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Abstract—In this work, a suitable long prediction horizon
(multistep) model predictive control (MPC) formulation fo r
cascaded H-bridge inverters is proposed. The MPC is formulated
to include the full steady-state system information in terms
of output current and output voltage references. Generally,
basic single-step predictive controllers only track the current
references. As a distinctive feature, the proposed MPC alsotracks
the control input references, which in this case is designedto
minimize the common-mode voltage (CMV). This allows the
controller to address both output current and CMV targets
in a single optimization. To reduce the computational effort
introduced by a long prediction horizon implementation, the
proposed MPC formulation is transformed into an equivalent
optimization problem that can be solved by a fast sphere decoding
algorithm. Moreover, the benefits of including the control input
references in the proposed formulation are analyzed based on
this equivalent optimization problem. This analysis is key to
understand how the proposed MPC formulation can handle both
control targets. Experimental results show that the proposal
provides an improved steady-state performance in terms of
current distortion, inverter voltages symmetry, and CMV.

Index Terms—Multilevel converters, cascaded H-bridge,
common-mode voltage, finite control set, model predictive control,
optimization problem, sphere decoding.

I. I NTRODUCTION

M ULTILEVEL converters (MCs) have been the preferred
commercial alternative for medium/high-power appli-

cations, such as industrial motor drives, transmission systems,
active power filters and renewable energy conversion [1].
Nowadays, there exist three popular topologies of MCs: flying
capacitors (FC) [2], neutral point clamped (NPC) [3] and
cascaded H-bridge (CHB) [4]. Among these topologies, the
CHB converter has emerged as a prominent one due to its high
degree of modularity, which allows the converter to reach high
voltages and currents using medium-voltage semiconductor
devices. Despite the fact that this CHB topology has been
available for decades, there is still an undergoing research
mainly focused on improving modulation techniques and con-
trol strategies used [4], [5].
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Regarding the control of power converters, model predictive
control (MPC) has emerged as an attractive alternative to
classical control methods [6], [7]. The potentiality of MPC
comes from its ability to handle multi-variable systems, non-
linearities, and system constraints. Among the MPC families,
the finite-control-set MPC (FCS-MPC) is one of the most
promising strategies for power converters [7]. FCS-MPC di-
rectly considers the switch states (or voltage levels) as control
inputs into the optimization problem. Some examples of recent
predictive control formulations in power electronics can be
found in [8]–[12].

In general, a predictive controller can be divided into two
main stages. The first one is the optimal control formulation.
Here, different control targets are incorporated into a cost
function that forecasts the system behavior several time-steps
(multistep) ahead by considering a long prediction horizon.
These control targets can be the standard system-state ref-
erences, e.g., current, voltages, power, torque, etc., andalso
the ones related to the converter itself, e.g., reduced switch
commutations, common-mode voltage (CMV) minimization,
internal capacitor balancing, etc. The optimal control formu-
lation stage can also include the so-called,reference design
step in order to further improve the closed-loop behavior;
see e.g., [8], [13], [14] where a suitable dynamic reference
for the dc-link voltage is designed in order to control both
ac-and dc-side variables of an active front-end rectifier. The
second stage is the optimization process. Normally, for FCS-
MPC strategies one can obtain the optimal control input (OCI),
by simply evaluating the cost function for all possible input
combinations, which is known as exhaustive search algorithm
(ESA). Therefore, the input combination which gives the
minimum cost value is, thus, the OCI.

An on-line implementation of FCS-MPC using ESA is
relatively simple, which is another reason for its popularity.
However, if the optimal problem presents a large number of
input combinations, then the required computational effort to
evaluate all the possible combinations might exceed the micro-
controller capabilities. This restricts the ESA-based FCS-
MPC applicability to MCs with few power switches and its
formulation to single-step cost functions [6], [7].

Recently, a single-step FCS-MPC strategy for CHB con-
verters was presented in [15]. Here, the problem is formulated
in theαβ-framework. Thus, the number of control inputs can
be reduced by discarding the redundant vectors. To further
reduce the input combinations to be explored by the ESA, in
[15] the search space is limited to a subset formed by the
vectors that are adjacent to the previous optimal input vector.
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Despite the benefit of the reduction in the required calculation
time to obtain the OCI, this basic single-step predictive current
controller can lead to a high CMV since it is only formulated
to consider the current tracking error. Mitigation of CMV in
medium/high power applications is important to enhance the
reliability of the system1 (preventing the premature failure of
motor insulations, bearing currents, electromagnetic interfer-
ence problems and ground faults) [17]–[19]. To address this,
in [15] a secondary optimization is considered which reduces
the resulting CMV. It is for this reason that in [15], redundant
vectors are reduced by choosing only the ones that produce
minimum CMV. Nevertheless, it can lead to an asymmetry in
the inverter voltages. In [20], a simplified MPC with CMV
reduction capability is proposed. Here, a dead-beat based
approach is firstly used to obtained an output voltage reference.
Thus, the optimal input is the inverter voltage vector which
is nearest this reference. Therefore, current predictionsare no
required. Moreover, to account for the CMV, an extra term to
the cost function which penalizes the CMV can be added, in a
similar manner as in [21]. Even though these approaches can
effectively reduce the CMV, they rely on an ESA to find the
OCI. This impedes the implementation of these approaches in
MCs with large output voltage levels and/or long prediction
horizon formulations.

