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Abstract. The paper is concerned with the planning of training ses-
sions in large organisations requiring periodic retraining of their staff.
The allocation of students must take into account student preferences
as well as the desired composition of study groups. The paper presents
a bicriteria Quadratic Multiple Knapsack formulation of the considered
practical problem, and a novel solution procedure based on Lagrangian
relaxation. The paper presents the results of computational experiments
aimed at testing the optimisation procedure on real world data originat-
ing from Australia’s largest electricity distributor. Results are compared
and validated against a Genetic Algorithm based matheuristic.

1 Introduction

This paper is concerned with the optimisation of class formation at large or-
ganisations, typically with thousands of workers of different types, that require
periodic retraining of their staff. Finding good solutions to this problem is im-
portant as it allows more effective training sessions to be provided.

This research is motivated by the problem of providing training to workers at
Ausgrid, Australia’s largest electricity distributor. Due to the multitude of haz-
ards that exist when working with high voltages at heights or in confined spaces,
Ausgrid is required by Australian law to deliver regular safety, technical, and
professional training to all its employees who work on or near the electricity net-
work. Ausgrid provides regular training to thousands of employees, contractors,
and third parties. Many of these people have very different learning outcomes
from courses, different learning styles, different levels of education or English
proficiency, and different levels of technical proficiency for certain tasks.

Consider an example where field workers and upper management are un-
dertaking a particular course: while the core material would remain the same
for both groups, if they are taught in separate classes the trainers can take the
opportunity to better tailor the delivery to the specific needs of their group,
allowing for more productive training sessions. It is often not possible to run
segregated classes due to the scarcity of training resources and the associated
cost of delivering additional classes, therefore some blending of different student
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types is often necessary. Ideally, differing student types should be combined into
a single class only when they have a high compatibility with one another.

In similar problems where students are preferentially assigned to classes, it is
customary to give each student-class pair a weight (or cost). Most of the training
provided by Ausgrid has a limited period in which it is valid, and therefore
courses should be periodically retrained. Workers are only permitted to work
in roles for which they have up-to-date training. The date at which a worker’s
training expires is considered their due date for that course. If there are a number
of scheduled classes for a given course that a worker requires, we can designate
a cost of assigning the worker to any one of those classes: classes that run on or
before their due date have low or zero cost, while classes that run after the due
date have a high cost that increases the later the class is scheduled.

The considered problem has a bi-criteria objective: we wish to find an as-
signment of students to classes that minimises incompatibility between student
types within classes, and that minimises the assignment cost of individual stu-
dents to classes. Each class has a minimum and maximum number of students
it can hold, and of student types it can be assigned.

Johnson et al. [10] discuss the problem of partitioning the vertices of a graph
G(V,E) with nonnegative weights wv, v ∈ V and costs ce, e ∈ E, into K dis-
joint clusters partitioning V , such that the sum of the weights in each cluster is
bounded between wmin and wmax and the sum of the costs within each cluster
is minimised. This problem is known as the graph partitioning problem, and is
known to be NP-hard [4], [7]. Johnson et al. proposed a column generation ap-
proach, and tested the approach on graphs with between 30 and 61 nodes, and
between 47 and 187 edges. For the 12 test cases the authors considered, their
proposed approach provided integer solutions for all but two, and for those, so-
lutions obtained by a branch-and-bound scheme were very close to the fractional
solutions provided by column generation.

The problem considered in this paper can be modelled as a generalised
graph partitioning problem. Each student j is represented by a vertex vj ∈ V ;
the preference between students i and j is represented by an undirected edge
e = (vi, vj) ∈ E with edge cost ce. The problem is to find a partition Γ =
{W1,W2, . . . ,WN} of V that solves

Minimise: α

N∑
i=1

∑
e∈E(Wi)

ce + β

N∑
i=1

∑
vk∈Wi

wi
vk

(1)

Subject To: wmin ≤ |Wi| ≤ wmax i = 1, . . . , k (2)

where N is the number of classes, Wi is the set of students assigned to class i,
E(Wi) = {(vk, vl)|vk ∈ Wi, vl ∈ Wi}, wi

vk
is cost of assigning student k to class

i, α and β are weights for the assigning cost and preference cost respectively. A
special case of the problem considered in this paper, in which w1

vk
= w2

vk
= . . . =

wN
vk

, is equivalent to the graph partitioning problem. Therefore our problem is
also NP-hard.
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Chopra and Rao [3] discuss several forms of the graph partitioning problem
as well as IP models for each. The authors do not assume a complete graph,
allowing them to take advantage of the graph structure when clustering. They
also discuss several valid inequalities and facet-defining inequalities for the GPP.

