THE WATER-ENERGY NEXUS: A COMPREHENSIVE ANALYSIS IN THE CONTEXT OF NEW SOUTH WALES

Debborah Marie Marsh

Faculty of Engineering and Information Technology
University of Technology, Sydney

A dissertation submitted to the University of Technology, Sydney in fulfilment of the requirements for the degree of Doctor of Philosophy (Engineering).

Certificate of Authorship/ Originality

I certify that the work in this thesis has not previously been submitted for a degree, nor has it
been submitted as part of the requirements for a degree, except as fully acknowledged within
the text.

I also certify that the thesis has been written by me. Any help that I have received in my
research work and the preparation of the thesis itself has been acknowledged. In addition, I
certify that all information sources and literature used are indicated in the thesis

Signature of Candidate	

Acknowledgements

I am extremely grateful for the people who have supported me over the course of my PhD. Whilst only I could have completed this journey, your collective support greatly helped me in reaching the final destination. Firstly, I sincerely thank my supervisor Associate Prof. Deepak Sharma for his insightful feedback, for opening my eyes to the world of philosophy, and for always encouraging me to look for the positive in situations that would appear otherwise. I thank Dr Chris Riedy from the Institute for Sustainable Futures for providing valuable input at critical times, Dr Katrina Proust from the Australian National University for useful comments on Chapter 4, and Sue Felix for proofreading the entire thesis.

The Faculty of Engineering and the Institute for Water and Environmental Resource Management provided the financial support for this research, for which I am grateful. I would also like to acknowledge the assistance from the Research Degrees Office of the Faculty of Engineering and IT, and in particular the Associate Dean for Research, Prof. Hung Nguyen.

The data requirements for this research were substantial. Numerous individuals and organisations gave willingly of their time to assist with my data requests. I also thank the Centre for Agricultural and Regional Economics at the University of New England for providing the original input-output data used in this research.

To the former PhD researchers in the Energy Planning and Policy Program, I really appreciated your companionship, wisdom and the support network we formed. To other PhD researchers in the faculty, I really enjoyed sharing the numerous lunches and chai lattes over the past few years - you know who you are! To my 'older' friends, a heartfelt thank you for your patience, particularly towards the end of my candidature.

To my family, I thank you so much for the incredible support you have given me whilst I focused on my scholarly pursuits. I am sincerely grateful to my mother Joan and sister Michele for their words of encouragement throughout my candidature and for casting their editorial eye over various chapters of my thesis towards the end.

To my partner, Chris, words cannot describe how grateful I am for your support and love. I am extremely fortunate to have met you during this journey and look forward to sharing many more experiences with you.

Table of Contents

Certificate of	f Autho	orship/ (Originality	i		
Acknowledg	gements	S		ii		
Table of Cor	ntents	•••••		iii		
List of Figur	es			vi		
List of Table	es			vii		
List of Appe	ndices			viii		
List of Publi	cations			ix		
List of Abbro	eviatio	1s		x		
Abstract				xiv		
Chapter 1	Intr	oductio	on	1		
Chapter 1	1.1		rch objectives			
	1.2		rch framework			
		1.2.1	Integral theory – a guiding philosophy			
		1.2.2	Research methods			
	1.3	Scope	of research			
	1.4		considerations			
	1.5		icance			
	1.6	0	nisation of the thesis			
Chapter 2	Λ το	A review of the water-energy nexus2				
Chapter 2		2.1 Emerging links between water and electricity				
	2.1	2.1.1	Upstream links			
		2.1.2	Transportation links			
		2.1.3	Downstream links			
	2.2		e of nexus: a synopsis			
	2.2	2.2.1	Environmental dimension			
		2.2.2	Technological dimension			
		2.2.3	Economic dimension			
		2.2.4	Social dimension			
		2.2.5	Political dimension			
		2.2.6	Some further discussion			
	2.3		iew of existing studies			
	2.4	Major limitations of existing studies				
	2.5	,	nary and conclusion			
Chapter 3	Development of an integrated research framework					
F	3.1 Integral theory – a guiding philosophy					
		3.1.1	The AQAL framework			
		3.1.2	Integral methodological pluralism			
		3.1.3	Influence of Integral Theory on this research			
	3.2		odological framework			
	3.3		rical analysis			
	3.4		-output analysis			

