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1. Introduction

The American option pricing problem has been explored in great depth in the option

pricing literature. A recent survey by Barone-Adesi (2005) provides an overview of this

research for the case of the American put under the classical Brownian motion process

for asset returns. In practice, many assets, in particular foreign exchange rates, are found

to have return distributions that feature “fatter” tails and higher peaks that cannot be

accurately modelled using Brownian motion. In order to capture this leptokurtosis in

the data, one must consider alternative dynamics for the underlying asset. One such

alternative is the jump-diffusion process originally proposed by Merton (1976). It has

been shown that jump-diffusion processes can provide a much better fit for asset returns

when leptokurtosis is present. Examples of these findings are provided by Jarrow &

Rosenfeld (1984), Ball & Torous (1985), Jorion (1988), Ahn & Thompson (1992), and

Bates (1996). Merton (1976) provides a framework for pricing European options under

jump-diffusion processes, and in this paper we explore the extension of this model to the

pricing of American call options. We derive the linked system of integral equations for

the price and early exercise boundary of an American call under Merton’s jump-diffusion

dynamics, focusing in particular on the use of integral transform techniques to solve the

associated integro-partial differential equation (IPDE) for the American call price. We

derive the limit of the early exercise boundary at maturity, and provide a numerical

algorithm for solving the linked integral equation system based on an extension to the

jump-diffusion situation of the quadrature integration technique of Kallast & Kivinukk

(2003). The algorithm used readily generates values for the price, delta and early exercise

boundary.

When deriving the integral equations for the price and early exercise boundary of Amer-

ican options, there are at least four approaches that can be used. The probabilistic

method that is demonstrated by Karatzas (1988) and Jacka (1991) for the pure dif-

fusion case, and has been generalised to the jump-diffusion situation by Pham (1997).

More recently Jamshidian (2006) has generalised the probabilistic approach to deal with

American options under jump-diffusion by making use of the Itô-Meyer formula. The
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discrete time approach using compound option theory is demonstrated by Geske &

Johnson (1984), and Kim (1990) shows how to take the limit to provide the continu-

ous time solution. Gukhal (2001) extends this solution technique to include Merton’s

jump-diffusion dynamics. The issue of the existence and uniqueness of the solution to

the non-linear integral equation that arises in the solution of the free boundary value

problem was raised by Myneni (1992) and finally settled by Peskir (2005) in the case of

pure diffusion dynamics.

The remaining two approaches focus on deriving solutions to the partial differential

equation (PDE) for the American call price. A natural solution technique here is that

of integral transforms, which has been very successfully employed in a wide range of

PDE problems in the natural sciences; see for example Debnath (1995). One of the

difficulties with dealing with American options using this technique arises from the fact

that one has to solve the PDE on a region restricted by the early exercise, or free,

boundary. McKean (1965), who seems to have been the first to consider the American

option pricing problem, solves the homogeneous PDE in a restricted domain by using an

incomplete Fourier transform. An alternative approach was developed by Jamshidian

(1992) who replaces the homogeneous PDE with an equivalent inhomoegenous PDE

on an unrestricted domain. The solution to this alternative formulation can then be

derived by using the standard Fourier transform, or through an application of Duhamel’s

principle.

Integral transforms are a very useful method for solving option pricing problems, as they

can be applied to a range of underlying dynamics and payoff types. There are numerous

examples where integral transforms have been used in the option pricing literature.

Scott (1997) uses Fourier transforms to value European options under jump-diffusion

with both stochastic volatility and stochastic interest rates. Carr & Madan (1999)

also use Fourier transforms to motivate numerical algorithms using the fast Fourier

transform, with a particular focus on the variance gamma model. This approach is

further generalised by Lee (2004), and bounds are derived to help improve computational

accuracy. Laplace transforms have been applied to more complex payoff types, including

the double barrier option explored by Pelsser (2000), and the American straddle analysed
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by Alobaidi & Mallier (2002). The American strangle is further analysed by Chiarella

& Ziogas (2005) using a Fourier transform approach. In all three cases, the underlying

dynamics are the classic geometric Brownian motion.

The main advantage of the Fourier transform method is that the solution may be ex-

pressed in terms of a general initial value or payoff function, so that a wider variety of

American options such as puts, calls, butterflies, spread options and max-options can

all be handled systematically. While integral transforms are clearly capable of handling

a wide range of asset dynamics, the extension of these solution methods to the jump-

diffusion case for American option pricing has not been covered in the existing literature,

and the first contribution of this paper is to provide this extension for Jamshidian’s for-

mulation.1 In this paper we demonstrate how to apply Fourier transform techniques to

solve the IPDE for the American call option price and free boundary.

Despite the amount of existing literature on American options with jumps, it seems that

there has been little work on the implementation of the integral equations for the price

and free boundary of American options under jump-diffusion. While some authors such

as Pham (1997) and Gukhal (2001) derive these integral equations, they do not discuss

how they can be solved numerically. Here we solve the linked integral equation system

that arises for the American call and its free boundary in the case of jump-diffusion by

extending the approach of Kallast & Kivinukk (2003) who apply a quadrature scheme to

the corresponding pure diffusion case. In developing a numerical scheme for the linked

integral equation system we obtain a simplification of the integral terms over the jump-

size distribution that reduces the computational burden by reducing the dimension of

the multiple integration involved. We also provide results on the behaviour of the early

exercise boundary at expiry that are needed to start the numerical procedure. While

the focus of this paper is not on finding optimal numerical methods for American option

prices with jumps, we do demonstrate that the proposed numerical integration scheme

is able to accurately find the price, delta and early exercise boundary of American calls

with log-normal jump sizes. Furthermore we find that the method is often more efficient

1The extension of McKean’s approach to the jump-diffusion case is provided by Chiarella & Ziogas
(2006).
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than a simple two-pass Crank-Nicolson finite difference scheme and competitive with

the method of lines of Meyer (1998).

The remainder of this paper is structured as follows. Section 2 outlines the free boundary

problem that arises from pricing an American call option under Merton’s jump-diffusion

model. Section 3 applies Jamshidian’s method to derive an inhomogeneous IPDE for

the American call price, which is then solved using Fourier transforms. We thus obtain

the linked integral equation system for the free boundary and option price. We derive

the limit of the free boundary at expiry in Section 4, and find that this limit is different

to that found for pure diffusion models. Section 5 analyses the integral equations in

the case where the jump sizes follow a log-normal distribution, as suggested by Merton

(1976). Section 6 outlines the numerical integration method used to solve the linked

integral equation system for both the free boundary, price and delta of the American

call. Since the integral equation for the call value and the integral equation for the free

boundary are interdependent, we provide a suitable means by which we can manage the

interdependence in order to use the two-pass sequential procedure that works well in the

non-jump case. Numerical results detailing the efficiency of this algorithm are provided

in Section 7, with additional results exploring the impact of jumps on the American

call option and its early exercise boundary provided in Section 8. Concluding remarks

are presented in Section 9. Most of the lengthy mathematical derivations are given in

appendices.

2. Problem Statement - Merton’s Model

Let C(S, τ) be the price of an American option written on the underlying asset S at

time to expiry τ = T − t, where T is the option maturity, t is the current time, and the

strike price is K. We assume that S pays a continuous dividend yield of rate q. Let

a(τ) denote the early exercise boundary at time to expiry τ , and assume S follows the

jump-diffusion process

dS = (µ − λk)Sdt + σSdW + (Y − 1)SdN, (1)
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where µ is the instantaneous return per unit time, σ is the instantaneous volatility per

unit time, W is a standard Wiener process and N is a Poisson process whose increments

satisfy

dN =







1, with probability λdt,

0, with probability (1 − λdt).

Let the jump size, Y , be a random variable whose probability measure we denote by Q,

with W and N independent processes, and the jump sizes are not correlated with these.

We use G(Y ) to denote the corresponding probability density function for Y . Thus the

expected jump size, k, is given by

k = EQ[Y − 1] =

∫

∞

0
(Y − 1)G(Y )dY. (2)

Following Merton’s (1976) argument, it can be shown that C satisfies the integro-partial

differential equation (henceforth IPDE)

∂C

∂τ
=

1

2
σ2S2 ∂2C

∂S2
+

(

r − q − λ

∫

∞

0
(Y − 1)(1 − l(Y ))G(Y )dY

)

S
∂C

∂S
− rC

+ λ

∫

∞

0
[C(SY, τ) − C(S, τ)](1 − l(Y ))G(Y )dY, (3)

in the region 0 ≤ τ ≤ T and 0 ≤ S ≤ a(τ), where r is the risk-free rate, and l(Y ) is

the market price of jump risk associated with a jump in the underlying from S to SY .

Given a form for l(Y ), we can define a new intensity, λ∗, and jump-size distribution,

G∗(Y ), which fully incorporate the term l(Y ), such that (3) can be written as

∂C

∂τ
=

1

2
σ2S2 ∂2C

∂S2
+

(

r − q − λ∗

∫

∞

0
(Y − 1)G∗(Y )dY

)

S
∂C

∂S
− rC

+ λ∗

∫

∞

0
[C(SY, τ) − C(S, τ)]G∗(Y )dY. (4)

The market incompleteness of the jump-diffusion option pricing problem is reflected in

the fact that the choice of λ∗ and G∗(Y ) is at the discretion of the model builder, so

that the associated risk-neutral density is non-unique. We take the view here that the

model builder would calibrate λ∗ and G∗(Y ) directly to market data without needing to

explicitly determine l(Y ) and so determine a risk-neutral density for the pricing problem
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at hand. Henceforth, for ease of notation, we shall simply refer to the jump risk-adjusted

intensity and jump-size density in (4) as λ and G(Y ) respectively.

By use of (2), the IPDE (4) can be written as2

∂C

∂τ
=

1

2
σ2S2 ∂2C

∂S2
+ (r − q − λk)S

∂C

∂S
− rC + λ

∫

∞

0
[C(SY, τ) − C(S, τ)]G(Y )dY, (5)

In the case of an American call option, the IPDE (5) is subject to the initial and

boundary conditions

C(S, 0) = max(S − K, 0), 0 ≤ S < ∞ (6)

C(0, τ) = 0, τ ≥ 0, (7)

C(a(τ), τ) = a(τ) − K, τ ≥ 0, (8)

lim
S→a(τ)

∂C

∂S
= 1, τ ≥ 0. (9)

Condition (6) is the payoff function for the call at expiry, and condition (7) ensures that

the option is worthless if S falls to zero. The value-matching condition (8) forces the

value of the call option to be equal to its payoff on the early exercise boundary, and the

smooth-pasting condition (9) sets the delta of the American call to be continuous at the

free boundary to guarantee arbitrage-free prices. For the call under consideration, we

note that the standard arbitrage arguments that justify condition (9) are not readily

applied under Merton’s jump-diffusion model, since this depends upon the price process

for S being continuous. The corresponding boundary conditions were proven by Pham

(1997) for the American put case, and the arguments he uses, based on the maximum

principle, are readily applied to the case of the American call problem with a continuous

dividend yield for S. Figure 1 illustrates the payoff, price profile and early exercise

boundary for the American call under consideration.

****Insert Figure 1 here****

2Note that one can also directly arrive at (5) from (3) by assuming that jump-risk is fully diversifiable,
and hence l(Y ) = 0, as is done by Merton (1976). The extension of the traditional hedging and change
of measure approaches to properly incorporate the l(Y ) term is given in Cheang, Chiarella & Ziogas
(2006). We should point out that Pham (1997) seems to have been the first to report the IPDE (3) with
the inclusion of the l(Y ) term.
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It is possible to solve the free boundary value problem (5)-(9) directly using Fourier

transforms. Following McKean (1965), we can make the change of variable S ≡ Kex,

and set C(S, τ) ≡ KV (x, τ) and b(τ) ≡ a(τ)/K. We are then able to introduce an

incomplete version of the Fourier transform, defined by

Fb{V (x, τ)} ≡
∫ ln b(τ)

−∞

eiηxV (x, τ)dx. (10)

Inversion of the transform is readily carried out, and the end result is a linked system

of integral equations for C(S, τ) and a(τ).

