Space, time, economics and asphalt
An investigation of induced traffic growth caused by urban motorway expansion and the implications it has for the sustainability of cities

Doctor of Philosophy in Sustainable Futures
By Michelle E Zeibots
2007
Statement of original authorship

I certify that the work in this thesis has not previously been submitted for a degree, nor has it been submitted as part of the requirements for a degree, except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of candidate:

Michelle Elaine Zeibots
Acknowledgements

I would very much like to thank my supervisors, Professor Stuart White (Director of the Institute for Sustainable Futures) and Dr Glen Searle (Director of Planning), for their encouragement and guidance throughout the course of my candidature. Their insights and support have made my PhD journey less arduous. I would also like to thank Dr Chris Riedy for his reading of thesis drafts and carefully considered suggestions about structure and presentation, all of which have enhanced the lucidity of the final product.

I am particularly indebted to Associate Professor Peter Petocz from the Department of Statistics at Macquarie University. I had the opportunity to collaborate with Peter on some of the statistical analysis presented in Chapter Five. Our collaboration is ongoing and I look forward to being able to resolve the issues that our analysis to date has raised.

Associate Professor Cynthia Mitchell — who heads the postgraduate research program at the Institute for Sustainable Futures — provided a wonderful environment in which to undertake a transdisciplinary thesis of this kind. Ann Hobson’s advice on layout and ways of wrestling with the beast called Microsoft Word was particularly helpful. Pat Skinner’s careful proofreading has eliminated many mistakes and reduced a great deal of potential irritation for readers.

I am also indebted to Dr Tim Pharoah, Jason Torrance, Dr Tim Rayner, John Elliot and Paul Moore for their willingness to discuss urban motorway development and induced traffic growth analysis in the UK.

I very much need to thank Peter Mills for his interest in transport and systems theory as well as his willingness to read and discuss several of my chapter drafts. Dr Hugh Outhred was also generous with his time and knowledge of systems theory. Mary-Jane Gleeson provided invaluable support with her insights into NSW State Government politics and documents relating to the M4 East Motorway proposal in Sydney.
My good friend Dr Felix Laube provided a sounding-board for ideas as did Dr Rolf Bergmaier. I am indebted to them both for their great love of transport as well as their insights into the Swiss Federal Railway system.

I would also like to acknowledge the assistance given to me by RailCorp and the Transport Technology section of the Roads & Traffic Authority of NSW. In particular, Garry McDonald, Cynthia Wallace, Adrian Lewis and Ian Kearnes assisted me with rail data. Ray Daltry, Barry Armstrong and Dorothy Ferry assisted me with road traffic data.

And last, but surely not least, I would like to thank my father John Zeibots, whose love of science and organic chemistry inspired me as a child; my mother Ruth Zeibots, who loved me and supported me through the really difficult periods in a way that only mothers can; my sister Simone Zeibots, who talked me through my worst doubts and some of the more interesting aspects of system feedback processes in geological rock formations, and my brother Richard Zeibots, who made sure the lights in my house worked during the last, long, dark, tea-time of the write-up.
This thesis is dedicated to the memory of

Mary-Jane Gleeson

1964 – 2007

who loved cities, the people who live in them and fought hard to

improve the transport systems that support them
Table of contents

1 URBAN MOTORWAYS AND SUSTAINABILITY: INTRODUCTION TO THE RESEARCH PROBLEM .. 1

1.1 Cities and sustainable development .. 5
 1.1.1 Models and conceptions of sustainable development ... 7
 1.1.2 Urban inputs: oil dependency in cities ... 14
 1.1.3 Urban outputs: greenhouse gas emissions and global climate change .. 17
 1.1.4 Urban exchange: trade between cities and economic sustainability .. 20
 1.1.5 Principles for sustainable urban transport development .. 23

1.2 Access and urban transport ... 24
 1.2.1 Three city typologies ... 25
 1.2.2 Accessibility and congestion in auto-based city systems ... 31

1.3 Urban motorway development and induced traffic growth ... 33
 1.3.1 Definition of induced traffic growth: a contested phenomenon ... 33
 1.3.2 The ‘counter-productive’ nature of urban motorway development .. 40
 1.3.3 Research questions about induced traffic growth and the implications it has for the sustainability of cities ... 46