On the other hand, it has been recently shown that MPC with
long prediction horizon can significantly improve the resulting
steady-state performance (e.g., lowering the total harmonic
distortion (THD) of output currents, switching frequency re-
duction, etc) when compared to the basic single-step MPCs
[22]. Particularly in [23], [24], a sphere decoding algorithm
(SDA) has been proposed for the optimization process, which
is a fast and efficient alternative to ESA.

In this work, a long prediction horizon FCS-MPC formu-
lation for CHB inverters that considers the full steady-state
system information in terms of output currents and voltages
is proposed. Here, the controller is designed based on the
formal MPC formulation used incontrol theory, where the
cost function is built to track both system state and control
input references [25]. In the work at hand, the three-phase
output currents are chosen as system states while the output
voltage levels are considered as control inputs. Normally,
a standard FCS-MPC is formulated only to track a three-
phase sinusoidal current reference. However, as a distinctive
feature, the proposed FCS-MPC also tracks the control input
references which are designed to minimize the CMV. To do
this, the predictive controller is formulated in the original
abc-framework, which allows the system model to retain the
CMV information. To account for the computational burden
introduced by a long prediction horizon implementation, the
optimization problem is transformed into an equivalent tri-
angular integer least squares (ILS)-problem which can be
solved by an efficient SDA. This is possible thanks to the
formal MPC formulation used in this work. This paper extends
the preliminary work [26] by graphically analyzing the ILS-
problem of the proposed FCS-MPC. This analysis is key to

1In some applications, injection of CMV is desired to accountfor unbal-
anced power generation levels, e.g., in large PV solar plants [16].

Cell-a1

Cell-aη

Cell-b1

Cell-bη

Cell-c1

Cell-cη

L

R

n

0
+

+++

+

−

−−−

−
van vbn vcn

ia ib ic

v0n

Sa1 Sb1 Sc1

Saη

Sbη Scη

Vdc

Sa11 Sa12

Sa11 Sa12

H-Bridge

FCS-MPC Reference
Design

Controller

iab

I⋆
i⋆ab

u⋆

[Sy1 . . . Syη]
a b c

Fig. 1. Circuit schematic of a three-phaseη-cell CHB inverter with passive
RL loads and block diagram of the proposed control scheme.

understand how the controller can achieve a desired steady-
state performance by tracking both the system states and con-
trol input references. As evidenced by the experimental results,
the steady-state performance provided by the proposed FCS-
MPC with horizon-one outperforms the one obtained with the
basic single-step FCS-MPC. Moreover, further improvements
are achieved as the prediction horizon is increased. On the
other hand, the resulting dynamic performance of the proposed
control strategy with long prediction horizon preserves the
inherent fast dynamic response of the basic single-step FCS-
MPC.

II. STANDARD FCS-MPCOF A CHB INVERTER

This section describes a generalized CHB inverter system
model and presents a common procedure used to apply a
standard FCS-MPC problem formulation when a basic single-
step cost function based on [7] is considered.

A. CHB Inverter Model

A three-phase CHB inverter withη-cell per phase which
supplies power to passive RL loads is shown in Fig. 1. Here,
each cell is a 3-level H-bridge converter which is electrically
fed with an isolated dc voltage source. The addition of each
cell output voltage in a phase produces the total output voltage,
vyn(t). Thus, the continuous-time dynamic model of a CHB
inverter can be written as:

diy(t)

dt
= −

R

L
iy(t) +

1

L
(vyn(t)− v0n(t)), (1)

for all y ∈ {a, b, c} and

vyn(t) =

η
∑

j=1

vyj(t), (2)

wherevyj(t) is the individual cell output voltage andη denotes
the number of cells per phase. Furthermore, the CMV,v0n(t),
is given by:

v0n(t) =
1

3
(van(t) + vbn(t) + vcn(t)), (3)
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Fig. 2. Clarke’s transformation,Γαβ , of control inputs inabc-framework to
αβ-framework for a three-phase one-cell (η = 1) CHB converter.

which holds for three-phase three-wire balanced/unbalanced
systems, where both load and converter neutral points are not
connected.

