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Abstract

In a simple model of financial market dynamics, we allow the price of a risky security
to be set by a market maker depending on the excess demand of heterogeneous interact-
ing traders, fundamentalists and chartists, who place their orders based upon different
expectations schemes about future prices: while chartists rely on standard trend-based
rules, fundamentalists are assumed to know the economic environment and to form their
beliefs accordingly. As price moves away from the long-run fundamental, fundamentalists
become less confident in their forecasts, and put increasing weight on a reversion towards
the fundamental price. The resulting two-dimensional discrete time dynamical system
can exhibit a rich range of dynamic scenarios, often characterized by coexistence of at-
tractors. A simple noisy version of the model reveals a variety of possible patterns for
return time series.
Keywords: heterogeneous beliefs, financial market dynamics, bifurcation analysis,

coexisting attractors

JEL classification: C62, D84, E32, G12

1 Introduction

The literature on the dynamics of financial prices arising from the interaction of heteroge-
neous agents has become well-developed over the last two decades, as recently discussed in
two surveys by Hommes (2006) and LeBaron (2006). The common setup of a number of
heterogeneous agent models is represented by a stylized market with one risky asset and one
riskless asset, and the main focus is on the effect of heterogeneous beliefs and trading rules
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on the dynamics of the price and return of the risky security. On the one hand, this liter-
ature shows how the interaction of heterogeneous agents can produce sustained deviations
of financial prices away from their fundamentals; on the other hand, such models are able
to reproduce the essential characteristics of empirical return time series and distributions.
Both these features appear to be strictly related to the nonlinear laws of motion that often
characterize such heterogeneous agent models, and to their interaction with exogenous noise
processes (such as noisy fundamental/dividend process, or noisy demand components). Most
models however result in high dimensional dynamical systems, that are of necessity not very
tractable analytically, or may include too many parameters, which makes it difficult to test
the robustness of simulation results. Within this heterogeneous agents literature, a particular
role is played by models of fundamentalists-chartists interaction, which are able to capture a
basic mechanism of price fluctuations, namely the interplay between the destabilizing forces
of trend-chasing strategies and the stabilizing role of fundamental traders, who place their
orders betting on mean reversion towards fundamentals. From a mathematical point of view,
what prevents prices from diverging under the pressure of strong trend extrapolation - by
replacing an unstable fundamental equilibrium with other stable attractors - is some non-
linear mechanism of adjustment, or interaction. In Day and Huang (1990) nonlinearity is
related to fundamentalists’ perceived chance for capital gains and losses. In Chiarella (1992),
nonlinearity is due to a portfolio adjustment argument, that imposes nonlinear asset demand
functions. In the model proposed by Brock and Hommes (1998) and further developed by
Chiarella and He (2001, 2003), Hommes et al. (2005), agents switch between costly rational
and cheaper naive prediction rules according to a nonlinear mechanism based upon realized
profits. In a sense, these nonlinear factors play a role which is similar to the so-called jump
variable technique, which avoids divergent paths within rational expectations models. The
traditional argument justifying this technique is that agents realize that the movement away
from equilibrium cannot last forever. Following a similar idea, in this paper we develop a
simple model of fundamentalists and chartists, where the agents’ belief that periods of in-
creasing deviations from equilibrium must eventually come to an end is the only reason for
stabilizing market forces to come into play and to bring prices back to long-run fundamen-
tals, without the introduction of any further nonlinear effects. The idea used in this paper
is similar (but even simpler) to the one developed in Chiarella and Khomin (2000) within a
model of monetary dynamics with inflationary expectations.

In addition, the proposed model results in only a two-dimensional dynamical system -
which allows some analytical tractability - and is based upon a relatively low number of
parameters.

We consider a simple model of financial market dynamics with two groups of heterogeneous
traders, ‘rational’ fundamentalists and chartists, who adopt different expectations schemes
in order to predict the price of the risky asset and to form their demand. A market maker is
assumed to clear the market at the end of each trading period and to adjust the asset price
in the direction of the excess demand. While chartists only use past price time series to form
their expectations, fundamental traders are assumed to be informed about their economic
environment, including other agents’ behaviour, and to use their knowledge in formulating
their forecast about next period price. However, their degree of confidence in such a forecast
is state-dependent, in that they anticipate that the further the price deviates from its long-
run equilibrium (fundamental) value, the more likely is it to revert towards equilibrium;

2



as a consequence they put increasing weight on their belief of mean reversion as the price
increasingly deviates from the fundamental. Our analysis shows that the simple interaction
mechanism of the present model is able to generate a wide range of dynamic scenarios and
time patterns for the price and return of the risky asset.