1.4 Positioning the research problem and contribution using General Systems Theory as an intellectual framework .. 47
 1.4.1 Positioning the research within conventional disciplinary boundaries ... 47
 1.4.2 General Systems Theory (GST): an alternative to reductionism ... 50
 1.4.3 What type of system is a city and what role do transport networks play? ... 53

1.5 The thesis structure: review, observation, theory and application ... 54
 1.5.1 Review: the strange life and controversial times of an urban system feedback process 54
 1.5.2 Observation: before and after Sydney’s M4 Motorway ... 56
 1.5.3 Theory: a systems theory of cities and travel ... 57
 1.5.4 Application: combining observation and theory to address emerging sustainability problems 58

2 THE CONTROVERSIAL LIFE AND TIMES OF AN URBAN SYSTEM FEEDBACK PROCESS: POLITICS AND INDUCED TRAFFIC GROWTH STUDIES .. 60

2.1 A soft systems model of the motorway decision-making system ... 64
 2.1.1 The science of soft and hard system distinction .. 65
 2.1.2 Development of a soft system model of the decision-making process to approve or reject an urban motorway proposal ... 69

2.2 A road through the madding crowd: the structure of urban motorway conflicts ... 79
 2.2.1 SACTRA, Roads to Prosperity and the last link in London’s M25 motorway .. 80
 2.2.2 Induced traffic growth in the context of Sydney motorway proposal assessment procedures 97
 2.2.3 Changes to commodities of power: motorway building in Zürich under the Swiss system of direct democracy ... 108

2.3 When governments fall: political crisis as a cause for change in accepted transport science .. 116

3 BEFORE AND AFTER THE MOTORWAY: EMPIRICAL ANALYSES OF INDUCED TRAFFIC GROWTH .. 122
3.1 The standard norms of empirical science and their application to testing for
induced traffic growth .. 124
3.1.1 Boundary conditions ... 125
3.1.2 Data types, controlling for variation and the repeatability of results 127

3.2 SACTRA and the generation of traffic .. 130

3.3 Testing for induced traffic by observing changes to traffic volumes across
screenslines .. 134
3.3.1 Purnell, Beardwood and Elliott’s studies of London motorways 134
3.3.2 Crow and Younes study of the Rochester Way Relief Road 142
3.3.3 Cairns, Hass-Klau and Goodwin’s analyses of induced traffic growth in reverse and the
closure of Hammersmith Bridge ... 146
Conclusions .. 152

3.4 Induced traffic growth studies using travel survey data 152
3.4.1 Wilcock’s survey of the Rochester Way Relief Road near London 153
3.4.2 Kroes, Daly, Gunn and van der Hoorn’s study of the Amsterdam Ring Road 155
Conclusions .. 158

3.5 Induced traffic growth studies using aggregate VKT data and time series
regression .. 159
3.5.1 Hansen and Huang’s time series regression analysis of changes to highway capacity and VMT
in California ... 160
3.5.2 Prakash, Oliver and Balcombe’s arguments against the induced traffic growth hypothesis ... 163
3.5.3 Cervero’s path analysis .. 164
Conclusions .. 168

3.6 Induced traffic growth studies in Australia .. 168
3.6.1 Luk and Chung’s analysis of Melbourne’s South Eastern Arterial 169
3.6.2 Mewton’s analysis of the Sydney Harbour Tunnel and Gore Hill Freeway 175
Conclusions .. 178

4 THEORETICAL EXPLANATIONS OF INDUCED TRAFFIC GROWTH... 179

4.1 Calculation procedures for demand modelling .. 184
4.1.1 Traffic is like water: an overview of four-step and assignment modelling 185
4.1.2 Activity models ... 188
4.1.3 Incorporating induced traffic growth in demand models 189

4.2 Explanations for induced traffic growth using microeconomic evaluation 189
4.2.1 Microeconomic evaluation of speed–flow–cost relationships 190
4.2.2 Marginal utility theory and economic happiness .. 194

4.3 The Mogridge conjecture and the Downs/Thomson paradox 202
4.3.1 Downs’ law of peak-hour traffic congestion ... 204
4.3.2 Thomson’s great cities and their traffic ... 208
4.3.3 Criticism of the Mogridge conjecture ... 213