The considered problem can also be modelled as an extended Quadratic Mul-
tiple Knapsack Problem (QMKP) with additional constraints. The QMKP is a
generalization and combination of the well-known multiple knapsack problem
and the quadratic knapsack problem. The QMKP received little attention in
the literature until recently, and most solution approaches are based on meta-
heuristics [2], [6], [9]. The main contributions of this paper include: (i) for-
mulation of the considered practical problem as an extended bicriteria QMKP.
(ii) design of a Lagrangian relaxation (LR) based, fast heuristic capable of solv-
ing large, real-world instances.

Caprara et al. [1] discuss an LR-based approach to solving the QMKP exactly,
whereby a tighter upper bound (for their maximisation objective) is computed
using the subgradient method in linear expected time. The presented approach
is able to solve instances with up to 400 binary variables exactly. The authors
note that the presented approach can also be used to solve Max Clique problems
almost as fast as with the cutting plane approaches available at the time.

Julstrom [11] discusses greedy, genetic, and greedy genetic algorithms for
the QMKP. The author presents two greedy heuristics that build solutions by
choosing objects according to their value densities, and two genetic algorithm
(GA) heuristics. One GA is a standard implementation, whereas the other is
extended with greedy techniques that probabilistically favour objects of high
value density. The four algorithms are tested on 20 problem instances, and the
extended GA is reported to perform best on all but one test case.

The remainder of this paper is organised as follows: Section 2 introduces a
quadratic programming formulation and its linearisation for the considered prob-
lem; Section 3 introduces a Lagrangian relaxation formulation for the quadratic
programming model; Section 4 discusses the proposed LR-based heuristic tech-
nique; Section 5 presents a GA matheuristic for the problem; Section 6 presents
the computational results of the proposed heuristic on a number of industry-
inspired test cases; and Section 7 discusses our conclusions and outlines possi-
bilities for future research.

2 Quadratic Programming Formulation

Let N = {1, · · · , N}, M = {1, · · · ,M}, and K = {1, · · · ,K} be the set of
classes available, the set of students to be assigned, and the set of student types
respectively. Denote the cost of assigning students j ∈M to class i ∈ N by ci,j ,
the cost of pairing student types k ∈ K and l ∈ K together in the same class by
bk,l. Each student has exactly one type. The set of students who are of type k is
represented by Tk, k ∈ K. Each student must be assigned to exactly one class,
but not all classes need to be run. Each class i ∈ N that is run must contain at
least ai and at most bi students, and at least pi and at most qi student types.
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Students or student types cannot be assigned to any class that is not run. In this
problem, we assume there are more scheduled classes than needed, i.e. a feasible
solution always exists. The following Quadratic Program describes the problem:

(QP) Minimise: α

N∑
i=1

K∑
k=1

K∑
l=1

bk,lYi,kYi,l + β

N∑
i=1

M∑
j=1

ci,jXi,j (3)

Subject To:

N∑
i=1

Xi,j = 1 j = 1, . . . ,M (4)

aiZi ≤
M∑
j=1

Xi,j ≤ biZi i = 1, . . . , N (5)

piZi ≤
K∑

k=1

Yi,k ≤ qiZi i = 1, . . . , N (6)

Xi,j ≤ Yi,k i = 1, . . . , N ; k = 1, . . . ,K; j ∈ Tk (7)

Xi,j ∈ {0, 1} i = 1, . . . , N ; j = 1, . . . ,M (8)

Yi,k ∈ {0, 1} i = 1, . . . , N ; k = 1, . . . ,K (9)

Zi ∈ {0, 1} i = 1, . . . , N (10)

where the binary variable Xi,j is defined to be 1 if student j is assigned to class
i, or 0 otherwise; the binary variable Yi,k is defined to be 1 if student type k is
assigned to class i, or 0 otherwise; The binary variable Zi is defined to be 1 if
class i is run, or 0 otherwise.

In the objective function (3), the quadratic term represents the cost of pairing
student types together, and the linear term represents the cost of assigning
students to classes, weighted by coefficients α and β, respectively.