While this is certainly a valid solution method, it comes with three significant drawbacks.

The first is that this approach yields a representation for the American call option

the economic interpretation of which if not at all obvious. The second difficulty is

that the resulting system of integral equations depends upon the derivative da(τ)/dτ ,

which introduces difficulties when trying to solve the integral equations numerically.

Furthermore, while it is possible to manipulate McKean’s form of the solution into an

early exercise premium decomposition, such as is given by Kim (1990) for the pure

diffusion case, and Gukhal (2001) for the jump-diffusion setting, this task involves a

significant amount of additional manipulation, particularly in the jump-diffusion case.

Full details on McKean’s method applied to American calls under jump-diffusion are

given byChiarella & Ziogas (2006). With these shortcomings in mind, we instead seek

a more efficient alternative for solving (5)-(9) using the standard Fourier transform.

3. Jamshidian’s Representation

One of the major difficulties in solving the IPDE (5) subject to the boundary conditions

(6)-(9) is that the solution is sought on a restricted domain for the stock price S, and

furthermore the boundary of this domain is itself unknown a priori and needs to be

determined as part of the solution process. In the pure diffusion case, Jamshidian (1992)

demonstrates that by evaluating the PDE for the American call price when S > a(τ),

one can reformulate the free boundary problem in the restricted domain 0 ≤ S ≤ a(τ)

as an inhomogeneous PDE in the unrestricted domain 0 ≤ S < ∞. This inhomogeneous

PDE can then be more readily solved by traditional solution techniques such as Fourier
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transforms. We note that the free boundary value problem given by (5)-(9) involves

a homogeneous IPDE to be solved in the restricted asset price domain 0 ≤ S ≤ a(τ).

Here we show how to apply Jamshidian’s approach to reformulate the IPDE (5) and

associated boundary conditions as an inhomogeneous IPDE on an unrestricted domain.

We highlight the fact that C(S, τ) and ∂C/∂S are continuous for 0 ≤ S < ∞ and

τ > 0, as given by the value-matching condition (8) and smooth-pasting condition (9).

Jamshidian’s approach can only be applied with confidence when such continuity holds.

We also point out that in the approach we adopt this is the only point at which the

smooth pasting condition is used. We now state the main result that converts the ho-

mogeneous IPDE on a restricted domain to an inhomogeneous IPDE on an unrestricted

domain.

Proposition 3.1. The solution to the homogeneous IPDE (5) for C(S, τ) in the domain

0 ≤ S ≤ a(τ) subject to the initial and boundary conditions (6) - (9) is equivalent to the

solution to the inhomogeneous IPDE

∂C

∂τ
=

1

2
σ2S2 ∂2C

∂S2
+ (r − q − λk)S

∂C

∂S
− rC + λ

∫

∞

0
[C(SY, τ) − C(S, τ)]G(Y )dY

+H(S − a(τ))

{

qS − rK − λ

∫ a(τ)/S

0
[C(SY, τ) − (SY − K)]G(Y )dY

}

,(11)

in the region 0 < τ ≤ T , 0 ≤ S < ∞, subject to the initial condition (6), where H(x) is

the Heaviside step function defined as

H(x) =







1, x ≥ 0,

0, x < 0.
(12)

Proof: Refer to Appendix 1.

�

There is a clear economic interpretation for the inhomogeneous term that arises in

equation (11), which has also been provided by Gukhal (2001). The (qS − rK) term

represents the net cash flows received from holding the portfolio (S−K) whenever S is in

the stopping region. This is already familiar from the pure diffusion case (see for example
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Kim (1990)). The integral term arises entirely because of the introduction of jumps in

the price process for S. Note that if no jumps are present (λ=0) then this term will

be zero, and the inhomogeneous term becomes the same one presented by Jamshidian

(1992). This additional term captures the rebalancing costs incurred by the option

holder whenever the price of the underlying jumps down3 from the stopping region

back into the continuation region. Figure 2 illustrates this effect in detail. Consider

the case where, during the life of the option contract, the underlying asset price is at

S− > a(τ). Since the value of S is in the stopping region, the holder of the option will

currently possess the portfolio (S − K). If a jump of size Y occurs while τ > 0 such

that S+ = Y S− < a(τ), then the portfolio held by the investor will now be worth less

than the unexercised American call. This difference is the cost being captured by the

integral in the inhomogeneous term in (11).

****Insert Figure 2 here****

It should be pointed out that the inhomogeneous term in (11) is not the standard

exogenous forcing term that one encounters in standard PDE applications. The inho-

mogeneous term here involves the unknown C and a functions. Nevertheless this refor-

mulation turns out to be very useful in obtaining the solution to (11) via the Fourier

transform technique.

Having derived the inhomogeneous IPDE for C(S, τ) we now demonstrate how we can

use Fourier transforms to find the solution. Our first step is to transform the IPDE to

an equation with constant coefficients and a “standardised” strike of 1. Let S ≡ Kex

and C(S, t) ≡ KV (x, τ), with b(τ) ≡ a(τ)/K. The transformed IPDE for V is then4

∂V

∂τ
=

1

2
σ2 ∂2V

∂x2
+ φ

∂V

∂x
− (r + λ)V + λ

∫

∞

0
V (x + ln Y, τ)G(Y )dY (13)

+H(x − ln b(τ))

{

λ

∫ b(τ)e−x

0
[V (x + lnY, τ) − (Y ex − 1)]G(Y )dY

}

,

3Since S ≥ a(τ ), we know that a(τ )/S ≤ 1.
4It should be noted that C(SY, τ ) = KV (ln(SY/K), τ ) = KV (x + ln Y, τ ).
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where φ ≡ r− q−λk− σ2

2 . Equation (13) is to be solved in the time domain 0 ≤ τ ≤ T ,

and the unrestricted region −∞ ≤ x ≤ ∞, subject to the initial and boundary conditions

V (x, 0) = max(ex − 1, 0), −∞ < x < ∞, (14)

lim
x→−∞

V (x, τ) = 0, τ ≥ 0, (15)

V (ln b(τ), τ) = b(τ) − 1, τ ≥ 0. (16)

It is worth noting that the smooth-pasting condition still holds, although we do not

explicitly require it when solving (13) for V (x, τ) since it is incorporated in the inhomo-

geneous term; see again the remark just prior to Proposition 3.1.

Since the x-domain is now the unrestricted region −∞ < x < ∞, the Fourier transform

of the inhomogeneous IPDE (13) can be found. Define the Fourier transform of V ,

F{V (x, τ)}, as

F{V (x, τ)} ≡ V̂ (η, τ) =

∫

∞

−∞

eiηxV (x, τ)dx, (17)

with the corresponding inversion formula

F−1{V̂ (η, τ)} =
1

2π

∫

∞

−∞

e−iηxV̂ (η, τ)dη, (18)

where i =
√
−1. Applying this Fourier transform to (13), we can reduce the inhomo-

geneous IPDE for V to an inhomogeneous ordinary differential equation (ODE) for V̂ ,

whose solution is readily found.

Proposition 3.2. Using the initial and boundary conditions (14)-(15), the Fourier

transform of the IPDE (13) with respect to x satisfies the ODE

∂V̂

∂τ
+

[

σ2η2

2
+ φiη + (r + λ) − λA(η)

]

V̂ = F̂J(η, τ) (19)

where

F̂J(η, τ) ≡ F{FJ (x, τ)},
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with

FJ (x, τ) =H(x − ln b(τ))
{

(qex − r)−

λ

∫ b(τ)e−x

0
[V (x + ln Y, τ) − (Y ex − 1)]G(Y )dY

}

(20)

and

A(η) ≡
∫

∞

0
e−iη lnY G(Y )dY. (21)

Furthermore, the solution to the ODE (19) is given by

V̂ (η, τ) = V̂ (η, 0) exp

{

−
(

1

2
σ2η2 + φiη + (r + λ) − λA(η)

)

τ

}

(22)

+

∫ τ

0
exp

{

−
(

1

2
σ2η2 + φiη + (r + λ) − λA(η)

)

(τ − ξ)

}

F̂J (η, ξ)dξ,

where V̂ (η, 0) = F{V (x, 0)}.

Proof: Refer to Appendix 2.

�

We note that the first term on the right-hand side in (22) is the Fourier transform of

the IPDE (13) in the case of a European call option under jump-diffusion dynamics. In

this case the last term of the right-hand side of (13) does not appear, and it is the latter

term involving the free boundary that gives rise to the second term in equation (22).

Now that V̂ (η, τ) has been found, we may use the inversion formula (18) to recover

V (x, τ), the American call price in the x-τ plane. By taking the inverse Fourier transform

of (22), we have

V (x, τ) = F−1

{

V̂ (η, 0) exp

{

−
(

1

2
σ2η2 + φiη + (r + λ) − λA(η)

)

τ

}

+

∫ τ

0
exp

{

−
(

1

2
σ2η2 + φiη + (r + λ) − λA(η)

)

(τ − ξ)

}

F̂J(η, ξ)dξ

}

≡ VE(x, τ) + VP (x, τ)

≡ 1

K
[CE(S, τ) + CP (S, τ)] =

1

K
C(S, τ) (23)



AMERICAN CALL OPTIONS UNDER JUMP-DIFFUSION - FOURIER TRANSFORMS 13

where CE(S, τ) = KVE(x, τ) is the value of the corresponding European call written on

S and CP (S, τ) = KVP (x, τ) is the early exercise premium for C(S, τ). By performing

the inversions, we can determine the analytic forms of CE and CP and these are given

in the following propositions.

Proposition 3.3. The price of the European call option, CE(S, τ), in equation (23) is

given by

CE(S, τ) =
∞
∑

n=0

e−λτ (λτ)n

n!
E

(n)
Q {CBS [SXne−λkτ ,K,K, r, q, τ, σ2 ]}, (24)

where

CBS [S,K, β, r, q, τ, σ2 ] = Se−qτN [d1(S, β, r, q, τ, σ2)]

−Ke−rτN [d2(S, β, r, q, τ, σ2)], (25)

d1(S, β, r, q, τ, σ2) =
ln S

β +
(

r − q + σ2

2

)

τ

σ
√

τ
,

d2(S, β, r, q, τ, σ2) = d1(S, β, r, q, τ, σ2) − σ
√

τ ,

N [·] is the cumulative normal density function, and we define Xn ≡ Y1Y2...Yn and

X0 ≡ 1, along with5

E
(n)
Q {f(Xn)} ≡

∫

∞

0

∫

∞

0
...

∫

∞

0
f(Xn)G(Y1)G(Y2)...G(Yn)dY1dY2...dYn

=

∫

∞

0
f(Xn)G(Xn)dXn.

The Y1, Y2, ..., Yn are independent draws from the jump size distribution G(Y ).

Proof: Refer to Appendix A3.1.

�

We note that equation (24) is of course Merton’s (1976) solution for a European call op-

tion under jump-diffusion, with general jump size density G(Y ). Next we shall determine

the early exercise premium CP (S, τ).