4.4 Conclusions .. 218

5 BEFORE AND AFTER THE MOTORWAY: AN EMPIRICAL ANALYSIS OF
SYDNEY’S M4 MOTORWAY ... 219

5.1 Typology of the Sydney transport network ... 220

5.2 Sydney’s M4 corridor ... 227
5.2.1 Analysis of the M4 Motorway and Western Sydney road network ... 228
 Data: annual average daily traffic volumes ... 229
 Method: comparative traffic counts on Screenline 12 ... 255
 Results: confirmation of the induced traffic growth hypothesis 260
5.2.2 Analysis of the Western Sydney rail network ... 261
 Data: passenger journeys on the Sydney CityRail network 262
 Method: time series regression .. 266
 Results: method too insensitive to isolate a signal .. 268
5.2.3 Conclusions ... 272

5.3 Anatomy of a motorway ramp-up period .. 273
 5.3.1 The ramp-up period for the M4 Motorway section from Mays Hill to Prospect 274
 5.3.2 The Sydney Harbour Tunnel .. 276

5.4 Conclusions .. 277

6 A SYSTEMS THEORY OF INDUCED TRAFFIC GROWTH ... 278

6.1 The material structure of urban systems .. 280
 6.1.1 The structure of positive and negative system feedback processes 282
 6.1.2 Travel time budget constancy and the control of urban systems 285
 The empirical evidence for travel time budget constancy 286
 The nature of the system controller of the transport system 290
 6.1.3 Induced traffic growth as a form of positive system feedback 293
 6.1.4 The relationship of travel time budget constancy and induced traffic growth to other urban transport parameters ... 298
 Speed and journey distances .. 298
 Urbanised area and relative distance to the urban centre 299
 Urban density ... 302
 Population size .. 304
 6.1.5 The travel time budget fuzzy controller hypothesis 306
 Summary ... 308

6.2 Phase transitions between city typologies ... 309
 6.2.1 The mechanics of urban systems .. 310
 Congestion ... 312
 Network geometry and new capacity ... 314
 Segregated carriageways .. 318
 6.2.2 Phase transitions .. 323
 Summary ... 324

6.3 Leverage points in the urban system: where small shifts produce big changes... 324

7 MOTORWAYS AND THE SUSTAINABILITY OF CITIES ... 329

7.1 Oil dependency and energy economics .. 332
 7.1.1 Peak oil and current global production ... 333
 7.1.2 Energy Profit Ratios .. 338
 7.1.3 Alternative transport fuels: their quality and quantity 341
 7.1.4 Adaptation of urban transport systems in response to oil depletion 343

7.2 Climate change and the city ... 345
 7.2.1 The relationship between urban systems and the natural processes of climate change 347
 7.2.2 Communication links and material solutions ... 348
 7.2.3 Induced traffic growth and its implications for climate change and the sustainability of cities 351

7.3 The city as an economic engine ... 352
7.3.1 Cities as units of economic organisation .. 353
7.3.2 Cities engaged in trade and competition ... 356
7.3.3 Changes to urban structure and access caused by motorway development 357

7.4 Political decision-making systems and sustainability 358

8 CONCLUSIONS ... 360

APPENDIX A ... 364

9 REFERENCES .. 365
List of Figures

Figure 1.1 The three pillars of sustainability model ... 8
Figure 1.2 Changes to decision-making frameworks for ecological sustainability 10
Figure 1.3 Oil production scenarios ... 15
Figure 1.4 Fuel use for private cars vs urban density .. 16
Figure 1.5 CO2 emissions from urban passenger transport (private and public transport) ... 18
Figure 1.6 Comparative advantages for infrastructure costs in low-and high-density cities... 21
Figure 1.7 Average VKT and percentage of metropolitan GDP spent on transport (1995) ... 22
Figure 1.8 Walking-city typology ... 25
Figure 1.9 Walking-city building form ... 26
Figure 1.10 Transit-city typology .. 27
Figure 1.11 Transit-city building form ... 28
Figure 1.12 Auto-city typology ... 29
Figure 1.13 Auto-city building form ... 30
Figure 1.14 Road space and congestion costs in US cities (1982–1996) 32
Figure 1.15 AADT volumes for Sydney’s M4 Motorway and Great Western Hwy ... 34
Figure 1.16 VKT vs road length per capita for 78 international cities (1995) 36
Figure 1.17 Definitions of existing and induced traffic and trips .. 39
Figure 1.18 Estimation of marginal cost savings arising from a proposed urban motorway ... 42
Figure 1.19 Metropolitan GDP spent on operating private transport vs road space (1995) .. 44
Figure 1.20 Metropolitan GDP spent on total passenger transport vs road space (1995) .. 45
Figure 1.21 Disciplines supported by General Systems Theory 51
Figure 3.5 Traffic growth in Westway, Finchley Road and Old Brompton Road corridors ... 140