In general, an FCS-MPC governing a power converter
considers the states of power switches as control input [27].
This work considers the phase voltage levels,vℓy, as the
control input, which significantly reduces the number of input
combinations compared to the states of the power switches.
Then, the total output voltage becomes:

vyn = Vdcvℓy , (4)

where

vℓy ∈ V = {−η,−η + 1, . . . , 0, . . . , η − 1, η}. (5)

Hence, for a three-phaseη-cell CHB converter, the number of
voltage level combinations considering (5) is given by:

NV LC = (2η + 1)3. (6)

For each voltage level combination, the states of the power
switches,Syj , ∀j ∈ [1, η], are obtained by applying a Sorting
Algorithm (SA) which aims for equal utilization of power
switches, cf. [28], [29] where SA is used for capacitor voltage
balancing and power losses distribution.

At any discrete-time instantk, the system states and control
inputs are chosen as:

iab(k) =

[

ia(k)

ib(k)

]

∈ R
2
, u(k) =







vℓa(k)

vℓb(k)

vℓc(k)






∈ U = V

3
, (7)

whereic(k) = −(ia(k)+ib(k)) and the input,u(k), belongs to
the FCS,U = V

3. By applying the forward Euler discretization
to (1) with a sampling period ofTs, the following discrete-time
dynamic model can be obtained:

iab(k + 1) = Aiab(k) +Bu(k), (8)

where

A =

[

1− RTs

L
0

0 1− RTs

L

]

, B =
VdcTs

3L

[

2 −1 −1

−1 2 −1

]

. (9)

B. Standard Problem Formulation

Generally, the standard FCS-MPC strategy is formulated
with a cost function that considers the control targets over
one-step prediction horizon based on the system model [6],
[7]. At each discrete instantk, the cost function is evaluated
for each element of the FCSU to obtain an OCI to be
applied to the converter. If a basic single-step cost function
that only considers the output currents tracking error is used,
then the control target is to maintain a sinusoidal steady-state
references for these output currents, i.e.:

i⋆ab(k) =

[

I⋆ sin(ωkTs)

I⋆ sin(ωkTs − 2π/3)

]

, (10)

wherei⋆ab stands for the output current references, in which
I⋆ is the peak value. Thus, a basic single-step cost function
in the original stationaryabc-framework can be expressed as
(see [7]):

Jabc = ‖iab(k + 1)− i⋆ab(k + 1)‖22, (11)

whereiab(k + 1) stands for the current predictions based on
the system model (8) andi⋆ab(k + 1) is the next step current
references. Here, the FCSU presents redundant elements in
terms of the output current, i.e., there is more than one control
input that can produce the same output current. Alternatively,
the control problem can be formulated in the stationary orthog-
onal αβ-framework [15]. Then, the cost function (11) after
applying the well-known Clarke’s transformation,Γαβ, over
U , i.e.,Uαβ = Γαβ · U , becomes:

Jαβ = ‖iαβ(k + 1)− i⋆αβ(k + 1)‖22, (12)

whereiαβ, i⋆αβ are the current predictions and references in
αβ-framework, respectively. This formulation allows one to
reduce the number of elements inU by discarding the redun-
dant inputs. For instance, in a three-phase one-cell (η = 1)
CHB converter, the FCSU = V

3 = {−1, 0, 1}3 comprises
27-input vectors as per (6), and forms a cube-lattice in theabc-
framework, as shown in Fig. 2. Thus, performing the Clarke’s
transformationΓαβ on U , yields a new reduced FCSUαβ

which forms a hexagon with only19-distinct vectors in theαβ-
framework. It is important to emphasize that both formulations
(11) and (12) are equivalent in terms of optimality albeit the
latter reduces the required computations performed by the
MPC algorithm.

III. PROPOSEDFCS-MPC FORMULATION

Motivated by the issues discussed in the introduction, this
work proposes a long prediction horizon FCS-MPC formu-
lation for CHB inverters that considers the full steady-state
system information in terms of output currents and voltages.
Here, the controller is designed based on the formal MPC
formulation used incontrol theory [30], where the cost func-
tion is built to track both system state and control input
references2. A key feature of this work, compared to the
basic single-step FCS-MPC, is that the proposed controller

2This formal MPC formulation also allows one to study stability and
robustness of predictive controllers for power converters[30]–[34].
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also tracks the control input references, which are designed
to minimize the CMV. This is achieved by formulating the
optimal control problem in the originalabc-framework, where
the CMV information is preserved through the matrixB in
(9). Therefore, the proposed cost function for an arbitrary
prediction horizon,N , becomes:

JN =

k+N−1
∑

l=k

‖iab(l+1)− i
⋆
ab(l+1)‖22+σ‖u(l)−u

⋆(l)‖22, (13)

whereu(k) is the tentative control input that generates the
current predictioniab(k+1), andu⋆(k) stands for the required
CHB output voltages to maintain the current references (10)
in steady-state, i.e.:

u
⋆(k) =

[

v⋆ℓa(k) v⋆ℓb(k) v⋆ℓc(k)
]T

∈ R
3
,

v
⋆
ℓy(k) =

I⋆

Vdc

(ωL cos(ωkTs + φy) +
R

Vdc

sin(ωkTs + φy).
(14)

In (14), v⋆ℓy(k) is derived by using (1) and (10), while
considering a null CMV (i.e.,v0n = 0). Moreover,φa = 0,
φb = −2π/3 andφc = 2π/3. The weighting factorσ in (13)
penalizes the impact of the control input references tracking
by regulating a desired closed-loop response, see [31].

