Gromov’s celebrated theorem [9], we obtain the following result
which explains why we focus on virtually nilpotent groups in the rest of the text.

Corollary 7. If a group G has polynomial geodesic growth with respect to some

finite generating set, then G is virtually nilpotent.

In addition to the obvious lower bound provided by the word growth function
given in Lemma 4 there is another lower bound that comes from the good behavior
of geodesics under lifts along homomorphisms.
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Lemma 8. Let G be a group with a finite symmetric generating set X. Let φ :
G → G′ be an epimorphism of groups and take X ′ = φ(X) as a generating set for

G′. The geodesic growth functions of G and G′ satisfy the following inequality: for

all n ≥ 0,
ΓG,X(n) ≥ ΓG′,X′(n).

Proof. If w = φ(x1) . . . φ(xn) is a geodesic word in G′, then x1 . . . xn must be a
geodesic in G: if there were a shorter word y1 . . . yl evaluating to the same element
of G, then we would have w = φ(y1) . . . φ(yl) in G′, contradicting the assumption
that w is geodesic. Thus a choice of set-theoretic section X ′ → X of x 7→ φ(x)
defines an injection from the set of geodesic words of length n in (G′, X ′) to the set
of geodesic words of length n in (G,X). ⊔⊓
Remark 9. In this article we will not investigate the possible existence of finitely
generated groups that, with respect to certain generating sets, have geodesic growth
that is sub-exponential but super-polynomial, i.e. “intermediate”. Groups with in-
termediate word growth have attracted considerable attention since their discovery
by Grigorchuk [6] in the 1980s. Might some such groups have intermediate geo-
desic growth with respect to some generating sets? It is natural to look first at
Grigorchuk’s original group. With respect to the standard generating set of four
involutions, the third and fourth authors, working with Gutierrez [4], have proved

that its geodesic growth rate lies between O((
√
2)n) and O((

√

1 +
√
3)n); in par-

ticular it is not intermediate.
A priori, it is also possible that there is an example of a virtually nilpotent group

that has intermediate geodesic growth with respect to some finite generating set.

3. Geodesic growth for groups that map onto Z
2

In this section we show that if a group maps onto Z
2, then its geodesic growth

with respect to any finite generating set is exponential; any finitely generated group
that is not virtually abelian satisfies this condition. Our proof closely follows work
of Michael Shapiro (Section 2 in [11]). We thank Mark Sapir for pointing this out
to us. We show that if a finitely generated nilpotent group is not virtually cyclic,
then it satisfies this condition.

Take a basis {a, b} of Z
2 and work with the symmetric generating set X =

{a±1, b±1}. The
(

2n
n

)

distinct permutations of the word anbn provide us with more

than 2n geodesics of length 2n, so the geodesic growth of Z2 with respect to X is
exponential. The following proposition extends this observation to arbitrary finite
generating sets of Z2.

Proposition 10 (Shapiro [11]). The group Z
2 has exponential geodesic growth with

respect to every finite generating set.

For completeness, we present a self-contained proof.

Proof. Let X = {x1, . . . , xm} be a symmetric generating set for Z2. We embed Z
2

in R
2 as the set of points with integer coordinates and write xi = (ai, bi) ∈ R

2.
Consider the non-degenerate, centrally-symmetric convex polygon P ⊂ R

2 that
is the convex hull of {(ai, bi) | i = 1, . . . ,m}. We write λP for the image of P under
the homothety v 7→ λv of R2.

Let xi, xj ∈ X be such that the segment joining (ai, bi) to (aj , bj) lies entirely
on the boundary of P . We claim that xn

i x
n
j is at distance 2n from the identity
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in the Cayley graph of Z2 with respect to X . To see this, note that the vectors
that represent the elements of Z2 of length at most 2n − 1 with respect to X are
contained in the polygon (2n−1)P , and the vector nxi+nxj is on the middle of the
edge [2nxi, 2nxj ] of the polygon 2nP , and this edge is entirely outside of (2n−1)P .

