Tracking People Across Disjoint Camera Views

A Thesis Submitted For the Degree of Doctorate of Philosophy

By

Christopher Madden

Faculty of Information Technology
University of Technology, Sydney
Australia

July 3, 2009
I, Christopher Madden, certify that the work in this thesis titled “Tracking People Across Disjoint Camera Views” has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by myself. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. The undersigned certify that they have read this thesis and that in their opinions it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Christopher Madden

Date: July 3, 2009

Principal Supervisor: Massimo Piccardi
Acknowledgements

I would like to thank all those people who have been involved in some way with the creation of this thesis. My biggest thanks goes to Professor Massimo Piccardi for being my supervisor and assisting me with learning all of the areas I have needed to know for this work. And for filling me in on the areas that I still haven’t mastered yet. To my loving wife and family thank you for all the caring support. I would like to promise that I will talk a little less about video surveillance from now on; however we both know that is unlikely to happen. I would also like to thank my friends and colleagues who have assisted me throughout my candidature. Especially those who have read, or even reread, this thesis and helped me to improve it to its current state. I would also like to thank you, the reader, for your time as this thesis is not only written to explore my knowledge of the area, but hopefully to pass some of that on to you.
Abstract

Tracking people around surveillance systems is becoming increasingly important in the current security conscious environment. This thesis presents a framework to automatically track the movements of individual people in large video camera networks, even where there are gaps between camera views. It is designed to assist security operators, or police investigations by providing additional information about the location of individuals throughout the surveillance area. Footage from an existing surveillance system has been used to test the framework under real conditions. The framework uses the similarity of robust shape and appearance features to match tracks. These features are extracted to build an object feature model as people move within a single camera view, which can be compared across cameras. The integration of matching similarities in the temporal domain increases the robustness to errors of many kinds. Frames with significant segmentation errors can be automatically detected and removed based upon their lack of similarity to the other models within the same track, increasing robustness.

The shape and appearance features used to generate the object models are based upon features humans habitually use for identifying individuals. They include a height estimate, a Major Colour Representation (MCR) of the individuals global colours, and estimates of the colours of the upper and lower portions of clothing. The fusion of these features is shown to be complementary, providing increased discrimination between individuals. The MCR colour features are improved through the mitigation of illumination changes using controlled equalisation, which improves the accuracy in matching colour under normal surveillance conditions and requires no training or scene knowledge. The incorporation of other features into this framework is also relatively straightforward.

This track matching framework was tested upon four individuals across two video cameras of an existing surveillance system. Existing infrastructure and actors were used to ensure that ground truth is available. Specific cases were constructed to test the limitations of the system when similar clothing is worn. In the data, the height difference ranges from 5 to 30 centimetres, and individuals may only be wearing 50% of similar clothing colours. The accuracy of matching an individual was as high as 91% with only 5% false alarms when all the system components were used. This may not become a fully automated system, but could be used in semi-automated or human assisted systems, or as the basis for further research into improved automated surveillance. Application areas range from forensic surveillance to the matching of the movements of key individuals throughout a surveillance network and possibly even target location.
Contents

1 **Introduction** .. 1
 1.1 Aim ... 4
 1.2 Scope ... 5
 1.3 Contribution ... 6
 1.3.1 Publications ... 7
 1.4 Thesis Overview .. 8

2 **Literature Review** .. 10
 2.1 Motion Detection and Object Segmentation Techniques ... 10
 2.1.1 Background Modelling ... 12
 2.1.2 Removal of Shadow and other Segmentation Noise .. 16
 2.2 Colour Space Research ... 18
 2.3 Statistical Similarity Measurements .. 25
 2.4 Object Tracking .. 27
 2.4.1 Complexity Factors within Object Tracking ... 30
 2.4.2 Feature-Based Tracking ... 31
 2.4.3 Model-Based Tracking ... 32
 2.4.4 Mean Shift-based Tracking ... 35
 2.4.5 Summary of Tracking Literature ... 36
 2.5 Object Classification ... 37
 2.6 Current Disjoint Camera Tracking Methods .. 38
 2.7 Literature Summary .. 47

3 **Colour-based Robust Appearance Features** .. 49
 3.1 Appearance Feature Background .. 50
 3.2 MCR Colour Feature Extraction .. 53
 3.2.1 Optimising MCR Using an Online k-means Algorithm 56
 3.3 Improving Robustness Using Incremental MCRs .. 58
 3.4 Comparing MCR or IMCR Appearance Features ... 60
 3.4.1 Time Integration of Similarity ... 63
 3.5 Extracting Spatial MCR Colour Features .. 65
 3.6 Experimental Validation of MCR Appearance Features ... 68
 3.6.1 Colour Experiments on Manually Segmented Individuals 69
 3.6.2 Colour Experiments on Automatically Obtained Tracks 72
 3.7 Discussion of MCR Appearance Results ... 77
 3.8 Summary of MCR Appearance Features and Future Enhancements 79
4 Mitigating the Effects of Changes in Illumination