Since the proposed formulation considersN > 1, it is
convenient to introduce the input sequenceU(k) denoted by:

U(k) =
[

uT (k) . . . uT (k +N − 1)
]T

∈ U ⊂ R
3N , (15)

where the FCSU = UN = V
3N . Thus, the optimization

problem directing to FCS-MPC strategy can be formulated
as:

Uopt(k) = arg

{

min
U(k)

JN

}

, (16a)

subject to: iab(l + 1) = Aiab(l) +Bu(l), (16b)

u(l) ∈ U , (16c)

‖∆u(l)‖∞ ≤ 1, (16d)

for all l ∈ {k, . . . , k + N − 1}, and where∆u(l) =
u(l − 1) − u(l). Here, (16b)-(16d) encompasses the physical
power converter constraints, where: (16b) refers to the system
constraint given by the inverter model (8); (16c) is the FCS
U ∈ V

3 constraint for the tentative input,u(l), given by the
output voltage levels; and (16d) is the inverter phase voltage
level constraint. The latter takes into account the fact that one
step voltage level change is recommended to avoid highdv/dt
rating in medium/high power converters.

Consequently, the long prediction horizon FCS-MPC is
formulated to achieve balanced sinusoidal currents with a
reduced CMV by solving the optimization problem (16a). This
results in the optimal input sequence:

Uopt(k) =
[

uT
opt(k) . . . uT

opt(k +N − 1)
]T

, (17)

which minimizes the cost function (13). Following the re-
ceding horizon policy, at each sampling instant only the first
element ofUopt(k) (i.e., uopt(k)) is applied to the converter
discarding the remaining ones. Therefore, the resulting closed-
loop system equation for the CHB converter becomes:

iab(k + 1) = Aiab(k) +Buopt(k). (18)

Notice that asN and η increase, a high computational
effort is required for the ESA when solving the optimization
problem (16). As a consequence, a fast optimization algorithm
is needed to reduce the computational complexity.

IV. OPTIMIZATION PROCESS

The control problem in (16) requires a suitable formulation
that facilitates the long prediction horizon implementation.
Thus, the SDA described in [23], [35], [36] is adopted as a
computationally efficient optimizer.

A. Optimization Problem Reformulation

At first, the cost function (13) is presented as a function of
input sequenceU(k) by successively using the system model
(16b) for all l ∈ {k, . . . , k +N − 1}, i.e.:

JN = U(k)TWU(k) + 2F T (k)U(k) + C(k), (19)

where

W = Φ
T
Φ+ σI3N×3N , (20a)

F (k) = Φ
T
Λiab(k)−Φ

T
I

⋆
ab(k + 1)− σU⋆(k), (20b)

andC(k) is independent ofU(k). Furthermore,I3N×3N is
the identity matrix of size3N . The matricesΦ and Λ, the
current reference sequenceI⋆

ab(k+1), and the input reference
sequenceU⋆(k) are defined in the appendix. Then, in absence
of constraints (i.e., using (19) in∂JN

∂U
= 0), the unconstrained

solution of the problem (16a) is given by:

Uuc(k) = −W−1F (k) ∈ R
3N , (21)

which does not necessarily belongs to the FCSU [27].
To obtain the constrained optimal solutionUopt(k) ∈ U, it is

convenient to present the cost function (19) in terms ofU(k)
andUuc(k), i.e.:

JN = (U(k) −Uuc(k))
TW (U(k) −Uuc(k)) + C(k). (22)

As per definition,W is a symmetric and positive definite
matrix for σ > 0, see (20a). Then, to reformulate (16a) as
an ILS-problem, a unique invertible lower triangular matrix
H ∈ R

3N×3N is obtained by performing the Cholesky
decomposition [37], [38] toW−1, i.e.:

W−1 = H−1H−T . (23)

Hence,H satisfies the following expression:

W = HTH . (24)

Now, the cost function (22) can be rewritten in terms ofH

as:
JN = ‖HU(k)−Y(k)‖22 + C(k), (25)

where
Y(k) = HUuc(k). (26)

Finally, by using (25) the optimization problem (16a) becomes:

Uopt(k) = arg

{

min
U(k)

‖HU(k)−Y(k)‖22

}

, (27)
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which is subject to the constraints (16b)-(16d). Notice that (27)
is a quantization problem of ILS form. It is also important
to highlight that obtaining the optimal solutionUopt(k) by
performing the quantization as per (27) is equivalent to solve
the minimization in (16a).