		3.4.1	Theoretical background	82	
		3.4.2	Input-output models for NSW	86	
		3.4.3	Input-output analysis of the water-energy nexus	90	
		3.4.4	Model validation		
	3.5	Price	elasticities of demand	97	
	3.6	Scena	rio analysis	99	
		3.6.1	Development of water and energy scenarios	99	
		3.6.2	Scenario modelling using input-output analysis	102	
	3.7	Asses	sment of policy implications	110	
	3.8	Sumn	nary and conclusion	110	
Chapter 4	Historical evolution of the water-energy nexus				
	4.1	Early	developments in the industries (until 1889)	114	
		4.1.1	Urban water industry	115	
		4.1.2	Rural water industry	118	
		4.1.3	Electricity industry	120	
		4.1.4	Water-energy nexus	121	
	4.2	Buildi	ing on the foundations (1890 to 1939)	124	
		4.2.1	Urban water industry	125	
		4.2.2	Rural water industry	127	
		4.2.3	Electricity industry		
		4.2.4	Water-energy nexus	131	
	4.3	Expar	nsion and pressures for change (1940 to 1979)	133	
		4.3.1	Urban water industry	134	
		4.3.2	Rural water industry	136	
		4.3.3	Electricity industry	137	
		4.3.4	Water-energy nexus		
	4.4	Initial	and contemporary reforms (1980 to 2007)		
		4.4.1	Urban water industry		
		4.4.2	Rural water industry	149	
		4.4.3	Electricity industry		
		4.4.4	Water-energy nexus		
	4.5	Sumn	nary and conclusion		
Chapter 5	Water-energy nexus: an empirical investigation (I)1				
	5.1 Exploring the sectoral links in the NSW economy				
		5.1.1	Electricity sectors	169	
		5.1.2	Water sectors	170	
		5.1.3	Other economic sectors	171	
		5.1.4	Some discussion	177	
	5.2	Water	r intensities for the energy sectors	178	
		5.2.1	Empirical findings	179	
		5.2.2	Comparison with other reports	184	
		5.2.3	Some discussion		
	5.3	Energ	y intensities for the water sectors		
		5.3.1	Empirical findings		
		5.3.2	Comparison with other reports		
		5.3.3	Some discussion		
	5.4	Sumn	nary and conclusion	195	

Chapter 6	Water-energy nexus: an empirical investigation (II)			197
	6.1	Physic	cal links between water and energy use	198
		6.1.1	Water and energy intensities for the remaining sectors	198
		6.1.2	Correlation between water and energy intensities	206
	6.2	Explo	ration of policy trade-offs	210
		6.2.1	Empirical findings	212
	6.3	Water	and electricity price elasticities	215
		6.3.1	Empirical findings	216
	6.4	Summ	nary and conclusion	222
Chapter 7	Analysis of alternative water and energy scenarios			226
	7.1	Overv	riew of water and electricity technologies	228
		7.1.1	Water supply technologies	
		7.1.2	Electricity generation technologies	230
	7.2	Develo	opment of water-energy scenarios	236
		7.2.1	Water and energy assumptions	236
		7.2.2	A description of the four scenarios	245
	7.3	Empir	rical findings	250
		7.3.1	Water use by the electricity sectors	250
		7.3.2	Energy use by the water sectors	256
	7.4	Summ	nary and conclusion	265
Chapter 8	Policy implications and recommendations			
_	8.1	Overv	riew of the current policy setting	267
	8.2	Implications of the water-energy nexus		
	8.3	_	recommendations	
Chapter 9	Conclusions and further research			
	9.1	Concl	usions	288
	9.2	Recommendations for further research		296