4.1 Illumination Mitigation Background .. 83
4.2 Illumination Filtration ... 87
4.3 Histogram Stretching .. 88
4.4 Histogram Equalisation ... 90
4.5 Comparing Illumination Mitigation Techniques 93
4.6 Experimental Comparison of Mitigation Techniques 96
4.7 Discussion of Illumination Mitigation 100
4.8 Summary of Illumination Mitigation and Future Enhancements .. 101

5 Identification of Segmentation Errors

5.1 Segmentation Error Identification Background 105
5.2 Identifying Segmentation Errors Through Changes in Bounding Box Height ... 106
5.3 Identifying Segmentation Errors Through Appearance Feature Analysis ... 107
5.3.1 Comparing Colour Features Between Frames 111
5.3.2 Typical MCR Patterns of Major Segmentation Errors 112
5.4 Experimental Validation for the Identification of Major Segmentation Errors ... 114
5.5 Discussion of Segmentation Error Identification 116
5.6 Summary of Segmentation Error Identification and Future Enhancements ... 117

6 Height Based Robust Shape Feature

6.1 Shape Feature Background ... 120
6.2 Obtaining Height Estimates Using Camera Calibration 124
6.3 Improved Automatic Monocular Height Estimates 128
6.4 Statistically Comparing Height Features 132
6.5 Experimental Verification of Height Estimation 134
6.5.1 Height Experiments Comparing Manual and Automatic Height Estimates ... 134
6.5.2 Height Experiments Using a Larger Dataset 137
6.6 Discussion of Height Results ... 139
6.7 Summary of Height Feature and Future Enhancements 140
7 Fusion Methods and Results for Combining Robust Features 142
7.1 Classifier-based Fusion Background 143
7.2 Classifier-based Fusion for Integrating Features across Differing Time Scales .. 146
7.3 Results From Fused Features 147
7.3.1 Evaluation of the Statistical Models 148
7.3.2 Evaluation of Fusing Features 150
7.4 Summary of Fused Features 153

8 Conclusions 156

List of Figures

1 Approaches incorporating spatial colour information 52
2 Major Colour Representation of ‘tn_flower’ 56
3 Original ore gold rose image (left) and reprojection of the 90% most frequent pixel clusters after 7 k-means iterations (right) . . . 57
4 MCR changes for 20 most significant colours with iterations of the k-means optimisation 57
5 MCR from three automatically detected people 59
6 IMCR matching of two tracks using time integration 64
7 Examples of upper and lower regions of segmented individuals . . 67
8 Same individuals observed in camera 3a and camera 5 69
9 Differing individuals observed in camera 3a and camera 5 71
10 Typical frames used for test cases 72
11 Typical backgrounds used for test cases 73
12 Four people of interest (Person’s A, B, C, D from left) and good automatically segmented masks (from frames 775, 1095, 1542, 2044) .. 74
13 Poor segmentation in two sample cluttered frames 76
14 Accuracy of individual colour features 77
15 Sample people of interest and their red histograms under differing illumination conditions 83
16 Individuals R values before and after illumination filtration 88
17 Histogram stretching of the individual’s pixels 90
18 Full equalisation of the individual’s pixels 91
List of Tables

1. Results of IMCR Matching - same person .. 70
2. Results of IMCR Matching - differing people 72
3. Results of IMCR matching - differing people 73
4. Results of automated IMCR matching - 6 different cases 75
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Global similarity measurements for matching and non-matching tracks</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>Upper MCR similarity for matching and non-matching tracks</td>
<td>98</td>
</tr>
<tr>
<td>7</td>
<td>Lower MCR similarity for matching and non-matching tracks</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>PD and PFA values of Bounding Box and MCR features for detecting segmentation errors</td>
<td>115</td>
</tr>
<tr>
<td>9</td>
<td>Auto height estimates of a 1710 mm individual over 15 tracks</td>
<td>136</td>
</tr>
<tr>
<td>10</td>
<td>Ground Truth of Participants</td>
<td>148</td>
</tr>
<tr>
<td>11</td>
<td>How variations to the optimum threshold affect% error rates</td>
<td>149</td>
</tr>
</tbody>
</table>