Thus the word xn
i x

n
j is geodesic of length 2n, as is each of the

(

2n
n

)

distinct words
obtained by permuting its letters. ⊔⊓

By applying Lemma 8 we deduce:

Corollary 11. A group that maps homomorphically onto Z
2 has exponential geo-

desic growth with respect to any finite generating set.

Proposition 12. Let G be a finitely generated nilpotent group. If G is not virtually

cyclic, then it has exponential growth with respect to every finite generating set.

In the light of Corollary 11, this is an immediate consequence of the following
lemma.

Lemma 13. If a finitely generated nilpotent group is not virtually cyclic, then it

maps homomorphically onto Z
2.

Proof. If G is virtually abelian, then G modulo its (finite) torsion subgroup is free
abelian. This observation covers the base case of an induction on the nilpotency
class of G. In the inductive step we can assume that G modulo its centre Z satisfies
the lemma. If G/Z maps onto Z

2 then so does G. If G/Z is virtually cyclic then
G, being a central extension of a virtually cyclic group, is virtually abelian and the
observation in the first sentence of the proof applies once more. ⊔⊓

4. Geodesic growth in some groups with virtually cyclic

abelianization

According to Corollary 11, the only groups that might have finite generating sets
with respect to which the geodesic growth is polynomial are those with virtually
cyclic abelianization. Here we consider two such groups: both are of the form
Z
2
⋊ C2 but their geodesic growth functions behave very differently.

Remark 14. Let G be a group that has a finite index subgroup H mapping onto
a free abelian group A of rank at least 2. By inducing H → A (in the sense of
representation theory) we obtain a map from G onto a virtually abelian group
of rank at least 2. Thus Lemma 13 implies that if a finitely generated virtually

nilpotent group G is not virtually cyclic, then it maps onto a group that is virtually
free abelian group of rank at least 2. Naively, one might hope that this extension
of Lemma 13 would lead to an exponential lower bound on the geodesic growth
functions of G, thus completing the characterisation of groups with polynomial
geodesic growth. But the following example shows that this is not the case.

Example 15. Let φ1 be the automorphism of Z2 that interchanges the basis ele-
ments a and b, and consider

G1 = Z
2
⋊φ1

C2 = 〈 a, b, t | [a, b] = 1, t2 = 1, at = b 〉,
which has abelianization Z× C2.

With respect to the generating set {a, a−1, t} the language of geodesics has been
computed explicitly [3] to be the set of words

{ax, axtay, ax1tay1tax2 | x, y, x1, y1, x2 ∈ Z, x1 · x2 ≥ 0, |y1| > 0} .
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Thus the geodesics of length n ≥ 5 are

a±n,

a±(n−1)t,
ta±(n−1),

a±ita±(n−i−1) for i = 1, . . . , n− 2,

ta±(n−2)t,
a±ita±(n−2−i)t for i = 1, . . . , n− 3,

ta±ita±(n−2−i) for i = 1, . . . , n− 3,
aǫita±jtaǫ(n−i−j−2) for i = 1, . . . , n− 4,

j = 1, . . . , n− i− 3 and ǫ = ±1

of which there are

2 + 2 + 2 + 4(n− 2) + 2 + 4(n− 3) + 4(n− 3) + 4

n−4
∑

i=1

i = 2n2 − 2n.

Similar examples may be constructed that are virtually free-abelian of arbitrary
rank.

Example 16. Let φ2 be the automorphism that sends each of the basis elements
a and b to their inverse, and consider

G2 = Z
2
⋊φ2

C2 = 〈 a, b, t | [a, b] = 1, t2 = 1, at = a−1, bt = b−1 〉,
which has abelianization C2 × C2 × C2.