5We assume that the density function G is of the form that facilitates the reduction of the n-dimensional
integral to a single integral. This is certainly true of the log-normal density function to be used later in
the paper.
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Proposition 3.4. The early exercise premium, CP (S, τ), in equation (23) is given by

CP (S, τ) =

∞
∑

n=0

E
(n)
Q

{
∫ τ

0

e−λ(τ−ξ)(τ − ξ)n

n!
(26)

×
[

C
(D)
P [SXne−λk(τ−ξ),K, a(ξ), r, r, q, τ − ξ, σ2]

−λC
(J)
P [SXne−λk(τ−ξ),K, a(ξ), r, q, τ − ξ, σ2;C(·, ξ)]

]

dξ

}

,

where

C
(D)
P [S,K, a(ξ), R, r, q, τ, σ2 ]

= qSe−qτN
[

d1

(

S, a(ξ), r, q, τ, σ2
)]

− RKe−rτN
[

d2

(

S, a(ξ), r, q, τ, σ2
)]

, (27)

C
(J)
P [S,K, a(ξ), r, q, τ, σ2 ;C(·, ξ)]

= e−rτ

∫ 1

0
G(Y )

∫ a(ξ)/Y

a(ξ)
[C(ωY, ξ) − (ωY − K)]κ(S, ω, r, q, τ, σ2)dωdY, (28)

and

κ(S, ω, r, q, τ, σ2) ≡ 1

ωσ
√

2πτ
exp

{

−1

2
d2
2(S, ω, r, q, τ, σ2)

}

. (29)

The operator E
(n)
Q and functions N , d1 and d2 have been defined in Proposition 3.3.

Proof: Refer to Appendix A3.2.

�

Note that on the left hand side in (28) we introduce the notation C(·, ξ) to indicate that

the dependence on the option price is that of a functional (rather than a function), in

fact of the form
∫ 1

0

∫ a(ξ)/Y

a(ξ)
C(ωY, ξ)G(Y )g(ω)dωdY, (30)

for an appropriate function g(ω). This notation will recur in many of the subsequent

formulae.

Each of the linear terms in (26) represent discounted expected cash-flows incurred by

the option holder when S > a(τ), as discussed previously for the interpretation of the

inhomogeneous term in (11); the C
(D)
P term essentially being the expected value at time

to maturity τ of the qS − rK component in (11), and the C
(J)
P term being the expected
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value of the integral term in (11). Combining CE and CP , we can now write down the

integral equation for the American call option price, C(S, τ).

Proposition 3.5. Substituting (24) and (26) into equation (23), the American call

price, C(S, τ) is given by

C(S, τ) =
∞
∑

n=0

e−λτ (λτ)n

n!
E

(n)
Q {CBS [SXne−λkτ ,K,K, r, q, τ, σ2 ]}, (31)

+
∞
∑

n=0

E
(n)
Q

{
∫ τ

0

e−λ(τ−ξ)[λ(τ − ξ)]n

n!

×
[

C
(D)
P [SXne−λk(τ−ξ),K, a(ξ), r, r, q, τ − ξ, σ2]

−λC
(J)
P [SXne−λk(τ−ξ),K, a(ξ), r, q, τ − ξ, σ2;C(·, ξ)]

]

dξ

}

,

where CBS is given by equation (25), and the functions C
(D)
P , and C

(J)
P are given by

equations (27) and (28) respectively.

Proof: Direct substitution of (24) and (26) into (23) yields equation (31).

�

Note that equation (31) is indeed an integral equation since the unknown option price

also appears under the time integral on the right-hand side, in particular through the

C
(J)
P term. This is in contrast to the pure diffusion case where the equation corresponding

to (31) (when λ = 0 and so that the C
(J)
P term drops out) is simply an integral expression

for the option price that can be evaluated once the free boundary has been determined.

The solution (31) is readily compared with that of Gukhal (2001), who derives (31) by

generalising the compound option approach of Kim (1990) to the jump-diffusion case.

The three additive components of the call value in equation (31) each have a clear

economic interpretation, as outlined by Gukhal (2001). The first term, CBS , represents

the European component of the American call option’s value, while the remaining two

terms combine to form the total early exercise premium. The middle term is a natural

extension of the early exercise premium that arises in the pure diffusion case. More

specifically, this term calculates the dividend received when holding the underlying, less



16 CARL CHIARELLA∗ AND ANDREW ZIOGAS

the interest payable on a loan of size K. Thus C
(D)
P captures the potential income to the

option holder should the option be exercised to buy the underlying by borrowing K at

the risk-free rate. The third term, C
(J)
P , arises entirely due to the introduction of jumps

in the price process for S, and captures the rebalancing costs incurred by the option

holder whenever the price of the underlying jumps down from the stopping region into

the continuation region (see Figure 2).

In equation (31), the value of the American call option is expressed as a function of the

underlying asset price S, and time to maturity τ . As we have already noted, equation

(31) also depends upon the unknown early exercise boundary, a(τ). By requiring the

expression for C(S, τ) to satisfy the early exercise boundary condition (8), we can derive

a similar integral equation for the value of a(τ). This integral equation is given by

a(τ) − K =
∞
∑

n=0

e−λτ (λτ)n

n!
E

(n)
Q {CBS [a(τ)Xne−λkτ ,K,K, r, q, τ, σ2 ]}, (32)

+
∞
∑

n=0

E
(n)
Q

{
∫ τ

0

e−λ(τ−ξ)[λ(τ − ξ)]n

n!

×
[

C
(D)
P [a(τ)Xne−λk(τ−ξ),K, a(ξ), r, r, q, τ − ξ, σ2]

−λC
(J)
P [a(τ)Xne−λk(τ−ξ),K, a(ξ), r, q, τ − ξ, σ2;C(·, ξ)]

]

dξ

}

,

It is particularly crucial to note that the integral equation (32) depends upon the un-

known call value C(S, τ), and this dependence arises entirely from the integral terms

that have been introduced by the presence of jumps in the dynamics for S.

The structure of the integral equation system consisting of (31) and (32) can be made

more transparent by writing it succinctly as

C(S, τ) = ΩC(S, τ) +

∫ τ

0
ΨC [a(ξ), ξ, τ, S;C(·, ξ)]dξ, (33)

a(τ) = Ωa(a(τ), τ) +

∫ τ

0
Ψa[a(ξ), ξ, τ, a(τ);C(·, ξ)]dξ, (34)

where the definitions of the functions (ΩC ,ΨC) and (Ωa,Ψa) can be inferred from the

right hand sides of equations (31) and (32) respectively. The interdependence of (33)

and (34) is obvious, and it is this interdependence that makes numerical implementation
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more involved than for the corresponding no-jump problem6. In fact equations (31)-(32)

form a linked system of nonlinear Volterra integral equations of the second kind. Thus

in order to implement these integral equations for the free boundary and call price,

we need to develop numerical techniques to solve the linked integral equation system

(31)-(32).

Before concluding this section, we present an alternative form for the double integral

involving the function κ in equation (28).

Proposition 3.6. By changing the order of integration, CJ
P in equation (28) can be

rewritten as

C
(J)
P [S,K, a(ξ), r, q, τ, σ2 ;C(S, ξ)]

= e−rτ

∫ 1

0
[C(a(ξ)z, ξ) − (a(ξ)z − K)]

∫ z

0
G(Y )κ(S/a(ξ), z, r, q, τ, σ2)dY dz. (35)

Proof: Refer to Appendix A3.3.

�

While the modified representation in (35) is less intuitive than the original, from an eco-

nomic point of view, we will show that it offers significant advantages when attempting

to solve (32) numerically for specific forms of G(Y ). In particular, we will demonstrate

in Section 5 that when G(Y ) is the log-normal density function given by Merton (1976),

the innermost integral in (35) can be evaluated analytically. In this way we are able

to reduce (35) to a one-dimensional integral, which makes the task of numerically eval-

uating (35) much simpler. We remind the reader that the C
(J)
P term in turn must be

integrated over time-to-maturity so that altogether the jump term would in this case

involve the evaluation of a double integral.

4. Limit of the Early Exercise Boundary at Expiry

In order to implement numerical schemes we need to know the value of the free boundary

just prior to expiry, at τ = 0+. Existing literature (e.g. Amin (1993) and Carr & Hirsa

6There the dependence is sequential, that is first one solves for the free boundary which then feeds into
an integral expression for the option price
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(2003)) simply assumes that this limit is identical to the the corresponding pure diffusion

case. Here however we show that this limit is in fact more subtle. We derive the limit by

analysing the inhomogeneous term in the IPDE (11), and find that the presence of jumps

does in fact have an impact on the early exercise boundary at expiry. This difference

can be expressed analytically, as stated in Proposition 4.1. Here we provide a means of

deriving the limit of a(τ) as τ → 0+. This derivation is based on the analysis of Wilmott,

Dewynne & Howison (1993) who, for the pure diffusion American call, demonstrate how

to determine the limit of the early exercise boundary by performing a local analysis of

the PDE for small time to maturity. The simple, intuitive method used here is taken

from Chiarella, Kucera & Ziogas (2004) who demonstrate that the approach of Wilmott

et al. (1993) is equivalent to setting the inhomogeneous term in Jamshidian’s (1992)

form for the PDE to zero, setting τ = 0, S = a(0+), and solving for the free boundary.

Proposition 4.1. The limit of the early exercise boundary, a(τ), as τ → 0+ is given by

a(0+) = K max

(

1,
r + λ

∫ K/a(0+)
0 G(Y )dY

q + λ
∫ K/a(0+)
0 Y G(Y )dY

)

. (36)

Proof:

Referring to the inhomogeneous IPDE (11), the inhomogeneous term of interest is7

H(S − a(τ))

{

qS − rK − λ

∫

∞

0
[C(SY, τ) − (SY − K)]G(Y )dY

}

. (37)

Setting the term in braces in (37) equal to zero and evaluating at τ = 0 with S = a(0+)

we have

qa(0+) − rK − λ

∫

∞

0
[C(a(0+)Y, 0) − (a(0+)Y − K)]G(Y )dY = 0. (38)

Given that C(S, 0) = max(S − K, 0), equation (38) becomes

qa(0+) − rK − λ

∫

∞

0
[max(a(0+)Y − K, 0) − (a(0+)Y − K)]G(Y )dY = 0. (39)

7Note that since C(SY, τ ) = SY − K for Y ≥ a(τ )/S, we haveZ a(τ)/S

0

[C(SY, τ ) − (SY − K)]dY =

Z
∞

0

[C(SY, τ ) − (SY − K)]dY.
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Since the integral term is zero for Y ≥ K/a(0+), we have

qa(0+) − rK + λ

∫ K/a(0+)

0
(a(0+)Y − K)G(Y )dY = 0, (40)

which we can rearrange to give

a(0+) = K
r + λ

∫ K/a(0+)
0 G(Y )dY

q + λ
∫K/a(0+)
0 Y G(Y )dY

. (41)

Finally, by noting that a(τ) ≥ K must hold8 for all τ ≥ 0, we arrive at the result.

�

An alternative approach to the derivation of the limit of a(τ) is given by Kim (1990), in

which he takes the limit of the integral equation for the free boundary as τ → 0+. This

approach is more involved than the one presented here, but we have verified that this

approach leads to the same result. We refer the reader to Chiarella & Ziogas (2006) for

further details.

It is worthwhile to observe that when λ = 0 equation (36) simplifies to the limit derived

by Kim (1990) for the pure diffusion American call free boundary. Note that (36) is an

implicit expression for a(0+), but it can be solved quickly and accurately using standard

root-finding techniques. Furthermore, as q → 0 the solution to the implicit part of

equation (36) increases without bound. Thus when q = 0, a(0+) becomes infinite, and

we observe the well-known property that it is never optimal to exercise an American

call option early in the absence of dividends.

Before concluding this section, we shall take a closer look at the properties of equation

(36), specifically with a view to better understanding the solution to

a(0+) = f(a(0+)), (42)

where

f(a(0+)) ≡ K
r + λ

∫K/a(0+)
0 G(Y )dY

q + λ
∫ K/a(0+)
0 Y G(Y )dY

.

8This is true because it is never optimal to exercise a call option if S < K.
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Once (42) is solved, then the max( ) operator can be applied. Since the value of the

underlying is always non-negative, we must consider the domain a(0+) ≥ 0 when finding

the solution to (42). It is not possible to provide a simple, explicit summary of the

behaviour of (42) for various values of a(0+), because the integral terms9 depend upon

a(0+), and the function f(a(0+)) involves the parameters r, q and λ, as well as the

jump-size density G(Y ).