The plan of the paper is as follows. In section 2 we introduce the asset price dynamics
under heterogeneous beliefs, discuss the expectations scheme used by fundamentalists and
chartists (2.1) and express the dynamic model as a discrete time noisy dynamical system
(2.2). Section 3 focuses on the properties of the two-dimensional map which represents the
deterministic ‘skeleton’ of the dynamic model, in particular the fixed point and its stability
properties (3.1), and the symmetry of the map (3.2). In section 4 we analyse by numerical
simulations the dynamic behavior of the system when the parameters are chosen “outside”
the stability domain, and show that the long-run dynamic scenario is quite often represented
by coexistence of attractors, with the phase-space shared amongst different basins of attrac-
tion: in particular, sections 4.1 and 4.2 explore the behavior of the system in presence of
contrarians and trend followers, respectively, while section 4.3 suggests how different deter-
ministic scenarios may interact with exogenous noise on demand and dividends to generate
time series with qualitatively different patterns and distributional characteristics. Section 5
concludes, while mathematical details are provided in the Appendices.

2 The model

The model setup follows Brock and Hommes (1998), Chiarella and He (2001, 2003) and
Hommes et al. (2005). We consider a stylized financial market model with one risky asset
and one risk free asset. The latter yields a gross return R = 1 + r, where r > 0 is the
constant risk free rate (per trading period). Let pt be the price (ex dividend) per share of the
risky asset at time t and {yt} be the stochastic dividend process. Assuming H heterogeneous
groups of agents, the wealth of investor of type h (h = 1, 2, ...,H) evolves according to

Wh,t+1 = RWh,t + zh,t(pt+1 + yt+1 −Rpt), (1)

where Wh,t is investor’s wealth at time t and zh,t is the number of shares he/she holds from
t to t + 1. Let Eh,t and Vh,t denote the conditional expectation and variance of type-h
trader. Dividends are assumed to be i.i.d. in agents’ beliefs, with y = Eh,t(yt+1), h =
1, 2, ...,H, denoting the (commonly shared) expectation of the dividend. Denote also by
Rt+1 := pt+1+yt+1−Rpt the excess return per share in the trading period (t, t+1). Assume
that traders are expected utility maximizers, with exponential utility of wealth function
Uh(W ) = − exp(−ahW ), where ah is the risk aversion coefficient of type h-trader. Then,
under the standard conditional normality assumption, the demand zh,t of type-h trader for
the risky asset is given by

zh,t =
Eh,t (Rt+1)

ahVh,t (Rt+1)
. (2)

In this paper we assume that there are two types of investors, called fundamental traders
(or fundamentalists) and chartists, corresponding to type 1 and type 2, and we denote by n1
and n2 = 1 − n1 their fixed market fractions1, respectively. A noisy component of demand

1Of course we could enrich the model (and its resulting price and return dynamics) by assuming time-
varying market fractions, according to the evolutionary switching mechanism for expectation rules introduced
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is also considered, determined for instance by noise traders, captured by the term σ²²t,
σ² ≥ 0, where {²t} is i.i.d. with zero mean and unit variance. Assuming zero supply of
outside shares, the population-weighted average excess demand at time t, ze,t, is thus given
by ze,t = n1 z1,t + n2 z2,t + σ²²t, or

ze,t = n1
E1,t (Rt+1)

a1V1,t (Rt+1)
+ n2

E2,t (Rt+1)

a2V2,t (Rt+1)
+ σ²²t . (3)

The market price in each trading period is set by a market maker who takes a long (short)
position when ze,t < 0 (ze,t > 0) in order to clear the market, and adjusts the price in the
direction of the excess demand. The market maker price setting rule is thus

pt+1 = pt + µze,t , (4)

where µ > 0 denotes the speed of price adjustment.

2.1 Heterogeneous expectations

In order to close the model, we must specify how fundamentalists and chartists adopt different
schemes in order to form and update their beliefs about next period price. While the chartists
follow a simple trend-based rule, the fundamentalists are assumed to be informed about
their economic environment, including the behavior of other agents; in addition, they believe
that the price is subject to mean reverting forces towards the long-run fundamental. More
precisely, we model agents’ expectations as follows:

(a) Fundamentalists expectation of next period price is given by

E1,t (pt+1) = αtp
est
t+1 + (1− αt)p , (5)

where p = y/(R − 1) is the long-run fundamental price2, while pestt+1 (to be specified later)
represents the prediction based on their assumed superior information. By rewriting (5) as

E1,t(pt+1 − pt) = αt(p
est
t+1 − pt) + (1− αt)(p− pt)

one can view the fundamentalists as partially confident in a price movement in the direction
of the predicted price pestt+1, and partially confident in a mean reversion towards the long-run
fundamental. The weights of these components are state dependent : the further the price
deviates from the fundamental p, the more likely the fundamentalists believe that the price
will revert towards p. To capture such behaviour αt is modelled as

αt = exp

·
−(p− pt)

2

s

¸
, (6)

where the parameter s > 0 determines the sensitivity of fundamentalists with respect to the
observed “mispricing”: the lower s, the more weight fundamentalists put on mean reversion
for any given deviation from the fundamental.

by Brock and Hommes (1997) within a cobweb framework, and further applied to an asset pricing model in
the follow-up paper Brock and Hommes (1998). However, in this paper we want to focus purely on the effect
of the mechanism we describe in the subsequent discussion.

