IMPROVING THE QUALITY AND QUANTITY OF SLEEP FOR THE INTENSIVE CARE PATIENT

ROSALIND ELLIOTT, RN, BSC, MN

A thesis submitted in accordance with the total requirements for admission to the degree of Doctor of Philosophy

Faculty of Nursing, Midwifery and Health
University of Technology Sydney

December 2011
Certificate of authorship/originality

I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help I have received in my research work and in the preparation of this thesis has been acknowledged. In addition, I certify that all the information sources and literature used are indicated in the thesis.

__

Signature of candidate
Acknowledgements

This PhD has involved numerous people to whom I am deeply grateful. I sincerely thank my supervisors, Professors Sharon McKinley and Peter Cistulli, who offered guidance, encouragement, comment and support. I am grateful to them for allowing me the latitude to accomplish my goals. I would also like to thank the research officers, Rachel Foley and Mary Fien, for assisting with data collection, their empathy and excellent advice.

The study would not have been possible without the financial support of a number of organisations. I gratefully acknowledge the Australian College of Critical Care, Intensive Care Foundation, Northcare Foundation, Skipper family (Royal North Shore Hospital Nursing Research Scholarship) and Pink Ladies Committee (RNSH) who generously provided funds.

I thank the many experts who kindly gave their time to assist in meeting the study aims. David Eager (Associate Professor) and Christopher Chapman (Technical Officer) (Faculty of Engineering UTS) provided advice and tutorials about environmental sound level monitoring and arranged for the loan of a sound level meter gratis. Delwyn Bartlett (Associate Professor, Woolcock Institute, University of Sydney) was a constant source of moral support and provided advice about non-technical aspects of the protocol. Craig Phillips (Research Fellow, Woolcock Institute) was an excellent sounding board and always available to answer my questions. In addition the sleep technologists in the sleep investigation unit (RNSH), especially Debra Hackett, David Bolton and Mohammad Ahmadi, generously shared their expertise and advice regarding PSG techniques.

The sleep technologists, Robyn Knight, Melanie Madronio, Joann Schretzmeyer, Patti Saye and Sara Cooper, were always quick to respond to my requests for information and advice. In particular, I am indebted to Robyn for not only sharing her expertise about the PS2 but also for encouraging me to persevere. I am very grateful to them for persisting with PSG analysis despite the challenges.
Numerous company representatives also contributed to the study. I am grateful to Neil Rawle (Applications Engineer, Bruel & Kjær Australia) who generously and patiently provided technical advice and assistance with the sound level meter software. My thanks go to Nipin Sagar (Sales and Technical Officer, Respironics Philips, Australia) who provided and continues to provide an unparalleled level of service. I am grateful to Nitin Marchareddi (Sales Engineer, Thermo Fisher Scientific) for sharing his expertise on the measurement of illuminance levels.

I am thankful to Ray Raper (Medical Director), Rebecca Riordan (Nurse Manager) and Matt Tinker (Clinical Nurse Consultant) for sanctioning the study and guideline in the intensive care unit at the Royal North Shore Hospital. I am grateful to the health care personnel who worked in the study intensive care unit for engaging with the guideline development process. I am indebted to the bedside nurses who assisted with data collection.

In addition I thank my former colleague and fellow research student, Julie Potter, for her advice, support and the many laughs on the journey. I owe a great deal to Shan Teo for expertly proof reading the final draft of the thesis. I thank her for her timely feedback and for her attention to detail.

My deepest gratitude goes to the intensive care patients who so generously participated allowing me to perform extra monitoring and ask lots of questions. Their altruism and willingness to help in difficult circumstances was humbling.

To my friends I thank you for tolerating my inability to commit to social arrangements and the words of encouragement along the way. Finally I sincerely thank my partner, Steve Nagle, for his support throughout my candidature, in particular for keeping the home computers running and for his telephone computer ‘help desk service’ and the impromptu tutorials on statistics.
1 Introduction .. 1
 1.1 Background to the study ... 1
 1.1.1 Introduction ... 1
 1.1.2 Assessing sleep in ICU .. 1
 1.1.3 Strategies to improve sleep in ICU ... 2
 1.2 The aim of the thesis ... 3
 1.3 Outline of the thesis .. 3