List of Figures

Figure 1-1 Shares in Australian electricity generation by fuel. Source: Commonwealth of	
Australia (2008b)	3
Figure 1-2 Map of the Murray Darling Basin in south-eastern Australia. Source: Ochrepoint	
(2008)	6
Figure 1-3 Methodological framework for this research	8
Figure 2-1 Upstream, transportation and downstream links between water and electricity	24
Figure 3-1 Quadrants of human knowledge Source: adapted from Wilber (2000c)	71
Figure 3–2 The AQAL framework and human development Source: adapted from Wilber	
(2000c)	72
Figure 3–3 Major methodologies associated with the four quadrants Source: adapted from	
Wilber (2000a)	74
Figure 3-4 Position of research methods in the AQAL framework	78
Figure 3–5: Basic structure of an input-output table	83
Figure 3–6 Scenario matrix adopted in this research	100
Figure 3–7 Steps to update the input-output model for a future year	104
Figure 4–1 Structure of the historical profile	114
Figure 5–1 Breakdown of sectors with strong backward and/ or forward linkages	166
Figure 5–2 Changes in the composition of the Australian economy (1962-63 to 2001-02 curre	ent
prices) Source: Productivity Commission (2003)	171
Figure 6–1 Correlation between total Raw Water and Primary Energy intensities for 1996	207
Figure 6-2 Correlation between total Instream Use and Primary Energy intensities for 1996.	208
Figure 6-3 Correlation between total Raw Water and Primary Energy intensities for 2001	208
Figure 6-4 Correlation between total Instream Use and Primary Energy intensities for 2001.	209
Figure 7–1 Estimation of water demand for 2031	237
Figure 7–2 Estimation of water supply for 2031	238
Figure 7–3 Water demand and supply mix in 2031 under the four scenarios	239
Figure 7–4 Estimation of energy demand for 2031	240
Figure 7–5 Estimation of energy supply for 2031	241
Figure 7–6 Electricity generation mix in 2031 under the four scenarios	243

List of Tables

Table 1-1 Scope of the analysis	13
Table 1-2 Data considerations for each specific objective	17
Table 2-1 Water use and consumption for typical generation technologies/cooling systems.	
Table 2-2 Energy consumption by various water sources	33
Table 2-3 Electricity consumed to pump water and wastewater	
Table 2-4 Major water-energy studies	
Table 3-1 Production sectors, abbreviations and hybrid units	
Table 3-2 Primary input categories and hybrid units	
Table 3-3 Final sector categories	90
Table 3-4 Summary of input-output techniques	91
Table 3-5 Water and energy intensity equations	93
Table 3-6 Relative sectoral growth rates (ri)	106
Table 3-7 Medium economic growth rates g(t) for NSW	107
Table 3-8 Source of data to develop input-output sectors	109
Table 4-1 Summary of the water-energy nexus profile	159
Table 5-1 Sectoral backward and forward linkages for 1996 and 2001	167
Table 5-2 Electricity generation mix in NSW (%)	169
Table 5-3 Direct and total water intensities for the energy sectors in 1996 (ML/PJ)	180
Table 5-4 Direct and total water intensities for the energy sectors in 2001 (ML/PJ)	180
Table 5-5 Comparison of water intensities for select electricity sectors (ML/GWh)	184
Table 5-6 Direct and total energy intensities for the water sectors in 1996 (MJ/ML)	190
Table 5-7 Direct and total energy intensities for the water sectors in 2001 (MJ/ML)	190
Table 6-1 Direct and total water intensities (ML/\$000 2001)	199
Table 6-2 Direct and total energy intensities (MJ/\$000 2001)	200
Table 6-3 Total intensities, multipliers and corresponding ranks for 1996 and 2001	213
Table 6-4 Correlation matrix for 1996	214
Table 6-5 Correlation matrix for 2001	214
Table 6-6 Own price elasticities: water (ηww)	217
Table 6-7 Own price elasticities: electricity (ηee)	217
Table 6-8 Cross price elasticities: water demand and electricity price (η_{we})	218
Table 6-9 Cross price elasticities: electricity demand and water price (η_{ew})	218
Table 6-10 Summary of the sectoral findings	223
Table 7-1 Water supply technical specifications	
Table 7-2 Breakdown of strategies to meet water demand in 2031 (% new capacity)	239
Table 7-3 Comparison of electricity demand forecasts	241
Table 7-4 Committed projects	242
Table 7-5 Existing capacity that is expected to retire by 2031	242
Table 7-6 New capacity required to meet electricity demand in 2031 (MW)	243
Table 7-7 Electricity generation technical specifications	244
Table 7-8 Summary of scenario variables	245
Table 7-9 Water required to deliver final demand for electricity (ML)	251
Table 7-10 Weighted average total water intensities for the electricity industry (ML/PJ)	251
Table 7-11 Energy required to satisfy water demand in 2031 (PJ)	
Table 7-12 Weighted average energy intensities for the urban water industry (MJ/ML)	
Table 7-13 Estimated carbon emissions (Gg CO ₂)	261
Table 7-14 Carbon intensity (kg CO ₂ /ML)	262
Table 8-1 Summary of current policy settings	268

List of Appendices

Appendix 1	Twenty tenets of Integral Theory	300
Appendix 2	An exploration into philosophy	301
Appendix 3	Matrices of input-output coefficients	317
Appendix 4	A selection of existing scenario studies for Australia	342
Appendix 5	Percentage breakdown of direct and indirect use	344
Appendix 6	Energy efficiency potential	346
Appendix 7	Detailed scenario results	347