2The fundamental price is computed via the usual discounted dividend formula.
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Put differently, though the fundamentalists hold an estimate based on their knowledge
of the economic environment, their degree of confidence in this estimate (captured by the
state dependent quantity αt) decreases in the presence of large price deviations from the
fundamental price, when confidence in mean reversion dominates. A possible justification for
this assumption is the experience of fundamentalists that in the past such long deviations
from the fundamental have always finally reversed themselves. The fundamentalists also
realise that large price deviations cannot last for a long time, due to the existence of limits
to long/short positions of traders, and therefore they may want to reverse their positions
before chartists do so. The assumed superior knowledge of the economic environment on the
part of the fundamentalists gives them some edge in “getting out” before the chartists. This
way of modelling “state-dependent confidence” of informed traders has already been used by
Chiarella and Khomin (2000) in a different context, namely a model of monetary dynamics
with inflationary expectations formed as a weighted average of heterogeneous beliefs3.

Thus for the fundamentalists, the expected excess return (per share) turns out to be

E1,t (Rt+1) = p(R− αt) + αtp
est
t+1 −Rpt . (7)

Substitution of eq. (7) into eq. (3), allows to interpret our model in a different fashion:
it can be viewed as a naïve way of introducing endogenously varying proportions of two
further groups of agents, within the goup of ‘fundamental traders’, namely rational and
‘forward looking’ agents who have full knowledge of the model structure4, whose proportion
is n1αt, and ‘real’ fundamentalists who expect mean reversion, whose fraction is n1(1− αt):
the higher the perceived mispricing, the larger is the fraction of traders who decide to bet
on mean reversion towards the fundamental price. Note that under this interpretation our
heterogeneous agent economy turns out to be made up of three different agent-types, one of
which is the rational agent in the traditional sense.

(b) Chartists compute their expected price by extrapolating the most recent price change
according to

E2,t (pt+1) = pt + g(pt − pt−1) ,
and they are denoted as trend followers if g ≥ 0, contrarians if g < 0. It follows that

E2,t (Rt+1) = (1 + g −R)pt − gpt−1 + p(R− 1) . (8)

For simplicity we assume constant second moment beliefs for both agent-types, with
V1,t (pt+1) = σ21, V2,t (pt+1) = σ22, as well as common beliefs about the variance of the i.i.d.
dividend process, Vh,t(yt+1) = σ2y, h = 1, 2. Therefore we obtain

Vh,t (Rt+1) = σ2h + σ2y, h = 1, 2 (9)

3A similar mechanism to model endogenously varying weight of mean reverting forces has also been used
by De Grauwe et al. (1993) within a heterogeneous agent model of exchange rate dynamics, though the model
setup is quite different from ours and this weighting effect has a different economic motivation.

4Of course, one should assume that the estimate pestt+1 of ‘forward looking’ traders has been obtained at
some cost, though we neglect information costs here because we don’t model profits explicitly. These costs
should be explicitly taken into account, however, if the switching among different predictors were based on
realized profits, as in Brock and Hommes (1998).
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2.2 The dynamical system

Using (7), (8), (9), the fundamentalist and chartist demand functions are rewritten as

z1,t =
p(R− αt) + αtp

est
t+1 −Rpt

a1(σ21 + σ2y)
, z2,t =

(1 + g −R)pt − gpt−1 + p(R− 1)
a2(σ22 + σ2y)

,

while the price setting equation (4) becomes

pt+1 = pt + µ
©
A1
£
p(R− αt) + αtp

est
t+1 −Rpt

¤
+ (10)

A2 [(1 + g −R)pt − gpt−1 + p(R− 1)] + σ²²t} ,

where we have set A1 := n1/
£
a1(σ

2
1 + σ2y)

¤
, A2 := (1− n1)/

£
a2(σ

2
2 + σ2y)

¤
.