The constraints (4) express the requirement that each student be assigned
to exactly one class. The constraints (5) and (6) express the requirement that
each running class has between ai and bi students and between pi and qi student
types, respectively, if the class is run, or zero otherwise. The constraints (7)
express the requirement that a student may only be assigned to a class if that
student’s type has also been assigned to that class.

It is possible to linearise the quadratic term in (3) by introducing Ŷi,k,l =
Yi,kYi,l together with constraints:

Ŷi,k,l ≤ Yi,k i = 1, . . . , N ; k = 1, . . . ,K; l = 1, . . . ,K (11)

Ŷi,k,l ≤ Yi,l i = 1, . . . , N ; k = 1, . . . ,K; l = 1, . . . ,K (12)

Ŷi,k,l ≥ Yi,k + Yi,l − 1 i = 1, . . . , N ; k = 1, . . . ,K; l = 1, . . . ,K (13)

to give the linearised model:
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(LQP) Minimise: α

N∑
i=1

K∑
k=1

K∑
l=1

bk,lŶi,k,l + β

N∑
i=1

M∑
j=1

ci,jXi,j (14)

Subject To: (4)− (13) (15)

Ŷi,k,l ∈ {0, 1} i = 1, . . . , N ; k = 1, . . . ,K; l = 1, . . . ,K (16)

The (QP) model hasN(K+M+1) variables andM+2N+MNK constraints,
whereas the (LQP) model has N(K + M2 + M + 1) variables and M + 2N +
MNK + 3NK2 constraints.

The time required to find an optimal solution to the (QP) and (LQP) models
grows rapidly, where even some small test cases with just a few dozen students
can take hours to solve. As the problem instances we hope to solve are signifi-
cantly larger than this, we propose to use a heuristic approach.

3 Lagrangian Relaxation

To improve the convergence of the subgradient algorithm, the equalities (4) are
first converted into inequalities:

N∑
i=1

Xi,j ≥ 1 j = 1, . . . ,M (17)

By moving the constraints (4) into the objective function, we obtain the La-
grangian relaxation model:

(QR) Minimise: α

N∑
i=1

K∑
k=1

K∑
l=1

bk,lYi,kYi,l + β

N∑
i=1

M∑
j=1

ci,jXi,j +

M∑
j=1

λj(1−
N∑
i=1

Xi,j)

(18)

Subject To: (5)− (10) (19)

where λj ≥ 0, j = 1, . . . ,M , is the Lagrangian multiplier corresponding to the
cost of not assigning student j to any class. The quadratic term in (18) can be
linearised in the same way as with (3).

In (QP), only constraints (4) couple together the N sub-problems of assigning
students to a particular class i. In (QR), these constraints are moved to the
objective function, therefore it is possible to express (QR) as N smaller, class-
specific sub-problems (QRi):

(QRi) Minimise: α

K∑
k=1

K∑
l=1

bk,lYi,kYi,l + β

M∑
j=1

ci,jXi,j −
M∑
j=1

λjXi,j (20)
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Subject To: aiZi ≤
M∑
j=1

Xi,j ≤ biZi (21)

piZi ≤
K∑

k=1

Yi,k ≤ qiZi (22)

Xi,j ≤ Yi,k k = 1, . . . ,K; j ∈ Tk (23)

Xi,j ∈ {0, 1} j = 1, . . . ,M (24)

Yi,k ∈ {0, 1} k = 1, . . . ,K (25)

Zi ∈ {0, 1} (26)

where the N combined solutions to (QRi) for 1 ≤ i ≤ N forms the solution to
(QR).

Solving the Lagrangian relaxation (QR) provides a lower bound to the opti-
mal objective value of (QP). We wish to find the tightest possible lower bound
for (QP) by solving the Lagrangian dual problem, the solution of which are
the optimal Lagrangian multipliers λ∗ that give the largest objective value of
(QR) [8], [5]. A typical way to numerically approximate λ∗ is by using the iter-
ative subgradient algorithm.

In the subgradient algorithm, λ is iteratively updated with the relationship

λk+1 = λk +
sk · εk(η∗ − ηk)

||sk||2
(27)

where λk is the value of the Lagrangian multipliers λ at the kth iteration; η∗ is
an upper bound of the optimal objective value of the Lagrangian dual problem,
and ηk is the objective value of (QR) at the kth iteration; and εk is a positive
scaling factor, typically with the initial value of ε0 = 2 and halved whenever
the objective value hasn’t been improved in certain number of iterations; sk is
a subgradient of the Lagrangian dual at iteration k given by

skj = 1−
N∑
i=1

Xk
i,j j = 1, . . . ,M (28)

where Xk is from the solution of (QR) at the kth iteration.