2 Literature review .. 5
 2.1 Introduction ... 5
 2.2 Human sleep architecture during health .. 6
 2.3 The function and control of sleep .. 9
 2.4 Measuring sleep .. 12
 2.4.1 Objective measures ... 13
 2.4.2 Subjective measures ... 16
 2.5 Sleep studies conducted in ICU ... 21
 2.5.1 Objective data .. 22
 2.5.2 Subjective data .. 29
 2.5.3 Factors adversely affecting sleep in the critically ill 33
 2.5.4 Potential strategies to improve sleep in ICU patients 39
4.5.1 Summary of the audit findings ... 108
4.5.2 Insights into the development and implementation process 108
4.5.3 Strengths and limitations of the Guideline and implementation strategies 111
4.6 Conclusion ... 113

5 Results: clinical outcomes ... 114
5.1 Introduction ... 114
5.2 Prevalence of eligible patients ... 115
5.2.1 Preintervention phase .. 115
5.2.2 Postintervention phase .. 115
5.3 Characteristics of all patients treated in the study ICU during the study ... 118
5.4 Characteristics of patients who declined to participate 118
5.5 Sample characteristics ... 119
5.6 Group characteristics ... 120
5.6.1 Pain, anxiety, sedation and conscious level on enrolment 122
5.7 Sleep outcomes ... 125
5.7.1 Objective sleep outcomes: PSG data .. 125
5.7.2 Sleep (PSG) data analysis: intrarater and interrater reliability between the sleep technologists ... 130
5.7.3 Subjective sleep outcomes: Patient subjective reports of sleep quality and nurse estimation of nocturnal sleep time in ICU 131
5.8 Sound outcomes ... 139
5.9 Illuminance level outcomes ... 141
5.10 Frequency of treatment and care activities during sleep recording 142
5.11 Prevalence of other factors known to affect sleep quality 144
List of figures

Figure 1. Mean TST data (during 24-hour recordings in ICU) .. 23

Figure 2. Proportion of stage 1 and 2 sleep (mean percentage of TST during 24-hour recordings in ICU) ... 25

Figure 3. Proportion of slow wave sleep (mean percentage of TST during 24-hour recordings in ICU) ... 26

Figure 4. Proportion of REM sleep (mean±SD percentage of TST during 24-hour recordings in ICU) ... 27

Figure 5. Hypnogram showing an arousal in Stage 1 sleep ... 50

Figure 6. Reference and recommended illuminance levels and their corresponding lux values ... 52

Figure 7. Plan of one of the four patient areas (six bedded rooms: H, G, N and R) in which 24-hour PSG sleep data and illuminance and sound level data collection took place (outline to scale). .. 54

Figure 8. Plan of the five bedded room (J) in which 24-hour PSG sleep and illuminance and sound level data collection took place (outline to scale). .. 55

Figure 9. Position of electrodes used during continuous 24-hour sleep monitoring 64

Figure 10. The procedure for patient recruitment and data collection. 76

Figure 11. Mean process of care audit scores for each practice in the Guideline and the summative index for each audit ... 108

Figure 12. Flow diagram number of patients admitted to the study ICU, screened for the study, declined to participate and enrolled in the preintervention phase 116

Figure 13. Flow diagram number of patients admitted to the study ICU, screened for the study, declined to participate and enrolled in the postintervention phase 117

Figure 14. Hypnograms for three patients (study number one, three and five) 126

Figure 15. Mean number of events during each hour of sleep recording (*p = 0.005) 143

Figure 16. The percentage of responses to agreement items on the ICEQ 150

Figure 17. The percentage of responses to frequency items on the ICEQ 150
List of tables