Here we specify pestt+1 as an estimate based on full knowledge of the model (10)
5, including

the beliefs and the reaction of the chartists and the market maker, i.e. as the rational
expectations prediction6 such that Et(pt+1 − pestt+1) = 0. Thus, by taking expectations on
both sides of (10) and solving for pestt+1, one obtains

pestt+1 =
pt + µ {A1 [p(R− αt)−Rpt] +A2 [(1 + g −R)pt − gpt−1 + p(R− 1)]}

1− µA1αt . (11)

Substitution of (11) into the price setting equation (10) results in the following two-dimensional
(noisy) nonlinear discrete-time dynamical system:

pt+1 =
pt + µ {A1 [p(R− αt)−Rpt] +A2 [(1 + g −R)pt − gqt + p(R− 1)]}

1− µA1αt + µσ²²t ,

qt+1 = pt . (12)

where αt = α(pt) is specified according to (6).
The following dynamic analysis is carried out by assuming σ² = 0, thereby focusing on

the so-called deterministic skeleton of the dynamic model.7

3 The map and its properties

The 2−D nonlinear map T : (p, q)→ (p0, q0) that drives the deterministic dynamics can be
rewritten as

T :

 p0 = F (p, q) :=
p+ µ {A1 [(p− p)R− pα(p)] +A2 [(R− 1)(p− p) + g(p− q)]}

1− µA1α(p) ,

q0 = p ,
(13)

5Here we assume for simplicity that the fundamentalists know or have learnt the model; subsequent research
will need to specify pestt+1 in some more general way, which takes into account how they can learn about the
model, including the market maker and the chartist parameters.

6Note that if we interpret the present model as one with three heterogeneous belief-types (see the related
discussion in section 2.1), this would be precisely the rational expectations prediction of rational traders.

7Such terminology is adopted e.g. in Tong (1990, p. 140). Some numerical experiments on the noisy model
(12) are provided in section 4.3.
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where α(p) = exp
£−(p− p)2/s¤, and the symbol 0 denotes the unit time advancement oper-

ator.
In order to better understand the dynamical behavior of the system, we now focus on the

main analytical properties of the map (13), namely the stability properties of the (unique)
steady state, and an important symmetry property.

3.1 Steady state and stability analysis

It can be proven that the unique fixed point P ∗ := (p∗, q∗) of the map (13) is the long-run
fundamental price, that is P ∗ = (p, p). See Appendix A. Here we study the local stability of
this fixed point, via the location, in the complex plane, of the eigenvalues of the Jacobian
matrix evaluated at P ∗ (that we denote by J(p, p)). This turns out to be8

J(p, p) =

"
1+µ[A2(g−r)−A1(1+r)]

1−µA1 − µA2g
1−µA1

1 0

#
Let us denote by Tr and Det, respectively, the trace and the determinant of the Jacobian
matrix at the fixed point and by P(z) = z2 − Tr z + Det the associated characteristic
polynomial. A well known necessary and sufficient condition for the eigenvalues of J(p, p)
to be smaller than one in modulus (which implies local asymptotic stability) is given by the
following system of inequalities:

P(1) = 1− Tr +Det > 0, P(−1) = 1 + Tr +Det > 0, P(0) = 1−Det > 0 (14)

that can easily be rewritten in terms of the parameters of the model. The first condition in
(14) simplifies to µr(A1 +A2)/(1− µA1) > 0, which holds for (1− µA1) > 0. Therefore, the
analysis can be restricted to the case 0 < µ < 1/A1, and the second and third condition in
(14) become, respectively

µ
h
A1 −A2g + r

2
(A1 +A2)

i
< 1, (15)

1− µ(A1 +A2g) > 0 . (16)

Condition (15) holds true when g ≥ r
2 +

¡
1 + r

2

¢
A1
A2
, whereas in the opposite case it is

satisfied only for µ < 1/
£
A1 −A2g + r

2(A1 +A2)
¤
, and condition (16) is satisfied for µ <

1/ (A1 +A2g). It follows that the stability region Ω in the plane of the parameters (g, µ) is
the union of the two regions ΩF , ΩN such that

ΩF := {(g, µ) : g ≤ g0, 0 < µ < µF (g)} ,
ΩN := {(g, µ) : g > g0, 0 < µ < µN (g)} ,

where g0 := r
4

³
A1
A2
+ 1
´
, and

µF (g) =
1

A1 −A2g + r
2(A1 +A2)

, (17)

8Note that the Jacobian at the steady state (and thus the conditions of local asymptotic stability) does not
depend upon the parameter s, i.e. it is not influenced by fundamentalist ‘sensitivity’ to mispricing. However,
as numerical simulations reveal, this parameter determines a kind of ‘stabilizing’ or ‘destabilizing’ effect on
the dynamics in presence of an unstable fundamental equilibrium, by affecting the ‘scale’ of the attractors in
the phase-plane (see also section 4.2).
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µN (g) =
1

A1 +A2g
, (18)

In addition, the branches of hyperbola (17) and (18) which bound the stability region Ω
represent, respectively, a Flip-bifurcation curve (where one of the eigenvalues of J(p, p) is
equal to −1, while the other is smaller than one in modulus) and a Neimark-Sacker bifurcation
curve (where the two eigenvalues are complex conjugate of modulus equal to one).