4 Lagrangian Heuristic

In our proposed heuristic, we solve the Lagrangian dual using the subgradient
algorithm. In doing so, we generate many solutions in this iterative process, and
we record the following characteristics about them:

– The number of times class i is running (ξi), and the number of times it is
not (ξ̄i).

– The number of times type k is assigned to class i (φi,k), and the number of
times it is not (φ̄i,k).
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– The number of times students j1 and j2 are assigned to the same class
(ψj1,j2), and the number of times they are not (ψ̄j1,j2).

Based on these values, one or more assumptions are made about the final
solution with some probability. The higher the value, the greater the probability
the assumption will be made. Each value has a corresponding counter-value, such
as the number of times class i is running (ξi), and the number of times class i is
not running (ξ̄i). An assumption can be made according to the value/counter-
value that has greater magnitude, for example if ξi = 7649 and ξ̄i = 1008
then, since ξi > ξ̄i, we would be making the assumption that class i will be
run, with some probability. The probability with which we make an assumption
according to some value v ( or counter-value v̄ ) is v

v+v̄
2 (or v̄

v+v̄

2
), so if ξi = 7649

and ξ̄i = 1008 then with probability ( 7649
7649+1008 )2 ≈ 0.7807 we will make the

assumption that class i will run in the final solution.
Each kind of imposed assumption reduces the number of feasible solutions

of the model being solved. In the case of the first kind of assumption, the Zi

variable is fixed to 1, if class i is assumed running, or if class i is assumed not
running then the Zi and the related Xi,j and Yi,k variables, 1 ≤ j ≤ M and
1 ≤ k ≤ K, can be all fixed to zero. For the assumption that type k is or is
not assigned to class i, the constraints (7) can be omitted for j ∈ Tk, and all
the related Xi,j variables are also fixed to zero if type k is assumed to be not
assigned to class i. For the assumption that students j1 and j2 should be assigned
together, we introduce the additional constraints Xi,j1 = Xi,j2 for 1 ≤ i ≤ N ,
and for the assumption that they should be assigned separately, we introduce
the constraints Xi,j1 +Xi,j2 ≤ 1 for 1 ≤ i ≤ N .

Once an assumption is made, the model is updated and the Lagrangian dual is
once again solved using the subgradient algorithm. With each new assumption
the size of the model becomes smaller or the number of feasible solutions is
reduced. Once the model is sufficiently small, the optimal solution, subject to
the assumptions, can be found using a commercial solver.

The initial value of λ = λ0 is likely to be quite distant from λ∗. It is expected
that there would be an initial period of convergence from λ0 towards the neigh-
bourhood of λ∗, followed by a period of convergence within this neighbourhood.
Since these early values of λk are likely to produce fairly poor solutions, we treat
this early period of convergence towards the neighbourhood of λ∗ as a “burn-in
stage”, and do not record these solutions.

To calculate an upper bound for the Lagrangian dual in (27), we relax con-
straints (7) from the (QP) model. The resulting capacitated assignment problem
can be solved quickly, and a repair heuristic is used to make the solution feasible
with respect to the original problem. The objective value of this feasible solution
is used as η∗ in the updating rule (27) of the subgradient algorithm.

Our LR-based heuristic is described as follows:
LR-based Heuristic:

Step 1. Initialise an empty set of assumptions A.
Step 2. Construct the (QP) model, together with assumptions A.
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i. If the size of the model is sufficiently small to solve in practically accept-
able time, attempt to solve it:
(a) If a solution with sufficiently small relative IP gap can found within

a short time limit, terminate the algorithm returning the optimal
solution to the (QP) subject to assumptions A.

(b) If no solution with sufficiently small relative IP gap can be found
within a short time limit, continue to Step 3.

(c) If no feasible solution exists, determine which assumptions are caus-
ing the infeasibility, remove them, and continue to Step 3.

ii. If the size of the model is expected to be too large to solve in practically
acceptable time, continue to Step 3.