B. The SDA as an optimizer

The SDA is based on branch and bound technique that can
reduce the computational effort compared to the ESA, see [23],
[35]. In general, it works by defining a sphere of radiusd(k) >
0 and centerY(k) in (27). The computational effort required to
obtain the optimal solutionUopt(k) largely depends on the size
of this sphere (i.e.,d(k)). The value ofd(k) should be large
enough, so the sphere contains at least one tentative solution.
In this work, the initial value ofd(k) is calculated by the
following deterministic method:

d(k) = ‖HUbe(k)−Y(k)‖22, (28)

whereUbe(k) = ⌊Uuc(k)⌉ ∈ U is found by applying the Babai
estimation [39]. It is worth noting thatUbe(k) may not be the
optimal solution but feasible to initialize the algorithm.

Considering the initial radius, the SDA starts searching
tentative solutionsU(k) in a repetitive manner by satisfying
the following condition:

‖HU(k)−Y(k)‖22 6 d(k). (29)

This is the condition forU(k) belong to the sphere of radius
d(k) and centerY(k). The computational benefit involved in
this repetitive searching method comes from the fact of using
H in (27), which can be seen by extending (29) as follows:

(h11U1−Y1)
2+(h21U1+h22U2−Y2)

2+ · · · 6 d2(k), (30)

wherehij is the(i, j)th-element ofH ; Ui andYi refer to the
ith-element ofU(k) andY(k), respectively. At the left-hand
side of (30), the first term depends onU1, the second term on
{U2, U1} and so on. This facilitates to sequentially perform
an element-wise computation.

A flow diagram of the SDA for three-phaseη-cell CHB
inverter is shown in Fig. 3. Here,i denotes the entry index of
a vector or matrix, wherei ∈ {1, . . . , 3N}, andco used to set
theith entry ofU(k), whereco ∈ {0, . . . , 2η}. Furthermore,ρ
is a (3N +1)-dimensional vector which is initialized as zero-
vector. As per (30), the algorithm starts forming a tentative
solution U(k) element by element (i.e., fromU1 down to
U3N ), where each elementUi belongs to the phase voltage
level setV and satisfies (16d). Here, the constraint (16d) is
checked by using the optimal solutionUopt(k − 1) found at
the previous instant. Note that each entry ofU(k) starts from
−η and ends at+η with an incremental change ofco. For an
elementUi, if the squared distanceρi violates the condition
in (30), it implies that all associated computations for the
consecutive elements (i.e.,Ui+1 to U3N ) will provide an even
larger value ofρi. Therefore, the algorithm does not explore
these elements avoiding, thus, unnecessary calculations.On
the other hand, if theρi for anyUi is smaller than the present
value of d2, then it computes for the next elementU(i+1).
Proceeding in this manner, wheneverU(k) is fully formed,

Algorithm InitializationAlgorithm Initialization

H , Y(k), d2(k) Uopt(k − 1)H , Y(k), d2(k) Uopt(k − 1)

i = 0, co = 0, ρ = 0i = 0, co = 0, ρ = 0

if i > 0if i > 0

if i > 0if i > 0

i = i+ 1, Ui = −η + coi = i+ 1, Ui = −η + co

if Ui ∈ V,if Ui ∈ V,

meets (16d)meets (16d)
i = i− 2i = i− 2

co = U(i+1) + η + 1co = U(i+1) + η + 1

ρi = (h(i,1:i)U(1:i) − Yi)
2 + ρ(i−1)ρi = (h(i,1:i)U(1:i) − Yi)
2 + ρ(i−1)

if ρi < d2if ρi < d2i = i− 1, co = co + 1i = i− 1, co = co + 1

if i = 3Nif i = 3Nco = 0co = 0

updateUopt(k) = U , d2 = ρiupdateUopt(k) = U , d2 = ρi

st
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Fig. 3. Flow diagram of the SDA for a three-phaseη-cell CHB inverter.

i.e., i = 3N , it implies that a tentative solutionU(k) is found.
Then, it is updated asUopt and, so the associatedρi as d2.
At every update stage, the sphere size is reduced since the
updated radiusd is smaller than its predecessor. This helps
to keep the tentative solution set to be explored as small as
possible, which ensures less computational effort [23]. The
optimization process terminates when the sphere is reducedto
the point where only one tentative solution is contained in it,
which is, in fact, the optimal solutionUopt(k) in (27).

V. A NALYSIS OF THE PROPOSEDFCS-MPC
FORMULATION

In this section, the role of the weighting factorσ on the pro-
posed FCS-MPC strategy is analyzed in a three-dimensional
(3-D) space taking into consideration the quantization problem
(27). This analysis is key to understand how the proposed MPC
formulation can handle both control targets (current references
tracking and CMV minimization) in only one optimization
problem. Notice that, a horizon lengthN > 1 produces a
dimension of the FCSU greater than3, as stated byU =
UN = V

3N in (15), in which case only a mathematical but
no graphical representation is feasible. Therefore, to clearly
present the problem and have a3-D representation of (27),
N = 1 is chosen withU = U = V

3. In this case, the cost
function (13) becomes:

J1 = ‖iab(k+1)− i⋆ab(k+1)‖22+σ‖u(k)−u⋆(k)‖22. (31)
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Fig. 4. Linear transformation of control inputs by the matrix H for a three-
phase one-cell (η = 1) CHB converter when: (a)σ = 0; and (b)σ > 0.