Table 1. Characteristics of normal sleep during health ... 7
Table 2. Summary of the nature of the quality and duration of sleep patients experience while treated in ICU (measured using PSG) ... 29
Table 3. Summary of the quality and quantity of sleep in patients while treated in ICU (subjective patient reports) .. 32
Table 4. Factors affecting sleep in ICU patients ... 39
Table 5. Outcomes assessed and corresponding instruments used in the ICU Sleep Study 59
Table 6. Stages in the development and implementation of the Guideline 95
Table 7. Characteristics of all patients treated in the ICU during the study 118
Table 8. Characteristics of patients who declined to participate .. 119
Table 9. Sample and group characteristics: gender, age, diagnosis, severity of illness, BMI and deaths during enrolment ... 121
Table 10. Sample and group characteristics: duration of mechanical ventilation, ICU and hospital length of stay and day on which sleep monitoring occurred .. 122
Table 11. Pain intensity and anxiety, sedation and conscious level on enrolment 124
Table 12. Total sleep time (hours) and time in sleep stages (minutes) .. 127
Table 13. Percentage of total sleep time in each stage and percentage of daytime sleep 128
Table 14. Sleep fragmentation (arousal indices and number of awakenings, stage shifts, sleep periods and median sleep period without waking and sleep efficiency at night) ... 129
Table 15: Concordance (intrarater) for sleep technologist one (four recordings) 130
Table 16. Concordance (interrater) for sleep technologists one and two and two and three (16 sleep recordings) .. 131
Table 17. Patients’ subjective sleep quality prior to hospital admission 132
Table 18. Patients’ self-report of sleep quality in ICU and the Hospital ward 133
Table 19: Sleep in intensive care questionnaire (sleep disruptive activities in rank order) .. 134
Table 20: Sleep in intensive care questionnaire (noise disruptions in rank order) 135
Table 21. Content analysis for the SICQ open ended question (6) .. 136
Table 22. Content analysis for the SICQ open ended item (7) ... 136
Table 23. Nurses’ observation of patients’ nocturnal (2000 to 0800 hours) TST in ICU ... 137
Table 24. Self-reported sleep quality at home two months after hospital discharge (PSQI total and component scores) .. 138
Table 25. Content analysis: PSQI question five .. 139
Table 26. Broadband sound levels (dB(A)) ... 140
Table 27. Number of sound peaks (LC̄peak) per hour .. 141
Table 28. Median illuminance levels (lux) ... 142
Table 29. Number of events (patients’ treatment and care activities during sleep recording) .. 143
Table 30. Maximum and minimum ambient temperature during sleep recording in degrees centigrade (°C) .. 144
Table 31. Number of patients with evidence of SIRS .. 145
Table 32. Medications administered during sleep recording: opioids, benzodiazepines and propofol ... 146
Table 33. The number of patients administered beta-blocker*, corticosteroid† and adrenergic‡ medications during sleep recording: .. 147
Table 34. Global and subscale DASS-21 scores .. 148
Table 35. Total and subscale PCL-S scores ... 149
Table 36. Total and domain ICEQ scores .. 151
Table 37. Content analysis for ICEQ open ended questions ... 151
Abstract

Patients in intensive care units (ICUs) frequently experience sleep disruption. Few recent sleep studies using polysomnography (PSG) conducted in ICU are available. Interventional studies to improve sleep in ICU are rare and PSG is infrequently used to evaluate interventions designed to improve sleep in ICU.

The primary aim of the study was to explore ICU patients’ quality and quantity of sleep, using 24-hour PSG recording, patient self-report and nurse nocturnal observation. Secondary aims included an assessment of 24-hour sound and illuminance levels; self-reported sleep quality on the Ward and at home two months after discharge from hospital; patients’ psychological well-being at home two months after discharge from hospital; and the effect of the introduction of a ‘rest and sleep’ guideline.

An exploratory approach was taken in this quasi-experimental study. Thirty patients completed 24-hour PSG sleep recording before the introduction of the Guideline and 23 patients after. The Guideline was developed using a consultative approach in which research evidence and suggestions from ICU health care personnel were incorporated. Audits were conducted in the postintervention phase to assess guideline adoption.

The sample comprised 70% men and the mean age was 58 years. Diagnoses were mainly nonoperative (66%). Fifty-four percent received mechanical ventilation during PSG recording. Median duration of mechanical ventilation was six days and median length of ICU stay was 12 days.

Median total sleep time was five hours. The majority of sleep was stage 1 and 2. There was significant sleep fragmentation (median duration of sleep without waking: 3:15 min:sec). Forty-four per cent of sleep was during the day. There were concerns about the interrater reliability of the PSG data analysis using the Rechtshaffen and Kales criteria (Kappa values: 0.56 and 0.51). Patients’ self-reported sleep in ICU using the Richards Campbell Sleep Questionnaire was poor (mean: 51 mm). Nurses’ estimations of nocturnal
sleep were higher than the PSG derived value. Sound levels exceeded international standards for hospitals. Night-time illuminance levels were appropriately low. The introduction of the Guideline did not appear to result in an improvement in sleep however Guideline uptake was limited.

This investigation revealed the need for alternative methods of analysing ICU patients’ PSG data. The study protocol demonstrates the feasibility of conducting further extensive investigations into potential relationships between patients’ sleep disruption and outcomes. The method in which the Guideline was developed may be of interest to other clinicians wishing to develop guidelines when research evidence is limited.