Figure 3.6 Rochester Way Relief Road and surrounding network 143

Figure 3.7 Hammersmith Bridge and other crossings along the River Thames 148

Figure 3.8 Amsterdam Ring Road ... 155

Figure 3.9 Observed changes in crossing time of the North Sea Canal 156

Figure 3.10 Elasticity results of near- and longer-term path model analyses 166

Figure 3.11 Melbourne’s south-eastern metropolitan area .. 170

Figure 3.12 12-hour traffic volumes for control sites .. 173

Figure 3.13 Sydney Harbour Tunnel and other bridge crossings of Sydney Harbour .. 176

Figure 4.1 The Speed–Flow–Cost relationship ... 190

Figure 4.2 The effect of User Costs on road improvements .. 192

Figure 4.3 Addition of road space in uncongested conditions 193

Figure 4.4 Addition of road space under congested conditions 194

Figure 4.5 Average direct speeds of morning peak-hour journeys to the centre of London ... 203

Figure 4.6. The Downs/Thomson paradox: increasing road capacity vs. improving collective transport ... 208

Figure 4.7. Thomson’s five city topologies .. 210

Figure 4.8 Average direct speeds of morning peak-hour journeys to the centre of London ... 215

Figure 5.1 Sydney’s tram and railway network in 1923 .. 221

Figure 5.2 Successive strategic plans for the Sydney Metropolitan Region, 1951 – 1995 ... 223

Figure 5.3 Sydney Metroad System ... 225

Figure 5.4 Motorway plans for Sydney featuring the Sydney Orbital, 2000 226

Figure 5.5 Screenlines for the Sydney Road Network .. 227

Figure 5.6 Sequence of M4 Motorway section constructions 228
Figure 5.7 Seasonal fluctuations in Average Daily Traffic volumes over 13 (four-week) periods for the Great Western Hwy (70.001) during 1985 ... 231

Figure 5.8 Incomparable AADT counts for the M4 Motorway and Great Western Hwy (1983–1996) ... 232

Figure 5.9 Comparison of ADT volumes for March and August for the Great Western Hwy during 1992 (TEC traffic stations) .. 234

Figure 5.10 AADT counts for the M4 Motorway (71.002) and Great Western Hwy (70.001) from 1983 to 1996 with comparable data types 235

Figure 5.11 Location of RTA and TEC traffic stations on M4 Motorway and Great Western Hwy ... 236

Figure 5.12 Roads on Screenline12 in Western Sydney Region .. 237

Figure 5.13 AADT counts for Windsor Road (88.046) from 1985 to 1996 showing axle pairs and vehicle numbers ... 240

Figure 5.14 AADT counts for Richmond Road (71.059) from 1985 to 1996 showing axle pairs and vehicle numbers ... 243

Figure 5.15 Intersection configuration of Elizabeth Drive and Walgrove Road on Screenline 12 ... 247

Figure 5.16 Estimation of missing data at Elizabeth Drive intersection ... 250

Figure 5.17 AADT counts for six key trunk routes along Screenline 12 ... 260

Figure 5.18 Rail and motorway trunk routes in Sydney’s western sector .. 263

Figure 5.19 Estimated passenger journeys for Western Sydney and Blue Mountains rail services (1988/89 – 1996/97) ... 264

Figure 5.20 Estimated passenger journeys for Richmond rail services (1988/89 – 1996/97) ... 265