In Fig. 1 we draw the stability region on the plane (g, µ) under the following choice of
parameters: n1 = 0.6, a1 = 0.3, a2 = 0.275, r = 0.001, σ21 = σ22 = 2, σ2y = 0.02.9 From
the analytical expressions of the bifurcation curves (17) and (18) we can easily see how the
various parameters affect the stability region. For instance, the stability region is enlarged
if - ceteris paribus - the risk aversion coefficients a1 or a2 are increased (see the dotted and
dashed boundaries in Fig. 1 ); a similar effect would result from assuming larger second
moment beliefs σ21 or σ

2
2. In other words, stronger risk perceptions and risk aversion raise the

Neimark-Sacker bifurcation threshold for the extrapolation parameter g - denote it by gN (µ)
- for any given price reaction level µ. A similar property holds when chartists behave as
contrarians. The stability region is thus enlarged, as visualized by the arrows in Fig. 1. On
the contrary, increasing the proportion of the chartists n2 = 1−n1, does not simply result in
a downward shifting of the bifurcation curves, but the effect depends in general on the values
assigned to the other parameters, as can be checked.10

3.2 Symmetry property

It is also worth noting that the map T defined by (13) is symmetric with respect to the fixed
point P ∗ = (p, p), since symmetric points (with respect to P ∗) are mapped into symmetric
points under iteration of T . As a consequence, a cycle of T is either symmetric with respect
to P ∗, or it admits a symmetric cycle, which may give rise to coexistence of attractors.
In particular, if a cycle of odd period exists, then the symmetry property implies that a
symmetric cycle of the same period must exist too, with the same stability property. If we
denote by S : (p, q)→ (p(S), q(S)) the symmetry with respect to P ∗ = (p, p), that is

S :

½
p(S) = 2p− p ,
q(S) = 2p− q , (19)

then the symmetry property can be stated as T (S(p, q)) = S(T (p, q)), ∀(p, q), or component-
wise ³

p(S)
´0

= 2p− F (p, q) (20)³
q(S)

´0
= 2p− p (21)

where F (p, q) is defined by the first equation in (13). The proof is provided in Appendix B.

9Under this parameter choice the (positive) quantity g0 := r
4

³
A1
A2
+ 1

´
is very small (g0 = 0.00059375) so

that the regions ΩF and ΩN correspond, roughly speaking, to the regions on the left and on the right of the
vertical axis, respectively.
10For instance, in the case of the Neimark-Sacker curve, the bifurcation value gN (µ) increases with n1 only

if µ is small enough (µ < a1(σ21 + σ2y)), while in the opposite case gN (µ) is a decreasing function of n1.
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4 Numerical simulation of the dynamic behavior

This section is devoted to the numerical exploration of the dynamics of the model, in pa-
rameter regions such that the fundamental equilibrium is not locally stable. Bifurcation
analysis will be conducted mainly with respect to the chartist parameter g. The phase space
transitions and the bifurcations that will be described numerically and graphically are global
phenomena, in the sense that they could not be detected by the mere analysis of the lin-
earized system around P ∗. Overall, we will focus on situations of coexisting attractors, which
are quite often met both in the case of contrarian and of trend chasing chartist behavior.
Coexisting attractors determine the possibility that differences in the initial price behavior
(p0, q0) result in qualitatively different asymptotic dynamics of the price. Moreover, they
might be associated with random switching among different price and return patterns under
the noisy version of the model11. We illustrate these phenomena via bifurcation diagrams in
the parameter plane (g, µ), and via phase-plots in the plane (p, q) or representations of the
price in the time domain, under different choices of g and µ. The remaining parameters are
set as follows:

p s n1 a1 a2 R σ21 σ22 σ2y
100 3 0.6 0.3 0.275 1.001 2 2 0.02

4.1 Dynamics in presence of contrarians

We consider the case g < 0 first, in which chartists behave as contrarians and stability is
lost via Flip-bifurcation, when |g| becomes large enough (see Fig. 1 ). The two-parameter
bifurcation plot in Fig. 2a indicates with different greytones - in the plane of parameters
(g, µ), 0 > g > −2, 0 < µ < 1 - different kinds of asymptotic behavior of the system.
The arrow represents a possible “bifurcation path”, along which the contrarian parameter g
(negative) is increased in magnitude, while the price reaction parameter µ is kept fixed at
µ = 0.65. The area on the right of the Flip-bifurcation curve µ = µF (g) is a portion of the
stability region, whereas in the grey region just beyond the bifurcation curve two symmetric
periodic orbits of period-2 coexist in the phase-space. As a matter of fact - though it can’t
be seen from the picture - a very narrow strip between the two regions also exists, where
the system reaches a stable 2-cycle, born via a Flip bifurcation at g ' −0.76035.12. This
attracting 2-cycle in its turn becomes unstable just after a small increase of the parameter,
via a pitchfork bifurcation, which produces the coexistence of two stable periodic orbits of
period-2 (grey region of Fig. 2a). The coexisting periodic orbits are represented in Fig. 2b
together with their basins of attraction. Note that the two attractors are associated with
qualitatively different dynamic behaviour, namely prices may be fluctuating below or above
the fundamental in the long-run, on average, depending on the initial condition (Fig. 2c). A
“reverse” pitchfork bifurcation occurring at g ' −1.25136 then restores a unique attracting
2-cycle (light grey region of Fig. 2a). Finally, in the black region (upper left corner of Fig.
2a) the generic trajectory is divergent.
11See Gaunersdorfer, Hommes and Wagener (2003) for an interesting example.
12A stable 2-cycle can be numerically detected, for instance, just outside the stability region for g =

−0.76140.
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4.2 Dynamics in presence of trend followers

Let us now consider the case in which chartists behave as trend followers, g > 0, and stability
is lost via Neimark-Sacker bifurcation for g large enough. As often occurs, the dynamics of
the system beyond the Neimark-Sacker bifurcation boundary in the parameter space may be
very complicated, and may include cycles of different period and chaos. The two-parameter
bifurcation plot in Fig. 3a uses different greytones to partition the parameter plane (g, µ),
0 < g < 2, 0.5 < µ < 1 in terms of the qualitative asymptotic behavior of the system.
The arrow represents a possible bifurcation path along which the extrapolation parameter
g (positive) is increased, while the price reaction parameter µ is kept fixed at µ = 0.8.
The area on the left of the Neimark-Sacker curve µ = µN (g) is a portion of the stability
region, while the dark area in the upper right corner is associated with divergence. The
areas with different greytones are Arnol’d tongues13 of different period, emanating from the
Neimark-Sacker curve. Parameter points in the white area may correspond to high-period
cycles, quasiperiodic motion on a closed invariant curve, or chaotic motion. As soon as the
Neimark-Sacker curve is crossed, quasiperiodic motion on an attracting invariant closed curve
can be observed. The curve changes its shape and increases in size for increasing values of
g. Coexistence of attractors may be detected when a point in the parameter space is near
to the border of an Arnol’d tongue. Consider for instance the region (indicated as ‘6-cycle’)
which represents the Arnol’d tongue of a stable period-6 orbit. Close to the left border,
the cycle coexists with an attracting closed curve, represented in Fig. 3b together with the
coexisting basins of attraction. The boundary of the basin of the 6-cycle is given by the
stable manifold of a saddle cycle of period 6, which is born together with the attracting
cycle, via saddle-node bifurcation. The attracting curve ceases to exist for higher values of
g14, so that the 6-cycle remains the unique attractor for some range of the parameter, but
close to the left border of the same tongue a new attracting closed curve appears. As a
matter of fact, both the stable 6-cycle and its basin of attraction are now inside the area
bounded by the new closed attracting curve (see Fig. 3d). Without going into details about
the underlying bifurcation mechanisms, we remark that the transition between an attracting
6-cycle external to a closed invariant curve (Fig. 3b), and an attracting 6-cycle internal to
a wider closed invariant curve (Fig. 3d) is in fact a complicated sequence of multiple global
bifurcations (with first and second homoclinic tangles), as qualitatively described in Agliari
et al. (2005) and Agliari et al. (2006). Such phenomena are also closely related to the
homoclinic tangles of saddle 4-cycles reported in Brock and Hommes (1997). The ‘starfish’
shape of the outer curve is related to the stable set of the saddle 6-cycle, which plays the role
13Arnol’d Tongues are regions in a two-dimensional parameter plane associated with stable k-cycles. In

smooth dynamical systems they are regions issuing from a Hopf bifurcation curve for flows and from a Neimark-
Sacker bifurcation curve for maps, in points representing rational rotation numbers m/k. The boundaries of
an m/k tongue issuing from a Neimark-Sacker bifurcation curve are saddle-node bifurcation curves of a pair
of k-cycles, and inside the tongue an attracting closed invariant curve may exist, saddle-node connection of
the k-cycle. Between two tongues issuing from a Neimark-Sacker bifurcation curve of periodicity m1/k1 and
m2/k2 a particular summation rule applies, and also the tongue with periodicity (m1 +m2)/(k1 + k2) exists.
In noninvertible maps, overlapping of tongues may occur, leading to multistability. See Boyland (1986) for
more details.
14 It disappears via a “contact bifurcation” due to a contact with the basin boundary of the attracting

6-cycle.
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of basin boundary of the inner attracting periodic orbit.15 The starfish shape of the attractor
causes fluctuations with irregularly varying amplitude (see the black trajectory in Fig. 3e),
suggesting clustered volatility at least in a qualitative sense. Moreover, the coexistence of
attractors is itself the source of regimes of fluctuations of different amplitude around the
unstable fundamental: this can be seen from the price paths drawn in different greytones in
Figs. 3c and 3e (corresponding to the phase plots in Figs. 3b and 3d respectively), generated
by initial conditions taken in different basins of attraction.