Moreover, to have a comparison with the basic single-step
FCS-MPC, this analysis examines the same three-phase one-
cell (η = 1) CHB converter discussed in Section II-B as
an example. Hence, the control inputs belong to the cube-
lattice in abc-framework (i.e., the FCSU , see Figs. 2 and
4). The OCI is one of the lattice points which minimizes
the cost function (31). As can be noticed in (27), the matrix
H is a linear transformation over the control inputs, which
yields a transformed FCSU ′ in the newa′b′c′-framework, i.e.,
U ′ = H · U . Therefore, the OCI can be obtained fromU ′ by
performing the optimization (27) in thea′b′c′-framework. Note
that the properties ofH depend onW in (20a), in particular
on the weighting factorσ. For N = 1 case,W becomes:

W = BTB + σI3×3. (32)

When σ = 0, J1 in (31) becomes the basic single-step
cost function (11), which only considers the current references
tracking. In this case,W = BTB, which is singular. Hence,
H ∈ R

3×3 is also singular, i.e., the sum of elements in each
row is zero:

3
∑

j=1

hij = 0; i ∈ {1, 2, 3}, (33)

wherehij is the (i, j)th-entries ofH . Now, the linear trans-
formationH over the cube-latticeU yields a hexagonU ′

σ=0

in the a′b′c′-framework as depicted in Fig. 4a. Notice that
this hexagon resembles the standard hexagon in theαβ-
framework having the same redundant vectors, see Figs. 2
and 4a. Here, the redundant vectors at the center are obtained
when all elements of the input vectoru(k) ∈ U are equal (i.e.,

vℓa = vℓb = vℓc). For the elements ofu(k) ∈ U that satisfy
the following:

vℓp = vℓq; vℓr = vℓp ± 1;

p 6= q 6= r; p, q, r ∈ {a, b, c},
(34)

form the redundant vectors located at six vertices of the inner
layer of the hexagon. The remaining vectors positioned at the
outer layer of the hexagon are distinct, i.e., no redundancies.
Thereby, the redundant vectors located in the same position
give the same output current but might have a different CMV.
Thus, for the case whenσ = 0, there may exist more than
one input that gives the same minimum cost value. Therefore,
the OCI may result in balanced sinusoidal current with high
(uncontrolled) CMV.

For the case whenσ > 0, the cost function (31) contains the
desired CMV information through the control input reference
u⋆(k) which is designed in (14). Moreover, matricesW and
H are now non-singular. Therefore, all transformed vectors
underU ′

σ>0 in the a′b′c′-framework are distinct in terms of
cost value, see Fig. 4b. Notice that the redundant vectors
located in the same position whenσ = 0 (Fig. 4a), are pulled
apart asσ is increased (σ > 0, Fig. 4b). Hence, whenσ > 0,
there exist only one OCI that gives the minimum current
tracking error and reduced CMV. Consequently, by solving
only one optimization problem the system can achieve three-
phase balanced current with reduced CMV. It is important to
note that the lattice structure changes for different values of
σ. However, the performance of the SDA is affected only for
large values ofσ, which are not considered in this work.

The analysis presented in this section can be extended for
converters with a larger number of cells (η > 1) and long
prediction horizons (N > 1). For η > 1 when N = 1,
the size of the hexagon in thea′b′c′-framework increases
by incorporating more layers with redundant vectors. On the
contrary, forN > 1 whenη ≥ 1, the hexagon-shape can not
be guaranteed. However, the mathematical analysis presented
here still holds.

VI. CASE STUDY: TWO-CELL CHB INVERTER

This section highlights the effectiveness of the proposed
MPC formulation, when it is used to govern a three-phase
two-cell (η = 2) CHB inverter with passive RL loads as an
illustrative example. The main system parameters are shown
in Table I.

Table I
SYSTEM PARAMETERS

Variable Description Values

Pr Rated three-phase power 3.45 kW

Vdc dc voltage supply per HB 180 V

I⋆ Current reference amplitude 7 A

f Load current frequency 50 Hz

R Load resistor 47Ω

L Load inductor 15 mH

fs Sampling frequency 10 kHz
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Fig. 5. System performance analysis of the proposed FCS-MPCstrategy by considering the system parameters shown in Table. I. THD of load currents
(THDi), standard deviation of CMV (vδ

0n), inverter voltage symmetry (Sm) and average devise switching frequency (fsw) are presented as a function ofσ
in semilogarithmic plots forN ∈ {1, 2, 3, 10}. Color notations:–◦—◦– (N = 1); –⋄—⋄– (N = 2); –�—�– (N = 3); and–⋆—⋆– (N = 10).
Figures (b), (d), (f) and (h) are the close-up views of their corresponding plots (a), (c), (e) and (g), respectively forσ ∈ [10−12, 10−3].