Firstly, we see that is is simple to evaluate f(a(0+)) at the limits of the domain. Specif-

ically, we can show that

f(0) = K
r + λ

q + λ(k + 1)
≥ 0, (43)

and

lim
a(0+)→∞

f(a(0+)) ≡ f(∞) = K
r

q
. (44)

Thus for f(a(0+)) to be finite at each extremity of the domain, it is sufficient that we

have q > 0. In this case, it is clear that f(a(0+)) is continuous, and (42) will have at

least one solution. Since a(0+) appears only in the limits of the integral terms over

the density G(Y ) within f(a(0+)), we can safely claim that the behaviour of f(a(0+))

with respect to a(0+) will be bounded by the behaviour of G(Y ). Further exploration

appears difficult without specifying the form of G(Y ), and as such we provide a more

detailed analysis in Section 5.

5. American Call with Log-Normal Jumps

Before we begin exploring a numerical solution method for the integral equation system

(31)-(32), we shall consider a specific example for the jump-size density, G(Y ). Here we

consider a log-normal distribution for the jump sizes, Y , in accordance with the original

model of Merton (1976). The probability density function for Y is given by

G(Y ) =
1

Y δ
√

2π
exp

{

−(ln Y − (γ − δ2/2))2

2δ2

}

, (45)

where we set γ ≡ ln(1 + k), and δ2 is the variance of ln Y . Furthermore we note that

for this choice of G(Y ) we have EQ[Y ] = eγ .

9While we note that these integral terms are expectations over the jump-size density G(Y ), this does
not aid us when trying to provide a general analysis of f(a(0+)).
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Proposition 5.1. In the case where G(Y ) is given by equation (45), the integral equation

for C(S, τ) in (31) becomes

C(S, τ) =

∞
∑

n=0

e−λ′τ (λ′τ)n

n!
CBS [S,K,K, rn(τ), q, τ, v2

n(τ)], (46)

+

∞
∑

n=0

{
∫ τ

0

e−λ′(τ−ξ)[λ′(τ − ξ)]n

n!

×
[

C
(D)
P [S,K, a(ξ), r, rn(τ − ξ), q, τ − ξ, v2

n(τ − ξ)]

−λC
(J)
P [S,K, a(ξ), rn(τ − ξ), q, τ − ξ, v2

n(τ − ξ);C(·, ξ)]
]

dξ

}

,

where λ′ = λ(1 + k), rn(τ) = r − λk + nγ/τ and v2
n(τ) = σ2 + nδ2/τ .

Proof: Refer to Appendix 4.

�

While equation (46) has incorporated the distribution for Y , the last term, which in-

volves a double-integral, may be further simplified before attempting to implement (46)

numerically.

Proposition 5.2. By use of Proposition 3.6, the term C
(J)
P in Proposition 5.1 can be

expressed as

C
(J)
P [S,K, a(ξ), rn(τ), q, τ, v2

n(τ);C(·, ξ)]

= e−rn(τ)τ

∫ 1

0
[C(a(ξ)z, ξ) − (a(ξ)z − K)]κ(S/a(ξ), z, rn+1(τ), q, τ, v2

n+1(τ))

×N [D(S/a(ξ), z, rn(τ), q, vn(τ), vn+1(τ), τ, γ, δ)]dz, (47)

where

D(S/a(ξ), z, rn(τ), q, vn(τ), vn+1(τ), τ, γ, δ)

≡
δ2 ln S

a(ξ)z +
[

(ln z) v2
n+1(τ) + δ2[rn(τ) − q] − γv2

n(τ)
]

τ

vn(τ)vn+1(τ)δτ
. (48)

Proof: Refer to Appendix 5.
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�

We draw the reader’s attention to the fact that in the form (47) the C
(J)
P term in

(46) now only involves a single integral, which will result in a considerable saving in

computational effort.

By use of (32), the integral equation for the early exercise boundary, a(τ), in the case

of log-normal jump sizes, is given by

a(τ) − K =

∞
∑

n=0

e−λ′τ (λ′τ)n

n!
CBS [a(τ),K,K, rn(τ), q, τ, v2

n(τ)], (49)

+
∞
∑

n=0

{
∫ τ

0

e−λ′(τ−ξ)[λ′(τ − ξ)]n

n!

×
[

C
(D)
P [a(τ),K, a(ξ), r, rn(τ − ξ), q, τ − ξ, v2

n(τ − ξ)]

−λC
(J)
P [a(τ),K, a(ξ), rn(τ − ξ), q, τ − ξ, v2

n(τ − ξ);C(·, ξ)]
]

dξ

}

,

where C
(D)
P and C

(J)
P are given by (27) and (47) respectively.

5.1. Delta for the American Call. We now provide one further result regarding the

delta of the American call option, ∆C(S, τ). This quantity is obviously important for

hedging purposes, but it is also required by the numerical algorithm we consider in

Section 6.

By differentiating (46) with respect to S, we find that

∆C(S, τ) =
∞
∑

n=0

e−λ′τ (λ′τ)n

n!
∆BS [S,K,K, rn(τ), q, τ, v2

n(τ)], (50)

+

∞
∑

n=0

{
∫ τ

0

e−λ′(τ−ξ)[λ′(τ − ξ)]n

n!

×
[

∆
(D)
P [S,K, a(ξ), r, rn(τ − ξ), q, τ − ξ, v2

n(τ − ξ)]

−λ∆
(J)
P [S,K, a(ξ), rn(τ − ξ), q, τ − ξ, v2

n(τ − ξ);C(·, ξ)]
]

dξ

}

,
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where

∆
(D)
P [S,K, a(ξ), r, rn(τ), q, τ, v2

n(τ)]

= e−qτ

{

1

vn(τ)
√

τ
N ′
[

d1

(

S, a(ξ), rn(τ), q, τ, v2
n(τ)

)]

(q − r)

+ qN
[

d1

(

S, a(ξ), rn(τ), q, τ, v2
n(τ)

)]

}

, (51)

∆
(J)
P [S,K, a(ξ), rn(τ), q, τ, v2

n(τ);C(·, ξ)]

= e−rn(τ)τ

∫ 1

0

[C(a(ξ)z, ξ) − (a(ξ)z − K)]

Svn(τ)
√

τ
κ(S/a(ξ), z, rn+1(τ), q, τ, v2

n+1(τ))

×
[

δ

vn+1(τ)
√

τ
N ′[D(S/a(ξ), z, rn(τ), q, vn(τ), vn+1(τ), τ, γ, δ)]

− d2(S/a(ξ), z, rn+1(τ), q, τ, v2
n+1(τ))

]

dz, (52)

and we note that N ′[x] = exp(−x2/2)/
√

2π. Once we have found the price and free

boundary for the American call option, we can readily evaluate (50) numerically to find

delta.

5.2. Properties of the Free Boundary at Expiry. Since we are now considering a

specific form for G(Y ), we return to the topic of analysing the behaviour of the early

exercise boundary, a(τ), as τ → 0+. Firstly we evaluate (36) for the log-normal density

G(Y ).

Proposition 5.3. When G(Y ) is given by the log-normal density (45), the limit of the

early exercise boundary a(τ) as τ → 0+ becomes

a(0+) = K max

(

1,
r + λN [{ln K/a(0+) − (γ − δ2

2 )}/δ]
q + λ′N [{ln K/a(0+) − (γ + δ2

2 )}/δ]

)

. (53)

Proof: Follows by evaluating the integral terms in (36) using G(Y ) from (45).

�
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To develop an understanding of the case where a(0+) > K, we shall undertake some

numerical explorations of the equation

b(0+) = f(b(0+)), (54)

where

f(b(0+)) ≡ r + λN [{− ln b(0+) − (γ − δ2

2 )}/δ]
q + λ′N [{− ln b(0+) − (γ + δ2

2 )})/δ]
,

and we recall that b(τ) = a(τ)/K. It is not possible to provide a simple, explicit

summary of the behaviour of (54) for various values of b(0+) because the cumulative

normal density functions depend upon b(0+), and the function f(b(0+)) involves the

parameters r, q, λ, γ and δ, all of which have a significant impact on the value of

f(b(0+)). Nevertheless, we can use numerical examples to offer some additional insight

into the nature of (54).

For log-normal jump-sizes we can show that

f(0) =
r + λ

q + λeγ
≥ 0, (55)

and

lim
b(0+)→∞

f(b(0+)) ≡ f(∞) =
r

q
. (56)

When q > 0 it is clear that f(b(0+)) is continuous, and (54) will have at least one

solution. We can demonstrate by example that f(b(0+)) is not monotonic, nor is it

strictly bounded by the end values (55)-(56). This makes it difficult to prove that for

q > 0 equation (54) has at most one solution. Since b(0+) appears only inside cumulative

normal functions within f(b(0+)), the behaviour of f(b(0+)) with respect to b(0+) will

be bounded by the behaviour of N (ln x). In particular, we recall that 0 ≤ N (ln x) ≤ 1,

and that N (ln x) is a smooth, continuous function of x, where x ≥ 0. From this we

postulate that the function f(b(0+)) will not display any oscillating features within the

domain under consideration.

****Insert Figure 3 here****
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To provide numerical evidence in support of our claims regarding equation (54), we now

present a plot of (55)-(56), which is typical of what we have obtained for a range of

empirically relevant parameter values. Setting λ = 1, γ = 0 and δ = 0.2, we plot the

functions y = b(0+) and y = f(b(0+)) for various values of r and q, as shown in Figure

3. When r = 0.05 and q = 0.03, we can see that f(0) < f(∞). On the other hand, when

r = 0.03 and q = 0.05, we now have f(0) > f(∞). In both cases it is clear that f(b(0+))

is not bounded by these endpoint values, and we can see that the relative values of r

and q directly influence the values of f(0) and f(∞).

Changing the values of the jump-parameters λ, γ will vary the value of f(0). In addition

changes to λ, γ and δ will resize the curve f(b(0)+), although the basic shape remains

unchanged. We make this claim based on further numerical examples, which can be

found in Chiarella & Ziogas (2006).

****Insert Figure 4 here****

The last and most important scenario we consider here is when q = 0. In this case, f(∞)

is no longer finite, instead increasing without bound as b(0+) → ∞. Figure 4 demon-

strates the behaviour of f(b(0+)) with q = 0 for a different selection of parameter values.

It is clear from the plot that there is no solution for b(0+) = f(b(0+)). Furthermore,

the only way that equation (54) will be satisfied when q = 0 is by taking the limit as

b(0+) → ∞, in which case both sides of (54) will increase without bound. This reflects

in yet another way the fact that when q = 0, the free boundary at τ = 0+ becomes

infinite, and it is never optimal to exercise an American call early in the absence of

dividends.

6. Numerical Implementation

We now provide a numerical scheme with which to evaluate the linked integral equation

system for the option price and free boundary formed by (47) and (49). The proposed

method is an extension of the quadrature scheme used by Kallast & Kivinukk (2003)

for the pure diffusion case. Here we focus on the adjustments that are needed to deal

with the introduction of jumps in the dynamics for S. We firstly discretise the time
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to maturity variable, τ , into N equally spaced intervals of length h. Thus τ = ih

for i = 0, 1, 2, ..., N , and h = T/N . We denote the call price profile at time step i

by C(S, ih) = Ci(S), and similarly the free boundary at time step i by a(ih) = ai.

Using a standard numerical technique that is applied to Volterra integral equations,

we can solve the system (47)-(49) for increasing values of i, until eventually the entire

free boundary and price profile are found. When calculating the infinite summations,

we continue adding terms until the size of the Poisson coefficient for a given value of

n is less than 10−20. For the parameter values considered here, this typically results

in the use of around 30 terms for the summations. In order to start the algorithm we

require the initial value of C0(S), which is simply the payoff function, and also a0, where

a0 ≡ a(0+), which is given by equation (53).