Step 3. Run LD-Subroutine and retrieve all the values of ξ, ξ̄, φ, φ̄, ψ, and ψ̄.
Step 4. For each of the value and counter-value pairs {v, v̄} obtained in Step 3,

add an assumption to A with probability v
v+v̄

2 (or v̄
v+v̄

2
) and then return

to Step 2.

LD-Subroutine:

Step 1. Initialise the λ vector to its starting value λ0, ε0 := 2, determine an
estimate for η∗, initialise the iteration counter k := 0, and initialise all ξ, ξ̄,
φ, φ̄, ψ, and ψ̄ values to zero.

Step 2. Construct the N (QRi) models according to the input data and the set
of assumptions A, for 1 ≤ i ≤ N .

Step 3. Solve the N (QRi) models, and update λ according to (27).
Step 4. If εk ≤ 1

2 , update the values of ξ, ξ̄, φ, φ̄, ψ, and ψ̄ according to obser-
vations about solution Xk.

Step 4. If the ηk has not been improved in the last 10 × N iterations, then
εk+1 := 1

2εk.
Step 5. If εk < 0.1 then terminate LD-Subroutine and return the values of ξ, ξ̄,

φ, φ̄, ψ, and ψ̄; otherwise set k := k + 1 and return to Step 2.

5 Genetic Algorithm Based Matheuristic

Although Genetic Algorithms (GA) are often used in solving the QKP and
QMKP [13], [14], [9], these publications on GA are not directly applicable to
our problem due to the existence of lower bounds on class sizes. Moreover, the
existence of lower and upper bounds on class sizes renders classical operations of
crossover and mutation inefficient, i.e. both operations produce too many infea-
sible solutions. The computational experiments indicated that the common ap-
proach of introducing penalty for infeasibility does not improve the performance
of the classical version of GA. These observations lead to the development of a
matheuristic, presented in this paper, which is an amalgamation of GA and IP.
This matheuristic was compared with the LR-based approach described above.

In the developed version of GA, feasible solutions in the initial population
are be generated using a two-step procedure. First, we decide which classes will
be run, and how many students will be in each class by solving a straightforward
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IP. For all test cases, including all cases where CPLEX failed to solve the original
QP problem, this IP was solved in under a second. Next, we randomly assign
students to classes according to the numbers obtained in the previous step.

The crossover operator, which addresses the challenge imposed by the exis-
tence of lower and upper bounds on class sizes, is defined as follows. As with
conventional crossover operators, the designed crossover operates on two solu-
tions, referred to as parents. The results of the designed crossover is a single
solution, referred to as a child. As with the procedure that generates solutions
for the initial population, the crossover operator involves two stages. First, an
IP is solved that determines which classes should be run in the child, and the
number of students in each class. In this IP, those classes that are run in both
parents must run in the child, and those classes that are not run in either parent
will not run in the child.

Next, students are assigned to classes in numbers specified by the IP. In this
stage, first, students are assigned starting with students who are assigned to
the same class in both parents. Each of these students is assigned to the that
class in the child as well. The remaining students are assigned one at a time.
If at least one class chosen for the student in the parents is available for this
student in the child, then the student is assigned to one of these classes. If there
are two such classes, the actual class is chosen at random. Students who were
not allocated are then randomly allocated to the classes in the child solution
according numbers specified by the IP.

6 Computational results

Using Ausgrid’s training data as a template, we generated a series of random
test cases3. Each test case had between 100 and 500 students, with between 4
and 12 student types, and between 56 and 98 classes.

We used IBM ILOG CPLEX 12.5.0.0 64-bit on an Intel i7-4790K quad-core
4.00Ghz system with 16GB of RAM, running Windows 7 Professional. Our code
was written in C# 4.0, and interacted with CPLEX using the IBM ILOG Con-
cert API. We used default CPLEX settings, except we increased the maximum
allowed memory usage to the total amount of free physical memory. Since the
proposed heuristic is probabilistic, we applied it to each of the test cases 10
times. The pseudorandom number generator we used was the MT19937 Mersenne
Twister [12]. For the weighted objective function, we used α = β = 1. We also
applied the GA matheuristic to each of the test cases 10 times for the same
amount of time that the LR-based heuristic used on average.