By increasing g further, a different phenomenon of coexistence can be observed. The
tongue labelled as ‘13-cycle’ in Fig. 3a, represents in fact a parameter region for which two
symmetric 13-cycles co-exist, as a consequence of the symmetry property (see Section 3.2).
These attractors replace the closed invariant curve approximately in the range 1.37488 < g <
1.44969. Fig. 3f represents the coexisting cycles, together with their basins of attraction.

The foregoing bifurcation analysis has been carried out by varying two key parameters,
under a predefined configuration for the remaining ones. However, we have found (via other
simulations not reported) that the phenomena observed are quite robust with respect to
alternative parameter settings. In particular, changes of the parameter s do not affect the
qualitative shape of the plots, but only ‘resize’ them to different scales: lower values of s (i.e.
higher fundamentalists sensitivity to mispricing) reduce the size of the attractors in Figs. 3b
and 3d, and the amplitude of fluctuations in Figs. 3c and 3e.

4.3 Stochastic simulations

In this section we present some numerical experiments concerning the noisy dynamical system
(12). Fig. 4 represents the time series and the distribution of the returns ρt := (pt − pt−1 +
yt)/pt−1 corresponding to different parameter constellations, under i.i.d. dividends and noise
trader demand processes. Both noise trader demand, σ²²t, and dividends, yt, are assumed
to be normally distributed, with σ²²t ∼ N (0,σ2²), yt ∼ N (y, s2y), and the same sample path
for the noise processes is combined with alternative deterministic scenarios.16 Figs. 4a,b
corresponds to the parameter selection of Figs. 3d,e, with strong trend extrapolation by
trend followers and coexistence of attractors in the phase space. The deterministic scenario
underlying Figs. 4c,d is the one depicted in Figs. 2b,c, where chartists behave as contrarians
and two different periodic orbits coexist, above and below the unstable fundamental price.
Finally, Figs. 4e,f are obtained again for g > 0, but under weaker trend extrapolation and
price reaction than Figs. 4a,b, “inside” the stability domain in the parameter space. While
in the latter case the return distribution looks approximately normal (Fig. 4f ) and the time
series resembles a gaussian white noise (Fig. 4e), in the case of strong trend extrapolation
the return distribution is leptokurtic (Fig. 4b), while in the case of contrarian beliefs the
distribution is bimodal (Fig. 4d), and in both cases the time series display volatility clustering
(Figs. 4a and 4c). These phenomena may be related to the coexistence of attractors and
the structure of the basins of attraction of the ‘underlying’ deterministic model, though of
15The geometric shape of the closed curve follows the unstable set of the saddle cycle, which is characterized

by wide oscillations around the unstable fixed point. This behavior, which is due to the peculiar analytical
form of the map (in particular to the effect of the state-dependent weight α(p) in eq. (13)), can also be
observed from the boundary of the basin of the 6-cycle in Fig.3d. The external closed invariant curve lies near
such a basin boundary and therefore assumes the particular starfish shape of Fig.3d.
16Note that the average dividend of the simulation is consistent with agents’ expected dividend y := p(R−1).
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course the connection with the ‘deterministic skeleton’ represents only a naïve way of looking
at the behavior of the noisy model and doesn’t help to provide results about the existence of
a unique limit distribution of prices and returns - which can be thought of as the appropriate
‘equilibrium’ notion for such models (see e.g. Böhm and Chiarella (2005), Föllmer, Horst and
Kirman (2005)).

5 Conclusions

We have developed a two-dimensional discrete-time model of asset price dynamics driven by
evolving heterogeneous expectations of two groups of agents, chartists (trend followers or
contrarians) and fundamental traders, under a simple market maker price setting rule. A
distinguishing feature with respect to earlier contributions is one by which the fundamental
traders possess information about their economic environment (including chartists beliefs)
and use this in forming expectations about future prices, nevertheless they put increasing
weight on a reversion to fundamental as price deviations from equilibrium become larger.
Although this mechanism represents the only nonlinear element within this model, it is able
to keep the model globally stable when the fundamental equilibrium is locally unstable, and
so avoids divergent price paths and replaces them by long-run oscillatory behavior along
different, often coexisting attractors, over a wide subset of the parameter space.