A. Controller Design

To achieve a desired system performance, the controller
settings (horizon lengthN and weighting factorσ) need to
be tuned. At first, the proposed strategy is simulated for
N = 1, 2, 3 and 10. For each value ofN , the simulation is
performed for different values ofσ ranging from10−15 to 16.
Then, the steady-state performance is investigated in terms
of: the load currents THD (THDi), the standard deviation
of CMV (vδ0n), the inverter voltage symmetry (Sm) and the
average device switching frequency (fsw). Here,vδ0n defines
how the values of CMV over a period are spread out from
their average value. The termSm refers to the identical
switching pattern in an inverter voltagevyn, in terms of
the quarter-wave symmetry. This is particularly importantfor
grid-connected systems, where even harmonics injection must
be strictly limited to small values, see e.g.IEEE-Std 519,
where the even harmonics are limited to 25% of the odd
harmonics. In this work,Sm is quantified by the correlations
of the four quarter-waveforms,Q1(vyn) . . .Q4(vyn), over one
fundamental period. This is obtained by using a well-known
statistical analysis tool named Pearson’s correlation-coefficient
[40], P ∈ [0, 1], by computing the following expression:

Sm =
1

3

c
∑

y=a

1

2
(S+

vyn
+ S−

vyn
), (35)

where S+
vyn

= P (Q1(vyn),Q
′

2(vyn)), S−

vyn
=

P (Q3(vyn),Q
′

4(vyn)), in which Q′

2,4(vyn) is the mirrored
version of Q2,4(vyn). Hence, higher the value ofSm

(maximum of 1), the more symmetric the inverter voltages
are and lower the rate of even harmonics injection to the

system. Considering the four aforementioned metrics, the
simulation results are presented in semilogarithmic plotsas a
function ofσ for N = 1, 2, 3 and10 in Fig. 5.

1) Weighting factor (σ) tuning: From Fig. 5, it can be
seen that the results are not sensitive to the rangeσ ∈
[10−12, 10−3]. When σ ≈ 100 or larger, vδ0n and fsw are
reduced. However, the THDi andSm are increased. Generally,
higher values ofσ reduces the dynamic performance of the
FCS-MPC, see [31], whereσ is represented asR. Hence, to
achieve a desired closed-loop performance of the system with
fast dynamic, smaller values ofσ are selected. Based on this
analysis,σ = 10−6 is chosen from the non-sensitive range
(i.e., σ ∈ [10−12, 10−3]).

2) Prediction horizon (N) tuning: It can be observed
from the close-up view of Fig. 5 that THDi, vδ0n and Sm

are gradually reduced as the horizon length is increased. For
N = 3, there is17.05% reduction in the THDi compared
to the case whenN = 1. On the contrary, moving to
N = 10 results in 18.61% THD reduction, which means
there is only a1.56% improvement overN = 3, see Fig. 5b.
According to Fig. 5d and Fig. 5f, there are no considerable
improvements in terms ofvδ0n andSm at N > 1. Regarding
fsw, it can be seen from Fig. 5h thatfsw has shown irregular
variations. ForN = 3 and 10, the value offsw is 326Hz,
whereas atN = 1 it is 312Hz. From the above analysis,
it is clear thatN = 10 case offers negligible improvement
in the system performance compared toN = 3. Moreover,
it requires enormous computations, which is intractable for
real-time implementation. Consequently,N = 3 is chosen
considering the trade-off between the system performance and
the computational burden.
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Fig. 6. Steady-state performance for a basic single-step FCS-MPC (N =
1, σ = 0): (a) inverter voltages; (b) CMV; (c) load currents.
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Fig. 7. Steady-state performance for the proposed FCS-MPC with single-step
prediction horizon (N = 1, σ = 10−6): (a) inverter voltages; (b) CMV; (c)
load currents.

B. Experimental Results

The experimental validation of the proposed FCS-MPC
formulation was performed in a dSPACE DS1006 system.
Here, the state of the power switches was implemented in
an FPGA module DS5203. The controller considers the well-
known time delay compensation [41] in the formulation.