Let H = 〈a, b〉. Note that if h ∈ H and g ∈ G2 rH then hg = h−1 and g2 = 1.
Suppose X is a symmetric generating set for G2. We split X as a disjoint union

X = Y ∪ Z, where Y = {x ∈ X | x 6∈ H} and Z = {x ∈ X | x ∈ H}.
Let S = {z2 | z ∈ Z} ∪ {(yy′) | y, y′ ∈ Y }. Note that S is a symmetric set (since

Z is symmetric and the Y -letters have order 2 in G2).
By extending the map a 7→ (1, 0), b 7→ (0, 1) to a homomorphism, we can, as in

the proof of Proposition 10, embed H = Z
2 in R

2 as the set of points with integer
coordinates. For h ∈ H , denote by h the vector in R

2 that is the image of h under
this embedding. Let P be the centrally symmetric, convex polygon P ⊂ R

2 that is
the convex hull of S = {s | s ∈ S}. As before, λP denotes the image of P under
the homothety v 7→ λv of R2.

We claim that if h ∈ H is at distance n from the identity in the word metric
associated to X , then h is in (n/2)P . To see this, consider a geodesic factorization
h = x1x2...xn. We rewrite this factorization by pushing the Y -letters to the left,
inverting the Z-letters as they are pushed past using the relations zy = yz−1 where
necessary. The number of Y -letters in any representation of h is even, so at the
end of this process we have a geodesic factorisation

(1) h = (y1y2) . . . (y2m−1y2m)z2m+1z2m+2 . . . zn.

Hence

h = y1y2 + · · ·+ y2m−1y2m +
1

2
z22m+1 + · · ·+ 1

2
z2n.

Thus h is a positive linear combination of vectors in S ⊆ P with the sum of
coefficients equal to n/2; in particular, h ∈ (n/2)P .

Let s1, s2 ∈ S be such that the segment joining the vertex s1 to s2 in P lies
entirely on the boundary of P , and consider g = sn1 s

n
2 .
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We claim that sn1 s
n
2 is a geodesic for g of length 4n with respect to X . Indeed

we have just seen the elements of H that are a distance at most 4n − 1 from the
identity determine vectors that are contained in the polygon (2n − 1

2 )P , whereas

sn1 s
n
2 = ns1 + ns2 lies on the boundary of (2n)P .

Since s1 and s2 commute, there are at least
(

2n
n

)

geodesics for g with respect to
X , showing that the geodesic growth of G with respect to X is exponential.

5. Proof of the Main Theorem

Our proof of the Main Theorem begins with two lemmas, as follows.
Fix θ ≥ 1. Given a group G with a symmetric, finite generating set S, we say

a word w = a1 . . . al in the letters S is θ-efficient if, in the associated word metric,
l ≤ θd(1, w).

Lemma 17 (Highways beat byways). Fix θ ≥ 1. Let A be a finitely generated free

abelian group, let S be a symmetric, finite generating set for A and let T be a finite

subset of A such that 〈T 〉 has finite index in A. Let N ∈ N and consider the set

S ∪ TN , where

TN = {t±N | t ∈ T }.
If N is sufficiently large then only finitely many words in the letters S are θ-efficient

for the word metric associated to S ∪ TN .

Proof. We identify A with the set of points in R
r with integer coordinates and

equip R
r with the standard Euclidean norm ‖ ·‖. The proof involves this norm, the

word metrics dS and dS∪TN
on A, and dT and dTN

on 〈T 〉 and 〈TN 〉 respectively.
We write 0 for the identity element of A ⊂ R

r.
We fix α, β > 0 such that, for all x ∈ A,

β||x|| ≤ dS(0, x) ≤ α||x||,
and ε > 0 such that for all y ∈ R

r, ‖y− [y]T‖ ≤ ε, where [y]T is the lex-least among
the points in 〈T 〉 ⊂ Z

r ⊂ R
r that are nearest to y. Finally, fix λ > 0 such that for

all y ∈ R
r

dT (0, [y]T ) ≤ λ||y||.
Suppose that N is large enough so that β/θ − λ/N > 0.