Table 1 shows the results of the computational experiments. The tables shows
the test case (Case), the number of students (Std), the number of classes (Cls),
the number of student types (Typ), the number of variables in the QP (Vars),
the minimum (tMin), average (tAvg), and maximum (tMax) solution time for
the LR-based heuristic, the minimum (lrMin) and maximum (lrMax) objective

3 All test cases and solution files are available on request.
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value obtain by applying the LR-based heuristic, and the minimum (gaMin) and
maximum (gaMax) objective value obtain by applying the GA matheuristic.
Since the two approaches tested are quite different, time is reported in CPU
time. It is clear from the results that the LR-based heuristic outperformed the
GA matheuristic.

In Figure 1, the horizontal axis depicts the 90 test cases. The vertical axis
gives the time taken, in seconds. The graph shows the range of solution times
across the 10 runs of the LR-based heuristic. The solid line shows the aver-
age time across the 10 runs of the heuristic. The largest value was about 40
minutes, however the overall average was only about 272 seconds. In contrast,
the attempts to obtain exact solutions by solving the corresponding quadratic
programming problem using CPLEX failed in most cases given a six hour limit.
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Fig. 1. The time taken for the LR-based heuristic to produce a solution.

7 Conclusions

In this paper we presented a heuristic solution approach, based on the Lagrangian
relaxation, for the problem of assigning students to classes. This problem arises
in large organisations that require training and retraining of staff. The objective
function reflects the preference of assigning certain groups of students to the
same class, which often occurs in practice. The proposed heuristic was tested
by computational experiments on a number of randomly generated test cases,
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Case Std Cls Typ Vars tMin tAvg tMax lrMin lrMax gaMin gaMax
1 300 56 3 62776 12.1 125.4 327.1 1700.5 14101.5 7979 13904.5
2 300 66 3 73986 10.3 13.4 18.4 1483.5 3009 20452 26405.5
4 300 88 3 98648 47.5 110.1 383.8 1526.5 6277 12868.5 20827.5
5 300 98 3 109858 39.7 94.4 261.1 1328.5 3012 19947.5 21808.5
7 291 66 4 73392 20.8 29 48.4 1883.5 2405 13872 20788
8 291 78 4 86736 13.1 24.7 62.5 2160 2739.5 16303.5 22527.5
10 291 98 4 108976 19.2 54.4 147.6 1904 6210 14350.5 22959.5
11 206 56 4 57512 6.5 43.4 241.5 1437 17346.5 5930.5 10101
13 206 78 4 80106 9.8 14.6 20.5 1443.5 3482 12167 16141
14 206 88 4 90376 10 15 23 1236 12347 13018.5 16949
16 300 56 6 62776 8.6 14.7 19.4 1597 7193.5 21518.5 31016
17 300 66 6 73986 13.5 44.3 113.4 1574.5 3314 11135.5 21437
19 300 88 6 98648 35.4 140.5 303.9 1341 3251 10727 18855
20 300 98 6 109858 22.3 35.6 73.2 1136.5 3634.5 20977 25647
22 400 66 5 80586 39.9 99 290.6 2181 5061 13182.5 28905
23 400 78 5 95238 69.8 194.1 349.9 2078 2665.5 11723.5 25204
25 400 98 5 119658 41.8 304.8 642.1 1665 7581 11361.5 26601
26 500 56 6 73976 14.4 205.8 638.5 3004.5 16429 16148 38892.5
28 500 78 6 103038 37.6 129.6 377.8 3117 4130.5 28708 43548.5
29 500 88 6 116248 46.1 175.2 361.3 2389.5 7289 23430 45908.5
31 132 56 7 53368 51.2 159.1 411 1454.5 1654.5 4324.5 7100
32 132 66 7 62898 19.7 61.1 138.6 1383 2549.5 5418 6608
34 132 88 7 83864 30.7 90.7 186.4 1518.5 2106 4081 6520
35 132 98 7 93394 60 317.4 985.1 1292 1890 4297.5 6680
37 400 66 5 80586 52.5 145.4 285.9 1889 3319.5 11636.5 24165
38 400 78 5 95238 29 194.7 547.5 2262 3835.5 23962 26256.5