Further work on this model needs to be done, in particular the incorporation of time-
varying proportions due to switching of traders from chartism to fundamentalism as a conse-
quence of the growing belief of a reversion to the fundamental (along the lines of Chiarella-
Khomin (2000)), and the explicit introduction of learning schemes which capture the way
fundamental traders can learn about the model structure, including chartists expectations.
Furthermore, a more thorough analysis of the noisy model (12) is needed, in particular with
regard to the properties of the log-run distributions of prices and returns, under qualitatively
different settings for the key behavioural parameters.
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Appendix A. Existence and uniqueness of the steady state
In this Appendix we prove that the fundamental steady state is the unique equilibrium

point of the deterministic map (13).
The ‘fundamental’ P ∗ := (p, p), where p = y/(R − 1) is easily recognized as a steady

state, by simply setting (p0, q0) = (p, q) = (p, p), and therefore α(p) = 1, in (13). To see that
no further steady states exist, denote by bP = (bp, bq) = (bp, bp) a generic fixed point of (13),
possibly different from P ∗. Then bP must satisfy

bp = bp+ µ {A1 [p(R− bα)−Rbp] +A2 [(1 + g −R)bp− gbp+ p(R− 1)]}
1− µA1bα , (22)
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where bα := α(bp) = exp £−(p− bp)2/s¤. Condition (22) is easily simplified to:
µA1bα(p− bp) = µ(p− bp)[A1R+A2(R− 1)] . (23)

Of course (23) holds for bp = p, while for bp 6= p it is equivalent to
α(bp) = R+ A2

A1
(R− 1) ,

which admits no solutions because α(bp) ∈ (0, 1], whereas R+ A2
A1
(R− 1) > R > 1. It follows

that bP = P ∗ is the unique fixed point of (13).
Appendix B. Symmetry of the map
In this Appendix we prove that the symmetry property (20)-(21) holds for any (p, q).

Note first that (21) holds in that it can be rewritten as
¡
q(S)

¢0
= p(S), due to (19). Consider

now (20), and note that from (19) it follows that: (p(S)−p) = (p−p), (p(S)− q(S)) = (q− p),
whereas obviously α(p(S)) = α(p). Therefore

F (p(S), q(S)) =

=
p(S) + µ

©
A1
£
(p− p(S))R− pα(p(S))¤+A2 £(R− 1)(p− p(S)) + g(p(S) − q(S))¤ª

1− µA1α(p(S))
=

=
2p− p+ µ {A1 [(p− p)R− pα(p)] +A2 [(R− 1)(p− p) + g(q − p)]}

1− µA1α(p) =

=
2p− 2pα(p)µA1
1− µA1α(p) − p+ µ {A1 [(p− p)R− pα(p)] +A2 [(R− 1)(p− p) + g(p− q)]}

1− µA1α(p) =

= 2p− F (p, q) .
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Figure captions
Figure 1. Region of local asymptotic stability of the steady state, in the plane of the

parameters g, µ, and sensitivity of the bifurcation boundaries to the risk-aversion coefficients.
Figure 2. Deterministic dynamics with fundamentalists and contrarians. (a) Two-

parameter bifurcation plot for 0 > g > −2, 0 < µ < 1. (b) Coexisting attracting cycles
of period-2 and their basins of attraction. (c) Two time series starting with initial conditions
chosen from different basins of attraction.

Figure 3. Deterministic dynamics with fundamentalists and trend followers. (a) Two-
parameter bifurcation plot for 0 < g < 2, 0.5 < µ < 1. (b) An attracting closed curve sharing
the phase-plane with an outer attracting orbit of period-6, and (c) two time series starting
with initial conditions chosen from the coexisting basins of attraction. (d) An attracting orbit
of period-6 surrounded by a competing “star-fish” attractor, and (e) two time series starting
with initial conditions chosen from different basins. (f) Two symmetric coexisting orbits of
odd period (period-13) with their basins of attraction.

Figure 4. Dynamic outcome of the noisy model, under the same sample paths for the
noise processes, but alternative parameter configurations. (a), (b) Return time series and
distribution under strong trend extrapolation (g = 1.1683, µ = 0.8). (c), (d) Return time
series and distribution in presence of contrarians (g = −0.85, µ = 0.65). (e), (f) Return
time series and distribution under weaker trend extrapolation (g = 0.5, µ = 0.5). Both
dividends and noise traders’ demand are i.i.d. normal with standard deviations sy = 0.03,
σ² = 0.8, respectively. Numerically obtained distributions are based on 6000 observations
after excluding a transient of 4000 iterations.
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