List of Publications

Marsh, D. & Sharma, D. 2007, *A framework for assessing integrated water and energy management scenarios*, Proceedings of the International Conference on Adaptive and Integrated Water Management, Basel Switzerland (full peer reviewed)

Marsh, D. & Sharma, D. 2007, *Energy-water nexus: an integrated modelling approach*, International Energy Journal Vol 8, pp235-242 (full peer reviewed)

Marsh, D. & Sharma, D. 2006, *A framework to enhance the effectiveness of water management strategies*, Proceedings of the 3rd International Young Water Researchers Conference, Singapore (peer reviewed abstract)

Marsh, D. & Sharma, D. 2006, *Water-energy nexus: a review of existing models*, Proceedings of the 1st Australian Young Water Professionals Conference, Sydney Australia (peer reviewed abstract)

Marsh, D. & Sharma, D. 2005, *Water-energy nexus: identifying the issues*, Proceedings of the Environmental Research Event Conference, Hobart Australia (full peer reviewed)

Marsh, D. & Sharma, D. 2003, *Water industry reform: some performance issues*, Proceedings of the Global Developments in Water Industry Performance Benchmarking Conference, Perth Australia

List of Abbreviations

ABARE Australian Bureau of Agricultural and Resource Economics;

ABS Australian Bureau of Statistics

AC Alternating current

ACA Australian Coal Association

ACCC Australian Competition and Consumer Commission

AEMO Australian Energy Market Operator AES Allen partial elasticity of substitution

AG Agriculture

AGA Australian Gas Association

ANCID Australian National Committee on Irrigation and Drainage
ANZSIC Australian and New Zealand Standard Industrial Classification
Asia-Pacific Partnership on Clean Development and Climate

AQAL All quadrants all levels

AWEA American Wind Energy Association AWRC Australian Water Resources Council

BIGCC Biomass integrated gasification combined cycle

BMP Basic metals & products
BRW Bulk & retail water
BWR Boiling water reactor

CAEP Central Asian Energy Pool

CARE Centre for Agricultural and Regional Economics, University of New England

CAS Conventional activated sludge (CC)GT (Combined cycle) gas turbine

CF Coal fired CG Cogeneration CHEM Chemicals

CHP Combined heat and power

COAG Council of Australian Governments

COAL Coal mining

COD Chemical oxygen demand

CONST Construction

CoV Coefficient of variation

CCSD Cooperative Research Centre for Coal in Sustainable Development

CSG Coal seam gas

CSIRO Commonwealth Scientific and Industrial Research Organisation

DC Direct current

DECC NSW Department of Environment and Climate Change

DEEP Desalination Economic Evaluation Program

DESAL Desalination

DLWC NSW Department of Land and Water Conservation

DWE NSW Department of Water and Energy

E Employment

EEI Energy efficiency improvement
ELCOM Electricity Commission of NSW
EPA Environment Protection Authority

EPRI Electric Power Institute

ESAA Energy Supply Association of Australia (previously Electricity Supply

Association of Australia)

EU European Union

FBT Food, beverages & tobacco

FEMP Federal Energy Management Program

FMP Fabricated metal products

GAD Government administration & defence GAMS General Algebraic Modelling System

GAS Retail gas supply

GDP Gross domestic product

GGAS Greenhouse Gas Emissions Trading Scheme
GRIT Generation of Regional Input-Output Tables

GT Gas turbine GWh Gigawatt hour

HDR Hot dry rock

HEC Hydro-Electric Commission HWR Heavy water reactors

HYDRO Hydropower

IAEA International Atomic Energy Agency

IC Internal combustion

ICT Information, communication and technology

IDW Irrigation & drainage water

IGCC Integrated Gasification Combined Cycle
IMP Integral Methodological Pluralism

IPART Independent Pricing and Regulatory Tribunal IPCC Intergovernmental Panel on Climate Change

ISU Instream Use

kL Kilolitre

LCA Life cycle assessment LWR Light water reactor

MBR Membrane bioreactors

MCE Ministerial Council on Energy

MES Morishima elasticities of substitution

ML Megalitre

MM Miscellaneous manufacturing MMS Modular modelling system

MRET Mandatory Renewable Energy Target

MWh Megawatt hour

MWSDB Metropolitan Water Sewerage and Drainage Board

N Income

NCC National Competition CouncilNCP National Competition PolicyNEC National Electricity Code