Since the integral term in (47) depends upon C(S, τ), an approximation will be needed

for Ci(S). At each time step we found that a suitable approximation is given by Ci−1(S),

which is simply the American call price at the previous time step. The price at the

(i − 1)th time step is calculated for a suitably large number of evenly-spaced S values.

Here we use 25 points in the range 0 ≤ S ≤ 250. All necessary interpolation is conducted

using cubic splines fitted locally through 7 values of Ci−1(S). We then use Newton’s

method to solve for the early exercise boundary, as in Kallast & Kivinukk (2003), with

two necessary additions. The first addition addresses the evaluation of the inner integral

(47) over the interval [0, 1]. This is computed using Gaussian integration of moments,

with parameter α = −0.5. Full details for this Gauss-quadrature scheme can be found

in Abramowitz & Stegun (1970) (chapter 25, p.921). The second addition relates to

finding the derivative of (49) with respect to a(τ) for use in Newton’s method. This

is given by (50) for ∆C(S, τ), evaluated at S = a(τ). Since it is difficult to determine

the limit of the integrands in (50) as ξ → τ , we resolve this by taking the limits as

ξ → τ for the option price integrands in (46) and differentiating these with respect to

a(τ), as is done by Kallast & Kivinukk (2003). These limits are all finite, including

the new limit required for the jump-related integral term, and the required derivatives

are easily determined. Since we need to evaluate the expression (50) for ∆C(S, τ) for
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use in Newton’s method, there is no significant additional computation time required to

evaluate the American call delta once the free boundary has been estimated.

Having determined the discretised forms for the price and delta of Ci(S), we then use

Newton’s method to solve for ai. Before proceeding to the next time step, we use ai to

calculate a new approximation for Ci(S), which is required when evaluating the double

integral term at all subsequent time steps. This update for Ci is essential to ensure that

the estimated free boundary remains monotonic. Note that as the value of i increases,

the computational burden will also increase at a “faster than linear” rate, since the

integration at step i depends on all values of aj and Cj(S) for j = 0, 1, 2, ...i − 1.

It should be noted that the proposed numerical scheme does not involve any iterations

with respect to the approximation of the integral term. It is possible to improve the

accuracy of the algorithm by updating the approximation for the integral term at the

ith time step using the most recently computed estimates for Ci(S) and ai. In practice

we have found that such an iteration does not add significantly to the accuracy of

the results (up to the order of accuracy under consideration in Section 7), and that

computation time is at least doubled by the introduction of the iteration process. Thus

for the purposes of these experiments, we have chosen not to iterate with respect to the

integral term approximation.

To explore the efficiency of the proposed numerical integration method, we compare it

with two alternative numerical methods. This first method involves a finite difference

solution for the IPDE (5). We apply the Crank-Nicolson scheme to all terms except

for the integral. We initially estimate the integral term by approximating Ci(S) with

the explicit approximation Ci−1(S), as in Carr & Hirsa (2003). We then evaluate the

integral using the Hermite Gauss-quadrature scheme (which can be found in Abramowitz

& Stegun (1970)). The resulting tridiagonal matrix is inverted using LU-decomposition,

and the early exercise condition is then applied to the solution at each time step. An

evenly spaced grid is used, and the free boundary is estimated at each time step using

cubic spline interpolation of the price profile, combined with the bisection method.
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To improve the accuracy of the Crank-Nicolson solution, we use a two-step procedure

at each time step. After determining an initial solution at time step i, denoted here as

C
(1)
i (S), using the estimate of Ci−1(S) in the integral term, we then find an updated

estimate by repeating the solution process, now using the C
(1)
i (S) values in the integral

estimate. This provides a second approximation for the option price, which we denote

byC
(2)
i (S). In practice we find that C

(1)
i typically converges from below, whilst C

(2)
i

converges from above. Thus we take Ci(S) = C
(1)
i (S)/2+C

(2)
i (S)/2 for the final Crank-

Nicolson solution. This appears to greatly improve the convergence rate for the Crank-

Nicolson scheme, although we do not report details of the convergence of C(1) and

C(2) here10. In all cases we set the S domain to be 0 ≤ S ≤ 250. We also calculate

the American call delta by taking a central difference approximation using the price

estimates.

The second method we consider is the method of lines approach as presented by Meyer

(1998). Meyer only considers discrete jump-size distributions. Here we extend this

method to allow for a continuous jump-size density, G(Y ), again evaluating the integral

term using a Hermite Gauss-quadrature scheme, combined with local cubic spline in-

terpolation of the price profile at each iteration. The method of lines readily provides

estimates for both the price and delta for the American call option, without the need for

additional computation. Unlike the Crank-Nicolson scheme, the method of lines solution

is allowed to iterate until the largest observed change in the option price profile is less

than 1 × 10−7. The scheme we use is second-order accurate in time, and a first-order

scheme is applied for the first three time steps.

7. Numerical Results

To analyse the efficiency of the numerical integration method, we compute the price

and delta of an American call option with 6-months to maturity, and a strike price of

10Briani, Chioma & Natalini (2004) note that it is unclear how to select the stopping criteria when using
iterative finite difference solutions for (5). Since we observe greater accuracy by using the average of
the first and second iteration results than using the second iteration alone, the averaging scheme we use
here seems more efficient than using a stopping criteria that involves three or more iterations.
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K = 100. The global variance11 of returns, s2, is set equal to 5.93%. The jump intensity

is set to λ = 1, and the jump variance is δ2 = 0.04. We then consider six different

parameter sets, specifically EQ[Y ] = eγ taking values of 0.95, 1.00 and 1.04, along with

the combinations r = 3%, q = 5%, and r = 5%, q = 3%. Note that γ > 0 implies upward

jumps on average, and γ < 0 implies downward jumps are expected. When γ = 0, the

expected price change from a jump is zero. The diffusion coefficient, σ2, is chosen such

that the global variance was preserved for varying values of γ. Table 1 summarises the

values of σ2 used to ensure that the global variance was the same for each combination

of γ and λ.

****Insert Table 1 here****

We compute the root mean square error (RMSE) using option prices and deltas with

S = 80, 90, 100, 110 and 120. This is repeated for each of the six parameter sets, from

which the average runtime and RMSE is then calculated. Note that in all cases the

runtimes include the time required to compute the free boundary, price and delta for

the American call. For the integration method we use 20 integration points for the

Gauss-quadrature scheme, and consider a sequence of 10 different time step values, with

N = 10, 20, . . . , 90, 100.

For the Crank-Nicolson method the integral term is approximated using 50 integration

points, and we again use 10 time step values, with N = 50, 100, . . . , 450, 500. We set

the number of space steps equal to double the number of time steps. Similarly, we use

50 integration points to estimate the integral term for the method of lines. Again we

use 10 time step values, with N = 50, 100, . . . , 450, 500, and the number of space steps

is set to 5 times the number of time steps. The code for all methods is implemented

using LAHEYTMFORTRAN 95 running on a PC with a Pentium 4 2.40 GHz processer,

512MB of RAM, and running the Windows XP Professional operating system.

In assessing the efficiency of the numerical integration method, we use a Crank-Nicolson

solution with 10,000 time steps and 5,000 space steps for the true solution. Since the

11By the global variance we mean E[(dS/S − (µ − λk)dt)2] calculated from equation (1) to be σ2 +

λ[e2γ+δ2

− 2eγ + 1] in the case of a log-normal jump density.



30 CARL CHIARELLA∗ AND ANDREW ZIOGAS

numerical integration scheme requires evaluation of the option delta as part of the so-

lution, it is also of value to consider the efficiency with which delta is calculated. The

true delta is estimated from the Crank-Nicolson solution using the central difference ap-

proximation for (Ci+1 −Ci−1)/(Si+1 −Si−1). To demonstrate that this is a valid choice

for the true solution, we also compute the prices and deltas using the method of lines

approach with 1,000 time steps and 5,000 space steps. As mentioned previously, the

method of lines computes the price, delta and early exercise boundary simultaneously.

The prices are provided in Table 2, with the deltas given in Table 3. We also provide

the root mean square differences (RMSD) between the two methods for each set of pa-

rameters, along with an average RMSD value. In both cases we find that for the values

of S under consideration these methods are consistent to at least 4 decimal places, and

thus we conclude that the Crank-Nicolson method using 10,000 time steps and 5,000

steps in the space variable provides a satisfactory estimate for the true price and delta.

****Insert Tables 2 and 3 here****

The relative efficiency for each method is shown in Figure 5 by comparing RMSE as a

function of runtime, with Figure 5(a) showing the average RMSE error for the American

call price, and Figure 5(b) displaying the same information for the delta. Note that the

average runtimes for each discretisation level are the same in figures 5(a) and 5(b)

since the price and delta were found using a single algorithm. Firstly, we find that

for the parameters and discretisations considered, the numerical integration method

consistently displays greater efficiency than the Crank-Nicolson scheme for the American

call price, and furthermore, numerical integration is more efficient than Crank-Nicolson

when computing delta for computation times of up to 50 seconds.

We find that the method of lines consistently outperforms the Crank-Nicolson scheme,

and in the majority of cases, the delta values computed by the method of lines are more

accurate than those obtained using numerical integration. When computing prices for

runtimes of between 1 and 20 seconds, however, numerical integration is able to outper-

form the method of lines. We also note that the numerical integration algorithm has a

slower rate of convergence for the delta relative to the other two methods. This could
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be attributed to cumulative numerical integration error as the number of time steps,

and hence integration points, is increased. The rate of convergence for the numerical

integration method is clearly better when computing the option price.

Thus from Figure 5 we conclude that of the three methods under consideration, the

method of lines is consistently more accurate for runtimes beyond 20 seconds. We also

find that the numerical integration method consistently outperforms the Crank-Nicolson

scheme when computing the option price, and is competitive with Crank-Nicolson when

computing the delta for runtimes of less than 50 seconds. Thus we can see that a

simple extension of the numerical integration scheme presented by Kallast & Kivinukk

(2003) to include log-normal jumps produces a numerical method that is comparable

with both the method of lines and the Crank-Nicolson scheme, however there is room

for improvement in the computation of delta, in particular when the number of time

steps is increased beyond 40. We also note that since the magnitude of the RMSE is

much larger for the option price, the best way to select the optimal numerical method

is to maximise the pricing efficiency whilst being aware of the RMSE for the deltas. For

example, for a runtime of 20 seconds the method of lines is more efficient than numerical

integration, since both methods have similar pricing accuracy, but the method of lines

offers a better delta estimate in this case. Alternatively, for a runtime of 5 seconds,

numerical integration is the most efficient, since it provides better price estimates than

the method of lines for the same accuracy in delta.

****Insert Figure 5 here****

8. Impact of Jumps on the Free Boundary and Option Prices

In this section we discuss the impact of jumps on the free boundary and price profile.

First we present sample free boundary profiles for the American call option. In Figure

6 we consider the case where r < q, and in Figure 7 we set r > q. We again consider

three different values of eγ (the same values used to generate Figure 5), and compare

the resulting boundaries with the pure diffusion case of λ = 0. The diffusion volatility

σ was again adjusted in each case as detailed in Table 1. The most obvious feature
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of these results is the dramatic effect the presence of jumps has on the profile for the

free boundary. Close to expiry, the free boundary with jumps is significantly larger

than in the pure diffusion case. This follows from the increased probability of large

price movements near expiry, made possible by the presence of jumps within the return

dynamics. Thus the holder of the call is less likely to exercise near expiry under the

jump-diffusion model to best minimise the potential costs from downward jumps.

As time to expiry increases, we see that the pure diffusion boundary increases more

rapidly compared with the jump-diffusion examples, since the jump component becomes

less dominant within the underlying dynamics for large time intervals. While jumps are

more likely to be observed over longer time intervals, they become less influential overall,

since there are sufficient opportunities for the jumps to be reversed, either by jumps in

the opposite direction or through the diffusion term. Therefore when far from maturity

the holder of the call is more likely to exercise early under jump-diffusion than in the pure

diffusion case. These findings coincide with those of Amin (1993), who also notes that

for a sufficiently large time to expiry, the probability density for the underlying converges

under both models, such that there is no clear distinction between pure diffusion and

jump-diffusion.