Observe that, for all z ∈ R
r, we have:

(1) [ 1
N
z]T = 1

N
[z]TN

,

(2) ‖z − [z]TN
‖ = N‖ 1

N
z − [ 1

N
z]T ‖,

(3) dT (0, [
1
N
z]T ) = dTN

(0, [z]TN
),

whence ‖z − [z]TN
‖ ≤ Nε.

For all z ∈ A = Z
r,

dS∪TN
(0, z) ≤ dS∪TN

(0, [z]TN
) + dS∪TN

(z, [z]TN
)

≤ dTN
(0, [z]TN

) + dS(z, [z]TN
)

= dT (0, [
1
N
z]T ) + dS(0, z − [z]TN

)

≤ λ‖ 1

N
z‖+ α‖z − [z]TN

‖

≤ λ

N
||z||+ αNε.
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So if z ∈ A has a θ-efficient representative with respect to S ∪ TN that contains no
letters from TN , then

β||z|| ≤ dS(0, z) ≤ θdS∪TN
(0, z) ≤ θ

(

λ

N
||z||+ αNε

)

,

yielding

||z||(β/θ − λ/N) ≤ αNε

or, equivalently (since β/θ − λ/N > 0),

||z|| ≤ αNε

β/θ − λ/N
.

There are only finitely many elements of A = Z
r that satisfy this bound. For each

such element, the number of θ-efficient representatives is finite since their length is
at most

θdS∪TN
(0, z) ≤ θ

(

λ

N
||z||+ αNε

)

≤ θ

(

λ

N

(

αNε

β/θ − λ/N

)

+ αNε

)

.

The result follows. ⊔⊓

Lemma 18 (Dominating generator). For a group G, let X = {x0, x
−1
0 } ∪ Y be

a finite symmetric generating set. If there exists a constant k such that, for any

geodesic in G with respect to X, the total number of appearances of the generators

y ∈ Y is at most k, then the geodesic growth of G with respect to X is polynomial.

Proof. Let m = |Y |. Each geodesic word of length n over X has the form

x±n0

0 y1x
±n1

0 y2 . . . yℓx
±nℓ

0 ,

with ℓ ≤ k, where yi ∈ Y and n0, . . . , nℓ are non-negative integers such that

n0 + · · ·+ nℓ = n− ℓ.

To construct any word of this form, one can start with the string xn
0 and choose

the ℓ sites at which to replace x0 by some y ∈ Y ; one then has to make a choice of
sign for the remaining strings of x0. For fixed ℓ, the number of possibilities for the
set of Y -sites is

(

n

ℓ

)

(the number of non-negative integer partitions of n− ℓ). And

there are at most 2ℓ+1 possible sign choices (fewer if some of the integers n0, . . . , nℓ

are 0). Therefore, the number of geodesics of length n, for n >> k, is bounded
above by

2k+1mk

(

n

k

)

+2kmk−1

(

n

k − 1

)

+ · · ·+22m

(

n

1

)

+2 ≤ f(n) := (k+1)2k+1mk

(

n

k

)

.

If n is sufficiently large, then f(n′) < f(n) for all n′ < n and hence the number of
geodesics of length at most n is bounded above by

(n+ 1)f(n) = 2k+1mk(k + 1)(n+ 1)

(

n

k

)

,

which is a polynomial of degree k + 1. ⊔⊓



ON GROUPS WHOSE GEODESIC GROWTH IS POLYNOMIAL 9

Proof of the Main Theorem. Let G be a finitely generated group that contains
an element x whose normal closure A = 〈〈x〉〉 is abelian and of finite index. A is
finitely generated, since it has finite-index in G. Replacing x by a proper power if
necessary, we may assume that A is free abelian of finite rank.

Let Q = G/A and let π : G −→ Q be the natural projection. We fix a set of
coset representatives R = {q1, q2, . . . , ql} for A in G and define

D = {pqr−1 | p, q, r ∈ R ∪R−1, and π(r) = π(p)π(q)}.
Let S ⊂ A be a symmetric generating set that includes D ⊂ A and is invariant
under the conjugation action of G. The generators in S are thought of as short

generators.
Define X = S ∪ {xN , x−N} ∪R ∪ R−1 as a finite generating set for G, for some

N ∈ N. We will show that if N is sufficiently large, then G has polynomial growth
with respect to X .