40 400 98 5 119658 57.9 279.1 546.7 1639 5139.5 11082.5 25742
41 500 56 8 73976 64.9 224.9 587 3786.5 11623 14888.5 37871.5
43 500 78 8 103038 480.3 774.3 954.3 3095.5 7006.5 13194 29130.5
44 500 88 8 116248 58.3 594.7 991.5 2574 3868.5 10993.5 32387.5
46 300 56 6 62776 25.1 45.1 69.6 2274.5 18798 9859 21706.5
47 300 66 6 73986 33.6 57.2 85.3 2183.5 8768 10534 19975.5
49 300 88 6 98648 45.7 130.2 466 2308 7697.5 9481.5 19685
50 300 98 6 109858 58.9 193.2 397.4 1778.5 3082 10332 18988
52 168 66 6 65274 19 44.7 74.1 1637 2614 6321.5 8415
53 168 78 6 77142 41.2 172.9 532.7 1605.5 12674 6406 8189
55 168 98 6 96922 46.1 95.1 224.9 1404.5 4050.5 7505.5 9456
56 500 56 5 73976 44.7 168 1084.7 2825 13742 15216.5 40438
58 500 78 5 103038 21.7 72.7 199.1 2550.5 3835 32732.5 44762.5
59 500 88 5 116248 45.3 122.9 276.3 2465.5 13736.5 36664.5 47615.5
61 300 56 7 62776 149.9 640.6 904.9 2286 3305.5 7636.5 12557
62 300 66 7 73986 90.6 678.1 978 2312.5 2786.5 10760.5 14360
64 300 88 7 98648 728 1071.9 1556.5 2215 2666.5 9325 12500.5
65 300 98 7 109858 123.3 719.3 1256.1 1999.5 4367.5 9902.5 16164
67 400 66 8 80586 72.6 188.6 519.3 2105.5 3174.5 16810.5 24442.5
68 400 78 8 95238 60 161.5 416.2 1992.5 3147.5 14011 26611.5
70 400 98 8 119658 33.3 239.1 597.3 1584.5 2056.5 11480.5 27258
71 132 56 7 53368 26.8 56.4 120.8 1237 9558 5303 7409.5
73 132 78 7 74334 13.4 25 65 1230.5 1910.5 6667.5 7684.5
74 132 88 7 83864 32.6 48.2 63.6 1296 1665 5611.5 6721
76 300 56 9 62776 84.4 544.1 1542.1 2189 13773 6696 11942.5
77 300 66 9 73986 44.1 200.3 438.4 1982.5 2979 10571.5 16390
79 300 88 9 98648 109.9 542.2 938 2254 3810.5 7113 15953.5
80 300 98 9 109858 95 534.7 802.9 1958.5 3169.5 8544 12726
82 400 66 11 80586 79.5 663.1 1082.2 2577 6110 10912 16338
83 400 78 11 95238 52.5 540.4 1021.6 2681.5 3984 10771.5 23656.5
84 400 88 11 107448 267.5 1078.4 1563.9 2512.5 5764.5 10662 14386.5
85 400 98 11 119658 83.4 818.2 1316.3 2404.5 5749 10067.5 23096
86 500 56 11 73976 181.8 543.3 946.7 3735 17272.5 16703 17796
87 500 66 11 87186 185.1 961.3 1643.4 3624 8932.5 14413.5 20936
88 500 78 11 103038 339.4 788 1465 3709.5 7593 13059.5 30584.5
89 500 88 11 116248 1130.2 1501 2035.3 3185 16049.5 10998 21648.5
90 500 98 11 129458 821.2 1347.1 2401 2724.5 9361 10298.5 29047

Table 1. The results of the computational experiments for many of the test cases.
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based on data supplied by Ausgrid. The proposed heuristic was able to pro-
vide solutions to all test cases in a practically acceptable time. In contrast, the
straight forward quadratic programming based approach failed in most cases
with a time limit of six hours. In both cases, CPLEX was used as the solver.
The Lagrangian relaxation-based heuristic was also compared with a specifically
designed matheuristic based on Genetic Algorithms. This comparison indicated
the superiority of the Lagrangian relaxation-based heuristic. The integer pro-
gramming components of the matheuristic were also solved with CPLEX.

The proposed Lagrangian relaxation-based heuristic includes a number of pa-
rameters, and future research can be focussed on an investigation of the influence
of these parameters on the performance of the entire procedure.
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13. Saraç, T., Sipahioglu, A.: A genetic algorithm for the quadratic multiple knapsack
problem. In: Advances in Brain, Vision, and Artificial Intelligence, pp. 490–498.
Springer (2007)

14. Singh, A., Baghel, A.S.: A new grouping genetic algorithm for the quadratic multi-
ple knapsack problem. In: Evolutionary Computation in Combinatorial Optimiza-
tion, pp. 210–218. Springer (2007)