We also point out that Amin does not provide any formal evidence relating to the limit

of the free boundary at expiry, although his numerical results are consistent with the

limiting value given here by equation (53). In particular, our Figure 6 is closely related

to Figure 6 in Amin (1993). We find that, for the parameter values used by Amin, the

limit (53) correctly identifies the value of the free boundary at τ = 0+, and thus our

limit result for a(τ) is in keeping with the numerical results of Amin.

One further observation we can make from Figure 6 is the impact of the value of γ on

the free boundary. As γ increases, the value of the early exercise boundary decreases.

This is attributable to the potential for the option holder to incur a rebalancing cost

when the price jumps from the stopping region back down into the continuation region.

Recall that γ > 0 implies upward jumps on average, thus making the expected cost of

downward jumps quite small. When γ < 0, we expect downward jumps on average, and

the holder will therefore require that S be even larger before exercising the call early.
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****Insert Figures 6 and 7 here****

Finally, we demonstrate the impact of jumps on the American call price, relative to the

pure diffusion case. In figures 8 and 9 we plot the price differences between the pure

diffusion and jump-diffusion American call price for the same three values of eγ . All

other parameter values are the same as those used in generating the free boundaries in

figures 6 and 7. Positive (negative) differences indicate that the jump-diffusion price is

greater than (less than) the pure diffusion price. Figure 8 shows the results for r < q

and 9 uses r > q.

While the shapes of the plots vary somewhat depending on the relative values of r and

q, this mostly occurs deep in-the-money, and is related to the impact that r and q have

on the value of the free boundary. In general we observe that when the call is at-the-

money (K = 100) or close to at-the-money, the jump-diffusion price is consistently less

than the pure diffusion price. Furthermore, when the call is deep out-of-the-money, the

jump-diffusion price is generally larger than for pure diffusion.

****Insert Figures 8 and 9 here****

For deep in-the-money American calls, there are a number of factors that affect the

price differences. First we note that the early exercise feature will always reduce this

difference to zero for large values of S. When γ < 0, the difference is mostly positive

for S values just below the free boundary, while the opposite is true when γ = 0 and

γ > 0. For the European call we would expect to see greater prices under jump-diffusion

for large values of S, but for American options this depends upon the value of γ, at

least in part. Since γ < 0 indicates downward jumps are expected on average, this

will increase the likelihood of the option holder incurring rebalancing costs, and could

provide some of the reason for the increased call value relative to the pure diffusion

case. Otherwise, the early exercise feature dominates the price profile for large values

of S, and thus we do not observe the same behaviour as we would for European calls.

Nevertheless, the leptokurtic features introduced into the return dynamics for S are

clearly represented by the increased call prices out-of-the-money, and the reduced prices

in a region around the strike. This implies that the jump-diffusion model is able to
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reflect the basic volatility smile structure observed in market option prices. We have

elected not to demonstrate this result using Black-Scholes implied volatilities, as this

procedure only makes theoretical sense in the case of European options. It is clear,

however, from the relative price differences that the jump-diffusion dynamics have the

potential to capture volatility smile behaviour.

9. Conclusion

This paper explores the pricing of American call options in the case where the underlying

asset follows a jump-diffusion process, as originally proposed by Merton (1976). We use

the approach of Jamshidian (1992) to find an inhomogeneous integro-partial differential

equation (IPDE) for the American call price in an unrestricted domain, which we then

solve using Fourier transforms, extending this very useful solution methodology to the

jump-diffusion setting. Furthermore the approach advocated here has the advantage of

being readily extended to a variety of underlying asset price dynamics, such as stochastic

volatility and stochastic interest rates, as well as handling a variety of different payoff

structures, such as puts, calls, butterflies, spread options and max-options.

This paper has also made two significant contributions regarding the integral equation

system for the American call price and free boundary. Firstly, we derive the limit of

the free boundary as the time to expiry tends to zero. In particular, we show that the

limit is clearly dependent upon the jump intensity and jump-size distribution, a fact

not reported in existing literature on American option pricing with jumps. This limit

is needed when solving numerically for the free boundary, since it provides the exact

starting point for the time-stepping algorithm. The second contribution is to express

the integral term for the expected costs incurred from downward jumps in a form that

is more tractable for numerical integration purposes. In particular, in the case where

the jump sizes are log-normally distributed, we are able to reduce the term from a triple

integral to a double integral involving the cumulative normal density, resulting in a task

far easier to implement with high levels of accuracy.

The other main result of this paper concerns the use of numerical integration to solve

for the free boundary, price and delta of the American call with jumps. We propose



AMERICAN CALL OPTIONS UNDER JUMP-DIFFUSION - FOURIER TRANSFORMS 35

a quadrature integration scheme based on the one used for the pure diffusion case by

Kallast & Kivinukk (2003). We address the difficulty of dealing with the double integral

term, and provide a fast, accurate means of evaluating this, along with a means to

overcome the implicit dependency of the integral equation on the unknown option price.

We compare the numerical integration solution with a suitable Crank-Nicolson scheme,

and find that the proposed numerical integration is often more efficient than the finite

difference approach, for computing the option price and delta together to the same

level of accuracy. The improved efficiency is consistently apparent for the option price,

and most prominent for the option delta when large time step sizes are used. We also

compare the integration scheme with the method of lines approach by Meyer (1998).

We find that the integration scheme can outperform the method of lines for large time

steps, although the increased efficiency is far less prevalent in this case.

We use the integration scheme to demonstrate the impact of jumps on the free boundary

of the American call, relative to the pure diffusion case with equivalent global volatility.

The results presented here correspond with those obtained by Amin (1993) for the

American put using tree methods. In particular, option holders are less likely to exercise

early close to expiry, and more likely to exercise further from expiry when jumps are

introduced. The relative values of time to expiry where these differences occur depends

upon the jump parameter value, and in particular we show how different values for the

mean jump-size impact on the free boundary. We observe, as does Amin, that the slope

of the free boundary at maturity is not infinite, unlike in the pure diffusion case when

it has infinite slope. We leave to future research the task of exploring more fully the

behaviour of the free boundary close to maturity, the most likely approach being the

small time expansions of the type used by Wilmott et al. (1993), Kuske & Keller (1998)

and Chen & Chadam (2007). We also demonstrate the price differences between jump-

diffusion and pure diffusion American calls, and as expected, find that the call premium

is smaller in a region around the strike price when jumps are present, but larger when

the option is deep out-of-the-money. For deep in-the-money options, the early exercise

feature causes the American call price to rapidly tend towards the payoff function.
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While the numerical results presented consider only log-normal jump sizes, the numeri-

cal integration approach is readily applicable to a range of jump size distributions, such

as that proposed by Kou (2002). One avenue for future research is to explore these

alternatives, and in particular observe what difficulties are encountered when trying to

simplify and evaluate the triple integral term for other jump size densities. We have only

considered the call option here, but the Fourier transform approach allows a broader

range of payoff functions to be explored, in particular problems with more complex stop-

ping and continuation regions, such as those that arise with American option portfolios

consisting of strangles and butterflies. The numerical algorithm presented has only been

compared with the Crank-Nicolson scheme and the method of lines. There are numer-

ous other numerical methods that have not been considered, such as the tree methods

of Amin (1993) and Broadie & Yamamoto (2003), and various finite difference scheme

implementations, including Andersen & Andreasen (2000) and d’Halluin, Forsyth &

Labahn (2004). A detailed analysis of the relative efficiency of these various numerical

methods is planned as a future research project.

Appendix 1. Proof of Proposition 3.1 – Deriving the Inhomogeneous IPDE

To derive the required inhomogeneous term, we evaluate (5) in the region S ≥ a(τ)

when C(S, τ) = S − K. Thus we consider

Ψ(S, τ) ≡ H(S − a(τ))

{

1

2
σ2S2 ∂2C

∂S2
+ (r − q − λk)S

∂C

∂S
− rC − ∂C

∂τ

+λ

∫

∞

0
[C(SY, τ) − C(S, τ)]G(Y )dY

}

= H(S − a(τ))

{

K(r + λ) − S(q + λ[k + 1]) + λ

∫

∞

0
C(SY, τ)G(Y )dY

}

.

Recalling that C(SY, τ) = SY −K when SY ≥ a(τ), and k = EQ[Y − 1], the expression

for Ψ(S, τ) becomes

Ψ(S, τ) = H(S − a(τ))

{

rK − qS + λ

∫ a(τ)/S

0
[C(SY, τ) − (SY − K)]G(Y )dY

}

. (57)
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Since (57) is the value of the right-hand side of IPDE (5) when S ≥ a(τ), the IPDE can

be rewritten as given in equation (11) of Proposition 3.1.

Appendix 2. Proof of Proposition 3.2

When taking the Fourier transform of (13), we note that V (x, τ) and ∂(x, τ)/∂x do not

approach zero as x → ∞. One means of dealing with this difficulty, suggested by Carr

& Madan (1999) and Lee (2004), involves introducing a damping function of the form

e−αx for some positive constant α, and instead apply the transform to the dampened

option price U(x, τ) = e−αxV (x, τ), which does tend to zero, along with ∂U(x, τ)/∂x,

as x → ∞. The desired function V (x, τ) can be readily recovered after the solution in

transform space has been inverted. Another approach is given by Lewis (2000), who

proves that the Fourier transform is still valid when solving for V (x, τ) in this case,

although one must instead take the complex Fourier transform in a strip of the complex

plane. Regardless of which approach is used to make the Fourier transform applicable,

it turns out that both methods are equivalent to simply assuming that V (x, τ) and

∂V (x, τ)/∂x tend to zero as x → ∞, and applying the standard transform accordingly.

Thus in order to simplify the technical discussion, we shall simply apply this assumption

and suppress the finer details involved.

For the inhomogeneous term, we have F̂J(η, τ) ≡ F {FJ (x, τ)}, and the only term that

needs to be evaluated is the one involving the integral, namely

F
{
∫

∞

0
V (x + ln Y, τ)G(Y )dY

}

=

∫

∞

−∞

eiηx

∫

∞

0
V (x + ln Y, τ)G(Y )dY dx. (58)

Using the change of variable z = x + ln Y , equation (58) becomes

F
{
∫

∞

0
V (x + ln Y, τ)G(Y )d(Y )

}

= A(η)V̂ (η, τ),

where A(η) is defined in (21).

Hence, our IPDE is transformed into the ODE

∂V̂

∂τ
+

[

σ2η2

2
+ φiη + (r + λ) − λA(η)

]

V̂ = F̂J (η, τ),
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the solution of which is given by (22).

Appendix 3. Derivation of the American Call Integral Equations

A3.1. Proof of Proposition 3.3. Consider the function VE(x, τ), given by

VE(x, τ) = F−1
{

V̂ (η, 0)e−( 1
2
σ2η2+φiη+(r+λ)−λA(η))τ

}

. (59)

To evaluate this inversion, recall the convolution theorem for Fourier transforms given

by

F
{
∫

∞

−∞

f((x − u), τ)g(u, τ)du

}

= F̂ (η, τ)Ĝ(η, τ), (60)

where F̂ and Ĝ are the Fourier transforms, with respect to x, of f(x, τ) and g(x, τ)

respectively. If we let F̂ (η, τ) = exp(−
(

1
2σ2η2 + φiη + (r + λ) − λA(η)

)

τ), then f(x, τ)

is given by

f(x, τ) =
1

2π

∫

∞

−∞

eλτA(η)e−[ 1
2
σ2η2τ+i[φτ+x]η+(r+λ)τ ]dη.

Furthermore, let Ĝ(η, τ) = V̂ (η, 0), then g(x, τ) will simply be the payoff function,

g(x, 0) = max(ex − 1, 0).