First, we apply Lemma 17 to A with T := {qixq−1
i | i = 1, . . . , ℓ} in order to

deduce the following:

Claim 19. If N is sufficiently large, then there is a constant k = k(N) such that

any word over S that is geodesic with respect to X has length at most k.

To justify this observation, we need to know that a word in the letters S that is
geodesic in (G, dX) is θ-efficient in (A, dS∪TN

), where θ does not depend on N . But
for each t = qixq

−1
i we have dX(1, tN ) ≤ dX(1, xN ) + 2dX(1, qi) = 3, so if a ∈ A

equals a word of length L in the letters S ∪ TN , then it equals a word of length at
most 3L in the letters X . In particular, words in S that are geodesic in (G, dX) are
3-efficient in (A, dS∪TN

).
We are now ready for the main argument of the proof. To avoid confusion, we

write y = xN . In the light of Lemma 18, it suffices to prove that the number of
letters from S ∪ R ∪ R−1 in any geodesic over X is uniformly bounded; we shall
prove that it is bounded by k + |Q|.

Given a geodesic word w over X we may do the following.

(1) Since S is invariant under conjugation by R ⊂ G and its elements commute
with y, all occurences in w of letters s ∈ S can be moved to the left without
changing the length of w. (As s ∈ S is pushed past qi ∈ R it is replaced by
qisq

−1
i ∈ S.)

(2) If a subword of the form pq with p, q ∈ R∪R−1 appears in w at any stage,
then we can replace it by dr, where d = pqr−1 ∈ D. Then, since d ∈ D ⊂ S,
we can move d to the left.

Proceeding in this manner, an arbitrary geodesic over X can be transformed into
one of the form

u(S)qi1y
n1qi2y

n2 . . . qiλy
nλ ,

with qij ∈ R±1, where u(S) is a word over S, and where λ has been made as small
as possible. We claim that λ ≤ l = |Q|.

To prove this claim, consider what would happen if there were more than l
factors. There would be two prefixes

pa = qi1y
n1qi2y

n2 . . . qia , pb = qi1y
n1qi2y

n2 . . . qib ,

for some a < b ≤ λ (including the possibility a = 0, i.e, pa being the empty
word), such that π(p−1

a pb) = 1 in Q. Hence, p−1
a pb = ynaw ∈ A, where w =
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qia+1
yna+1 . . . qib . Since yna commutes with w, we could bring qia and qia+1

next to
each other and perform a move of type (2) (including the move of the newly obtained
d from D all the way to the left). But this would contradict the assumption that λ
had been minimized.

Claim 19 implies that the length of u(S) is at most k, so the number of letters
different from y±1 in the modified geodesic is at most k+ l. Since moves (1) and (2)
do not change the number of y±1 letters, the number of letters different from y±1 in
the modified geodesic is the same as that in the original geodesic. This completes
the proof. ⊔⊓

6. Virtually cyclic groups

In the context of the Main Theorem, we do not know if one can obtain upper
and lower bounds of the same polynomial degree. But in the case of virtually cyclic
groups, one can obtain such bounds.

Theorem 2. Let G be a virtually cyclic group generated by a finite symmetric

set X. The geodesic growth function ΓG,X is either bounded above and below by

an exponential function, or else is bounded above and below by polynomials of the

same degree.

Proof. The exponential upper bound is trivial, and we observed in Section 2 that
every infinite finitely generated group has some finite generating set for which the
geodesic growth is exponential.

Theorem 1 shows that virtually cyclic groups have at least one generating set
for which the geodesic growth is polynomial. A virtually cyclic group is hyperbolic,
and the language of geodesics is regular for every finite generating set (see [5]). If
the growth of a regular language is subexponential, then the language is simply
starred and its growth is bounded above and below by polynomials of the same
degree (see [1] and [5] p.20). ⊔⊓
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