NECA National Electricity Code Administrator

NEM National Electricity Market

NEMMCO National Electricity Market Management Company

NETS National Emissions Trading Scheme NETT National Emissions Trading Taskforce NGMC National Grid Management Council

NIEIR National Institute of Economic and Industry Research

NMMP Non-metallic mineral products

NSW New South Wales

NWC National Water CommissionNWI National Water Initiative

O Economic outputOCGT Open cycle gas turbineOCS Other commercial servicesOLS Ordinary least square

OME Other machinery & equipment OMS Other mining & services to mining

OR Other renewables

OXY-CF Oxygen fired pulverised fuel

PCP Petroleum & coal products NEC

PE Primary Energy

PFW Produced formation water

PIU Performance and Innovation Unit, Cabinet Office, UK Government

PJ Petajoule

PR Petroleum refining
PRS Power reservoir system

PV Photovoltaics

PWR Pressurised water reactor

RAS Rows and Sums
RECYCLE Recycled water
RO Reverse osmosis
RW Raw Water

SBP Supply based pricing
SBR Sequencing batch reactor

SC Supercritical

SEEG Société d'Eau et d'Electricité du Gabon

SEW Sewerage

TCFL Textile, clothing, footwear & leather

TE Transport equipment

TGET Task Group on Emissions Trading

TS Transport & storage

UNFCCC United Nations Framework Convention on Climate Change

US United States
USC Ultrasupercritical

USAID U.S. Agency for International Development

VFP Voluntary fallowing program

WEST Water-Energy Sustainability Tool
WPP Wood, paper & printing products

WRT Wholesale & retail trade

WSAA Water Services Association of Australia

Abstract

Water and electricity are fundamentally linked. Policy reforms in both industries, however, do not appear to acknowledge the links nor consider their wider implications. This is clearly unhelpful, particularly as policy makers attempt to develop effective responses to water and energy issues, underpinned by prevailing drought conditions and impending climate change. Against this backdrop, this research has comprehensively analysed the links between water and electricity – termed water-energy nexus – in the context of New South Wales. For this purpose, this research has developed an integrated methodological framework. The philosophical guidance for the development of this framework is provided by Integral Theory, and its analytical foundations rest on a suite of research methods including historical analysis, input-output analysis, analysis of price elasticities, and long-term scenario analysis.

This research suggests that the historical and inextricable links between water and electricity, in the absence of integrated policies, has given rise to water-energy trade-offs. In the electricity industry, water-intensive coal-fired power stations that dominate base-load capacity in the National Electricity Market has resulted in intra- and inter-jurisdictional water sharing trade-offs. Intermediate and peak demand technologies, suchas gas-fired, cogeneration and renewables, however, would significantly reduce the industry's water consumption and carbon emissions. Drought and climate change adaptation responses in the water industry are likely to further increase electricity demand and potentially contribute to climate change, due to policies that encourage investment in energy-intensive technologies, such as desalination, advanced wastewater treatment and rainwater tanks. Increasing electricity costs due to water shortages and the introduction of emissions trading will futher increase water and electricity prices for end users. Demand management strategies in both industries will assist in curbing price increases, however, their effectiveness is lessened by investment in water- and energy-intensive technologies in both industries.

The analysis also demonstrates that strategies to reduce water and electricity consumption of 'other' production sectors in New South Wales is overwhelmingly dependent on how deeply a particular sector is embedded in the economy, in terms of its contribution to economic output, income generation and employment growth. Regulation, demand management programs, and water pricing policies, for example, that reduce the water and energy intensity of agriculture and key manufacturing sectors are likely to benefit the wider economy and the Environment.

The future implications of the water-energy nexus are examined through long-term scenario analysis for New South Wales for 2031. The analysis demonstrates how policy decisions shape the domain for making philosophical choices by society - in terms of the balance between relying on alternative technologies and market arrangements, with differing implications for water and electricity use, and for instigating behavioural change. Based on these findings, this research puts forward a range of recommendations, essentially arguing for reorienting existing institutional arrangements, government measures and industry activities in a way that would encourage integration between the water and energy policies.

Although the context of this research is New South Wales, the findings are equally relevant for other Australian states, which share the same national water and energy policy frameworks. Further, the concepts and frameworks developed in this research are also of value to other countries and regions that are faced with the task of designing appropriate policy responses to redress their water and energy challenges.