Using a Taylor series expansion for eλτA(η), the expression for f(x, τ) becomes

f(x, τ) =
1

2π

∫

∞

−∞

∞
∑

n=0

(λτ)nA(η)n

n!
e−[ 1

2
σ2η2τ+i[φτ+x]η+(r+λ)τ ]dη. (61)

Note that by definition

A(η)n =

{
∫

∞

0
e−iη ln Y G(Y )dY

}n

=

∫

∞

0
e−iη ln Y1G(Y1)dY1...

∫

∞

0
e−iη lnYnG(Yn)dYn

=

∫

∞

0

∫

∞

0
...

∫

∞

0
G(Y1)G(Y2)...G(Yn)e−iη ln(Y1Y2...Yn)dY1dY2...dYn,

= E
(n)
Q

{

e−iη lnXn

}

,

where

E
(n)
Q {(·)} =

∫

∞

0

∫

∞

0
...

∫

∞

0
(·)G(Y1)G(Y2)...G(Yn)dY1dY2...dYn,
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with E
(0)
Q {(·)} ≡ (·), and Xn ≡ Y1Y2...Yn, with X0 ≡ 1.

Substituting for A(η)n from (21), f(x, τ) becomes

f(x, τ) =

∞
∑

n=0

(λτ)n

n!
E

(n)
Q

{

1

2π

∫

∞

−∞

e−(r+λ)τe−( 1
2
σ2η2τ+i[φτ+x+lnXn]η)dη

}

.

Recalling the result that
∫

∞

−∞

e−pξ2
−qξdξ =

√

π

p
eq2/4p, (62)

we finally have the result that

F−1{F̂ (η, τ)} = f(x, τ) =

∞
∑

n=0

e−λτ (λτ)n

n!
E

(n)
Q

{

e−rτ

σ
√

2πτ
exp

{

− [x + lnXn + φτ ]2

2σ2τ

}}

.

(63)

Thus, by use of the convolution theorem (60) we have

VE(x, τ) =
∞
∑

n=0

e−λτ (λτ)n

n!
E

(n)
Q

{

e−rτ

σ
√

2πτ

∫

∞

0
(eu − 1) exp

{

− [x − u + ln Xn + φτ ]2

2σ2τ

}

du

}

,

which, in terms of S is

CE(S, τ) =

∞
∑

n=0

e−λτ (λτ)n

n!
E

(n)
Q {I1(S, τ) − I2(S, τ)} , (64)

where we set

I1(S, τ) ≡ e−rτ

σ
√

2πτ

∫

∞

0
Keu exp

{

− [ln(SXn/K) − u + φτ ]2

2σ2τ

}

du, (65)

and

I2(S, τ) ≡ e−rτ

σ
√

2πτ

∫

∞

0
K exp

{

− [ln(SXn/K) − u + φτ ]2

2σ2τ

}

du. (66)

Beginning with I1, we have

I1(S, τ) =
Ke−rτ

σ
√

2πτ
e−β2/(2σ2τ)

∫

∞

0
exp

{

−u2 − 2(β + σ2τ)u

2σ2τ

}

du,

where β ≡ ln(SXn/K)+φτ . Completing the square with respect to u and changing the

integration variable, we find that (recall that φ = r − q − λk − σ2/2)

I1(S, τ) = SXne−λkτe−qτN [d1(SXne−λkτ ,K, r, q, τ, σ2)]. (67)
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For I2, a suitable change of integration variable gives

I2(S, τ) = Ke−rτN [d2(SXne−λkτ ,K, r, q, τ, σ2)], (68)

Finally, substituting I1 and I2 into (64), we find that

CE(S, τ) =

∞
∑

n=0

e−λτ (λτ)n

n!
E

(n)
Q

{

CBS [SXne−λkτ ,K,K, r, q, τ, σ2 ]
}

, (69)

where CBS is the solution the Black-Scholes-Merton solution for a European call option.

A3.2. Proof of Proposition 3.4. Consider the function

VP (x, τ) =

∫ τ

0
F−1

{

F̂J (η, ξ)e−(σ2η2

2
+iφη+(r+λ)−λA(η))(τ−ξ)

}

dξ.

Using equation (20) we recall that

F−1
{

F̂J(η, ξ)
}

= FJ (x, ξ),

where FJ is defined by (62).

We use again the result (63) with τ replaced by (τ − ξ) to see that

F−1

{

e−(σ2η2

2
+iφη+(r+λ)−λA(η))(τ−ξ)

}

=
∞
∑

n=0

e−λ(τ−ξ)[λ(τ − ξ)]n

n!
E

(n)
Q

{

e−r(τ−ξ)

σ
√

2π(τ − ξ)
exp

{

− [x + ln Xn + φ(τ − ξ)]2

2σ2(τ − ξ)

}

}

.

Thus by use of the convolution theorem (60) and (62) we obtain

VP (x, τ) =

∫ τ

0

∞
∑

n=0

[

e−λ(τ−ξ)[λ(τ − ξ)]n

n!

∫

∞

−∞

H(u − ln b(ξ))

×
(

qeu − r − λ

∫ b(ξ)e−x

0
[V (u + ln Y, ξ) − (Y eu − 1)]G(Y )dY

)

×E
(n)
Q

{

e−r(τ−ξ)

σ
√

2π(τ − ξ)
exp

{

− [x − u + ln Xn + φ(τ − ξ)]2

2σ2(τ − ξ)

}

}

dudξ

]

,

which in terms of S(= Kex) becomes (recall that VP (x, τ) = CP (S, τ)/K)

CP (S, τ) =

∞
∑

n=0

λn

n!
E

(n)
Q

∫ τ

0
(τ − ξ)ne−λ(τ−ξ) [I3(S, τ) − I4(S, τ) − I5(S, τ)] dξ, (70)
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where

I3(S, τ) ≡ qe−r(τ−ξ)

σ
√

2π(τ − ξ)

∫

∞

ln b(ξ)
Keu exp

{

− [ln(SXn/K) − u + φ(τ − ξ)]2

2σ2(τ − ξ)

}

du,(71)

I4(S, τ) ≡ re−r(τ−ξ)

σ
√

2π(τ − ξ)

∫

∞

ln b(ξ)
K exp

{

− [ln(SXn/K) − u + φ(τ − ξ)]2

2σ2(τ − ξ)

}

du, (72)

and

I5(S, τ) ≡ λ
e−r(τ−ξ)

σ
√

2π(τ − ξ)

∫

∞

ln b(ξ)
exp

{

− [ln(SXn/K) − u + φ(τ − ξ)]2

2σ2(τ − ξ)

}

×
∫ b(ξ)e−u

0
[C(KY eu, ξ) − (KY eu − K)]G(Y )dY du. (73)

To simplify I3 and I4, we make use of the results for I1 and I2 in Appendix A3.1. Firstly,

we note that (71) is simply (65) with τ replaced by (τ − ξ). Thus from (67) we have

I3(S, τ) = qSXne−λk(τ−ξ)e−q(τ−ξ)N [d1(SXne−λk(τ−ξ), a(ξ), r, q, τ − ξ, σ2)]. (74)

Similarly for I2, we can use (68) to show that (72) is

I4(S, τ) = rKe−r(τ−ξ)N [d2(SXne−λk(τ−ξ), a(ξ), r, q, τ − ξ, σ2)]. (75)

For I5, we change the order of integration using Fubini’s theorem, and make the change

of integration variable ω = Keu, which gives

I5(S, τ) = λe−r(τ−ξ)

∫ 1

0
G(Y )

∫ a(ξ)/Y

a(ξ)
[C(ωY, ξ) − (ωY − K)]

×κ(SXne−λk(τ−ξ), ω, r, q, τ − ξ, σ2)dωdY,

where κ is defined by (29). Finally, substituting I3, I4 and I5 into (70) gives equation

(26) from Proposition 3.4.

A3.3. Alternative Representation for C
(J)
P . The representation for C

(J)
P in (28)

cannot be further simplified without explicit knowledge of the density G(Y ). In cases

where the density is known, however, it may be possible to complete the integration

with respect to Y analytically. Here we change the order of integration to develop a

form for the double integral that will be easier to evaluate using numerical integration
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methods. Recall from (28) that

C
(J)
P [S,K, a(ξ), r, q, τ, σ2 ;C(·, ξ)]

= e−rτ

∫ 1

0
G(Y )

∫ a(ξ)/Y

a(ξ)
[C(ωY, ξ) − (ωY − K)]κ(S, ω, r, q, τ, σ2)dωdY.

Making the change of integration variable z = ωY/a(ξ) we obtain

C
(J)
P [S,K, a(ξ), r, q, τ, σ2 ;C(·, ξ)]

= e−rτ

∫ 1

0

∫ 1

Y
G(Y )[C(a(ξ)z, ξ) − (a(ξ)z − K)]κ(S/a(ξ), z, r, q, τ, σ2)dzdY.

Finally, changing the order of integration using Fubini’s theorem, we obtain

C
(J)
P [S,K, a(ξ), r, q, τ, σ2 ;C(S, ξ)]

= e−rτ

∫ 1

0
[C(a(ξ)z, ξ) − (a(ξ)z − K)]

∫ z

0
G(Y )κ(S/a(ξ), z, r, q, τ, σ2)dY dz.

Appendix 4. American Call Evaluation for Log-Normal Jump Sizes

The form (45) for G(Y ) implies that

E
(n)
Q {f(Xn)} =

∫

∞

0
f(Xn)

1

Xnδ
√

2πn
exp







−1

2

(

ln Xn − n(γ − δ2

2 )

δ
√

n

)2






dXn. (76)

We shall use this to evaluate all of the E
(n)
Q operators in equation (31).

A4.1. European Component. Using the results from Merton (1976), the European

component becomes

∞
∑

n=0

e−λτ (λτ)n

n!
E

(n)
Q

{

CBS [SXne−λkτ ,K,K, r, q, τ, σ2 ]
}

=
∞
∑

n=0

e−λ′τ (λ′τ)n

n!
CBS [S,K,K, rn(τ), q, τ, v2

n(τ)],

where λ′ = λ(1 + k), rn(τ) = r − λk + nγ/τ , and v2
n(τ) = σ2 + nδ2/τ , with CBS as

defined in Proposition 3.3.
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A4.2. Early Exercise Premium - First Term. Consider the first part of the early

exercise premium in (31), given by

C
(1)
P (S, τ) =

∞
∑

n=0

{
∫ τ

0

e−λ(τ−ξ)[λ(τ − ξ)]n

n!

×E
(n)
Q {C(D)

P [SXne−λk(τ−ξ),K, a(ξ), r, r, q, τ − ξ, σ2]}dξ

}

.

Using equation (27) for the definition of C
(D)
P and (76), we can show that

E
(n)
Q {XnN [d1(SXne−λk(τ−ξ), a(ξ), r, q, τ − ξ, σ2)]}

= enγN [d1(S, a(ξ), rn(τ − ξ), q, τ − ξ, v2
n(τ − ξ))],

and

E
(n)
Q {N [d2(SXne−λk(τ−ξ), a(ξ), r, q, τ − ξ, σ2)]}

= N [d2(S, a(ξ), rn(τ − ξ), q, τ − ξ, v2
n(τ − ξ))].

Noting that enγ = (k + 1)n, C
(1)
P becomes

C
(1)
P (S, τ) =

∞
∑

n=0

{
∫ τ

0

e−λ′(τ−ξ)[λ′(τ − ξ)]n

n!

×C
(D)
P [S,K, a(ξ), r, rn(τ − ξ), q, τ − ξ, v2

n(τ − ξ)]dξ

}

.

A4.3. Cost Term from Downward Jumps. The final term to consider is the cost

incurred when S jumps from the stopping region into the continuation region. From

(45) this term is given by

C
(2)
P (S, τ) = λ

∞
∑

n=0

{
∫ τ

0

e−λ(τ−ξ)[λ(τ − ξ)]n

n!