1) Comparison with basic single-step FCS-MPC: At first,
the CHB inverter is governed with the basic single-step FCS-
MPC (N = 1, σ = 0), which tracks only the output current
references. Here, the standard ESA is used as an optimizer.
The results presented in Fig. 6 and Table II show that
the proposed FCS-MPC with single-step prediction horizon
(N = 1, σ = 10−6) as depicted in Fig. 7, provides a steady-
state performance with a54.4% improvement in the symmetry,
and a reduction of24.8% in the CMV standard deviation and
14.5% in the average switching frequency. As anticipated, the
THD for the currents shown in Fig. 7c remains almost similar,
i.e., THDi = 4.03%. Notice that the SDA significantly reduces
the execution time,Te (i.e., 3.6 times faster) compared with
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Fig. 8. Steady-state performance for the proposed FCS-MPC with long
prediction horizon (N = 3, σ = 10−6): (a) inverter voltages; (b) CMV;
(c) load currents.

Table II
STEADY STATE PERFORMANCES: EXPERIMENTAL RESULTS

Horizon length N = 1 N = 1 N = 3

Weighting factor σ = 0 σ = 10−6 σ = 10−6

Optimizer ESA SDA SDA

Execution Time,Te (% of Ts) a 39.8% 11.1% 92.2%

THD of the load currents, THDi 4.01% 4.03% 3.36%

Standard deviation of CMV,vδ
0n 64.5 V 48.51 V 47.7 V

Inverter voltage symmetry,Sm 0.57 0.88 0.92

Avg. device switching freq.,fsw 387.5 Hz 331.25 Hz 334.12 Hz

a : Sampling periodTs = 100µs.

the ESA. This allows one to implement the proposed FCS-
MPC with longer prediction horizons.

2) Long prediction horizon performance: To explore the
benefits of long prediction horizon implementation, the pro-
posed FCS-MPC is carried out with the controller settings
(N = 3, σ = 10−6) obtained in Section VI-A. The results
are presented in Fig. 8 and Table II. ForN > 1, the
execution timeTe exceeds the time limit imposed byTs when
using ESA. However, the SDA implementation still ensures
Te to be within Ts for N = 3. This test shows that the
average device switching frequency and CMV do not present
noticeable changes. Nevertheless, the system experiencesan
improvement of16.6% in THDi with an inverter voltage
symmetrySm = 0.92, which means the inverter voltages are
near symmetric.

3) Dynamic performance: The dynamic behavior of the
proposed strategy for a step change in the amplitude of current
references is depicted in Fig. 9. The results are shown for
phasea only. When the step change in the current references
(from −3.5A to 7A) is applied att = 20ms, the load current
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Fig. 9. Dynamic performance under step change in the currentreference for
the proposed FCS-MPC with long prediction horizon (N = 3, σ = 10−6)
(a) load current; and (b) inverter voltage. Results are shown for phasea only.
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Fig. 10. Dynamic performance under step change in the current reference
for a basic single-step FCS-MPC (N = 1, σ = 0): (a) load current; and (b)
inverter voltage. Results are shown for phasea only.

quickly reaches its desired reference with an approximate
settling time,ts = 1ms. As can be seen from the close-up
view, the inverter voltage changes are limited to one step. This
is due to the voltage level constraint (16d) in the optimization
problem formulation which ensures the lowerdv/dt ratings
at the load. For a fair comparison, the basic single-step FCS-
MPC also considered (16d), and the dynamic performance is
carried out for the same test condition, see Fig. 10. This result
proves that the proposed strategy does not affect the inherent
fast dynamic performance of the basic single-step FCS-MPC
even for long prediction horizon implementations.

VII. C ONCLUSION

A suitable long prediction horizon MPC formulation for
CHB inverters has been proposed. The MPC was formulated
to include the full steady-state system information in terms
of output current and output voltage references in the original
stationaryabc-framework. Since the CMV information is pre-
served in theabc-framework, the control input references have
been designed to obtain a minimum CMV. Moreover, to deal
with the computational burden introduced by a long prediction
horizon implementation, the proposed MPC formulation was
transformed into an equivalent optimization problem that was
effectively solved by the SDA. Based on this transformation, a
graphical analysis of the proposed MPC formulation has been
presented. Particularly, it has been shown that the weighting
factor plays an important role to obtain a unique optimal

solution which demonstrates that current references tracking
and CMV minimization can be achieved in a single optimiza-
tion problem even for long prediction horizon. Experimental
results have shown that for the single-step case, the proposed
FCS-MPC outperforms the basic single-step FCS-MPC in
terms of inverter voltages symmetry, average device switching
frequency, and CMV while reducing the required execution
time. Besides these benefits, results for the long prediction
horizon implementation have shown a significant improvement
in the current THD without affecting the inherent fast dynamic
performance of the basic single-step FCS-MPC.

VIII. A PPENDIX

The matrices and vectors used in (20) are given as:

Φ =













B 0 . . . 0 0

AB B . . . 0 0

...
...

. . .
...

...

AN−1B AN−2B . . . AB B













, Λ =













A

A2

...

AN













,

I
⋆
ab(k) =













i⋆ab(k + 1)

i⋆ab(k + 2)

...

i⋆ab(k +N)













,U⋆(k) =













u⋆(k)

u⋆(k + 1)

...

u⋆(k +N − 1)













.
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