×E
(n)
Q {C(J)

P [SXne−λk(τ−ξ),K, a(ξ), r, q, τ − ξ, σ2;C(·, ξ)]}dξ

}

.
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Referring to (28) and (29) for the definitions of C
(J)
P and κ respectively, we find that in

order to evaluate the the E
(n)
Q operator, we must consider

E
(n)
Q {κ(SXne−λk(τ−ξ), ω, r, q, τ − ξ, σ2)}

=

∫

∞

0

1

Xnδ
√

2π
exp

{

−1

2

[ln Xn − n(γ − δ2

2 )]2

δ2n

}

1

ωσ
√

2π(τ − ξ)

× exp

{

−[(r − q − λk − σ2

2 )(τ − ξ) + ln SXn
ω ]2

2σ2(τ − ξ)

}

dXn.

Making the change of variable xn = ln Xn, this expectation can be evaluated as

E
(n)
Q {κ(SXne−λk(τ−ξ), ω, r, q, τ − ξ, σ2)}

=
1

ω
√

2π(τ − ξ)v2
n(τ − ξ)

× exp

{

− [ln S
ω + (rn(τ − ξ) − q − v2

n(τ−ξ)
2 )(τ − ξ)]2

2v2
n(τ − ξ)(τ − ξ)

}

.

Finally, using the definitions for λ′ and rn(τ) we can rewrite C
(2)
P as

C
(2)
P (S, τ) = λ

∞
∑

n=0

{
∫ τ

0

e−λ′(τ−ξ)[λ′(τ − ξ)]n

n!

×C
(J)
P [S,K, a(ξ), rn(τ − ξ), q, τ − ξ, v2

n(τ − ξ);C(·, ξ)]
]

dξ

}

.

A4.4. Proposition 5.1. Combining the results from sections A4.1-A4.3, we find that

the integral equation for C(S, τ) in the case of log-normal jumps is given by equation

(46) in Proposition 5.1.

Appendix 5. The Simplified Cost Term for Log-Normal Jump Sizes

Referring to the result in Proposition 3.6, the integral term in equation (31) that we

seek to evaluate is

I(S, z, τ, ξ) ≡ E
(n)
Q

{
∫ z

0
G(Y )κ(SY Xne−λk(τ−ξ)/a(ξ), z, r, q, τ − ξ, σ2)

}

dY

=
1

δ
√

2π

∫ z

0

1

Y
exp







−1

2

[

ln Y − (γ − δ2

2 )

δ

]2






J(S, z, τ, ξ, Y )dY,
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where

J(S, z, τ, ξ, Y ) ≡ 1

zσ
√

2π(τ − ξ)

1

δ
√

2πn

∫

∞

0

1

Xn
exp







−1

2

[

ln Xn − n(γ − δ2

2 )

δ
√

n

]2






× exp







−1

2





ln SY Xn
a(ξ)z + (r − q − λk − σ2

2 )(τ − ξ)

σ
√

τ − ξ





2




dXn.

To evaluate I(S, z, τ, ξ) we need to make use of the following integration result. Let

α1, α2, β1, β2 and z be real-valued functions independent of the integration variable ω.

Then by completing the square in the exponent, it can be shown that

∫ z

0

1

ω
exp

{

− [ln ω + β1]
2

α1
− [ln ω + β2]

2

α2

}

dω

=

√

α1α2π

α1 + α2
exp

{

−(β1 − β2)
2

α1 + α2

}

N [f(z)], (77)

where f(z) =
√

2[(α1 + α2) ln z + α1β2 + α2β2]/
√

α1α2(α1 + α2). Applying (77) to

J(S, z, τ, ξ) we find that

J(S, z, τ, ξ, Y ) =
1

zvn(τ − ξ)
√

2π(τ − ξ)

× exp







−
[ln SY

a(ξ)z + (rn(τ − ξ) − q − v2
n(τ−ξ)

2 )(τ − ξ)]2

2v2
n(τ − ξ)(τ − ξ)







,

where rn(τ) and vn(τ) are given by Proposition 5.1, and thus I(S, z, τ, ξ) becomes

I(S, z, τ, ξ) =
1

zvn(τ − ξ)
√

2π(τ − ξ)

× 1

δ
√

2π

∫ z

0

1

Y
exp

{

− [ln Y − (γ − δ2

2 )]2

2δ2

}

× exp







−
[ln SY

a(ξ)z + (rn(τ − ξ) − q − v2
n(τ−ξ)

2 )(τ − ξ)]2

2v2
n(τ − ξ)(τ − ξ)







dY.
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Finally, we again apply (77) to I(S, z, τ, ξ) and obtain

I(S, z, τ, ξ) =
1

zvn+1(τ − ξ)
√

2π(τ − ξ)
N [f(z)]

× exp







−
[ln S

a(ξ)z + (rn+1(τ − ξ) − q − v2
n+1(τ−ξ)

2 )(τ − ξ)]2

2v2
n+1(τ − ξ)(τ − ξ)







,

where

f(z) =
δ2 ln S

za(ξ) +
[

(ln z)v2
n+1(τ − ξ) + δ2[rn(τ − ξ) − q] − γv2

n(τ − ξ)
]

(τ − ξ)

vn(τ − ξ)vn+1(τ − ξ)δ(τ − ξ)

≡ D(S/a(ξ), z, rn(τ − ξ), q, vn(τ − ξ), vn+1(τ − ξ), τ − ξ, γ, δ).

Substituting for I(S, z, τ, ξ) into (31) and combining this with the results in Proposition

5.1, we arrive at equation (47) of Proposition 5.2.
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Figure 1. Continuation region for the American call option.
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Figure 2. Cost incurred by the investor from downward jumps in S.
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Figure 3. Behaviour of equation (54) when λ = 1, γ = 0 and δ = 0.2.
When r > q we set r = 0.05, q = 0.03, and r = 0.03, q = 0.05 when
r < q.
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Figure 4. Behaviour of equation (54) when q = 0. Other parameter
values are r = 0.03, λ = 10, γ = 0 and δ = 0.2.
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Figure 5. Comparing the efficiency of numerical integration, Crank-
Nicolson and the method of lines for the price and delta of American
call options with log-normal jump sizes. Fixed parameters are K = 100,
T − t = 0.50 and λ = 1. RMSE is found using S = 80, 90, 100, 110 and
120. Average RMSE and runtimes found using 6 parameter sets, with
r = 3%, q = 5%, and r = 5%, q = 3%, along with eγ = 0.95, 1.00 and
1.04. Figure 5(a) displays the price efficiency, and Figure 5(b) shows the
delta efficiency.

Numbers on the plot indicate the time steps associated with a
given point. Crank-Nicolson space steps are set equal to double the
number of time steps. Method of lines space steps are set equal to
5 times the number of time steps. Note that the reported runtimes
indicate the total time required to find the free boundary, price and
delta for the American call. Both axes are given in log-scale.
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Figure 6. Early exercise boundaries for the American call option, in
the case where r < q, for a range of γ values, compared with the pure
diffusion case of λ = 0. The numerical integration scheme uses 100 time
steps, with 20 integration points for the Gauss-quadrature component.
Other parameter values are K = 100, T = 0.5, r = 3%, q = 5%, λ = 1
and δ2 = 0.04. See Table 1 for further details.
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Figure 7. Early exercise boundaries for the American call option, in
the case where r > q, for a range of γ values, compared with the pure
diffusion case of λ = 0. The numerical integration scheme uses 100 time
steps, with 20 integration points for the Gauss-quadrature component.
Other parameter values are K = 100, T = 0.5, r = 5%, q = 3%, λ = 1
and δ2 = 0.04. See Table 1 for further details.
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Figure 8. Price differences between the pure diffusion American call
and the corresponding contract under jump-diffusion, in the case where
r < q, for various values of γ. Other parameter values are K = 100,
T = 0.5, r = 3%, q = 5%, λ = 1 and δ2 = 0.04. See Table 1 for further
details.
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Figure 9. Price differences between the pure diffusion American call
and the corresponding contract under jump-diffusion, in the case where
r > q, for various values of γ. Other parameter values are K = 100,
T = 0.5, r = 5%, q = 3%, λ = 1 and δ2 = 0.04. See Table 1 for further
details.
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σ2 λ eγ δ2

0.0593 0 - -
0.0200 1.00 0.95 0.04
0.0185 1.00 1.00 0.04
0.0136 1.00 1.04 0.04

Table 1. Parameter values used for the diffusion variance and jump
component. The global variance is fixed at s2 = 5.93%, determined by

s2 = σ2 + λ[e2γ+δ2 − 2eγ + 1].
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Prices - American Call Option (True Solution)
Method 80 90 100 110 120 RMSD

r > q

eγ = 0.95 CN 0.69400 2.38087 6.73070 13.82696 22.39488
MOL 0.69402 2.38088 6.73068 13.82690 22.39482 4.0 × 10−5

eγ = 1.00 CN 0.90678 2.51510 6.49996 13.38593 21.99352
MOL 0.90678 2.51510 6.49997 13.38593 21.99351 6.3 × 10−6

eγ = 1.04 CN 1.09662 2.62043 6.19455 12.94557 21.67626
MOL 1.09677 2.62065 6.19466 12.94549 21.67616 1.4 × 10−4

r < q

eγ = 0.95 CN 0.57779 1.95176 5.70386 12.30535 20.70560
MOL 0.57781 1.95178 5.70385 12.30529 20.70554 4.0 × 10−5

eγ = 1.00 CN 0.78198 2.14003 5.56774 11.92355 20.38397
MOL 0.78198 2.14002 5.56775 11.92355 20.38394 1.5 × 10−5

eγ = 1.04 CN 0.96480 2.30626 5.36027 11.50789 20.13332
MOL 0.96494 2.30648 5.36043 11.50786 20.13324 1.4 × 10−4

Average RMSD: 4.3 × 10−5

Table 2. Demonstrating the accuracy of the true American call prices
found using the Crank-Nicolson method with 10,000 time steps and 5,000
space steps. The method of lines solution uses 1,000 time steps and 5,000
space steps. The values used for r and q were 3% and 5%, with T−t = 0.5
and K = 100. Additional parameter values are given in Table 1.
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Deltas - American Call Option (True Solution)
Method 80 90 100 110 120 RMSD

r > q

eγ = 0.95 CN 0.086567 0.281168 0.589532 0.804381 0.895046
MOL 0.086567 0.281167 0.589530 0.804380 0.895047 6.4 × 10−7

eγ = 1.00 CN 0.094375 0.254185 0.553839 0.798772 0.904862
MOL 0.094374 0.254185 0.553839 0.798772 0.904863 8.3 × 10−7

eγ = 1.04 CN 0.102141 0.223464 0.517908 0.804882 0.918433
MOL 0.102140 0.223463 0.517908 0.804881 0.918434 5.9 × 10−7

r < q

eγ = 0.95 CN 0.070887 0.231935 0.527693 0.770657 0.895029
MOL 0.070887 0.231932 0.527688 0.770656 0.895031 5.4 × 10−7

eγ = 1.00 CN 0.081431 0.213015 0.490691 0.762207 0.912965
MOL 0.081430 0.213015 0.490690 0.762206 0.912964 7.4 × 10−7

eγ = 1.04 CN 0.091457 0.192099 0.449855 0.763778 0.941484
MOL 0.091456 0.192101 0.449853 0.763776 0.941486 1.4 × 10−6

Average RMSD: 7.9 × 10−7

Table 3. Demonstrating the accuracy of the true American call deltas
found by applying a central difference approximation to the prices esti-
mates given by the Crank-Nicolson method with 10,000 time steps and
5,000 space steps. The method of lines solution uses 1,000 time steps and
5,000 space steps. The values used for r and q were 3% and 5%, with
T −t = 0.5 and K = 100. Additional parameter values are given in Table
1.