Figure 5.21 Rail trunk routes in Sydney’s southern sector ... 269

Figure 5.22 Daily traffic counts for the GWH and M4 Motorway on Screenline 12 274

Figure 5.23 Daily traffic volumes for the Sydney Harbour Tunnel and Sydney Harbour Bridge .. 276

Figure 6.1 Basic components of a system feedback process ... 282

Figure 6.2 Multiple system feedback processes .. 284
Figure 6.3 Average daily travel time budgets for a selection of international populations ... 286

Figure 6.4 Average journey-to-work travel time budgets for 23 cities (1990) 287

Figure 6.5 Average travel time budgets by mode for South Yorkshire 288

Figure 6.6 Typical tasks that form a daily routine ... 291

Figure 6.7 Induced traffic growth feedback process nested within complex city system 294

Figure 6.8 Intrinsic and extrinsic system feedback processes ... 296

Figure 6.9 Average journey length and speed for the journey-to-work in 31 international cities (1990) .. 299

Figure 6.10 Changes in transport speed and urbanised area in Berlin 300

Figure 6.11 Induced traffic growth feedback process and location decision feedback process .. 301

Figure 6.12 Average per capita travel time for all trips in Melbourne 302

Figure 6.13 Urban density and average travel times for the journey-to-work in 28 cities (1990) .. 303

Figure 6.14 Travel time budgets and population size for Asian, European and US cities (1990) .. 305

Figure 6.15 Travel time budgets for the journey-to-work in Sydney (2000) 307

Figure 6.16 Statistical distribution shift due to population increases 308

Figure 6.17 Travel time contours for trips to Sydney CBD by car under ideal conditions (2000) ... 311

Figure 6.18 Travel time contours for trips to Sydney CBD by car in AM peak period (2000) .. 313

Figure 6.19 Travel time contours for journeys by car from Penrith before the opening of the M4 Motorway from Mays Hills to Prospect (1992) 315

Figure 6.20 Travel time budget contours for journeys by car from Penrith after the opening of the M4 Motorway from Mays Hills to Prospect (1992) 316

Figure 6.21 Travel time budget contours for journeys by car and rail from Penrith before opening of the M4 Motorway from Mays Hill to Prospect (1992) 317
Figure 6.22 Travel time budget contours for journeys by car and rail from Penrith after the opening of the M4 Motorway from Mays Hill to Prospect (1992)............ 318

Figure 6.23 Travel time contours for journeys by train and walking to the Sydney CBD in the AM peak (2000).. 319

Figure 6.24 Aerial view of Eastern Sydney showing high-density development at rail stations.. 320

Figure 6.25 Travel time budget contours for journeys by car and rail from Sydney CBD (2000).. 321

Figure 7.1 Urban and global system nesting configuration .. 330

Figure 7.2 Conceptual structure of peak oil... 334

Figure 7.3 EPR profile for oil and gas production (Louisiana, USA)......................... 339

Figure 7.4 Feedback relationship between natural biosphere and human-made systems ... 347

Figure 7.5 Prud’homme’s ladder of mobility ... 355
List of Tables

Table 3.1 Vehicles per day for Brentford High Street and Great West Road London . 131
Table 3.2 24 Hour two-way traffic flows before and after opening of Westway 136
Table 3.3 24-hour two-way flows in Westway, Finchley Road and Old Brompton Road corridors ... 139
Table 3.4 Summary of before and after studies by Purnell, Beardwood and Elliott 142
Table 3.5 Traffic counts for western screenline, Rochester Way Relief Road (18-hour, two-way veh/day) ... 144
Table 3.6 Traffic counts for eastern screenline, Rochester Way Relief Road (18-hour, two-way veh/day) ... 144
Table 3.7 Traffic counts for transverse roads crossing the Rochester Way Relief Road (18-hour, two-way veh/day) .. 145
Table 3.8 Traffic before and after closure of the Hammersmith Bridge in February 1997 ... 149
Table 3.9 Average daily traffic volumes for seven bridges .. 151
Table 3.10 User responses to the Rochester Way Relief Road 154
Table 3.11 Traffic counts across the North Sea Canal in Amsterdam (24-hour flows, vehicles per day) ... 158
Table 3.12 Growth rate (per year) for arterial roads in Melbourne’s south-east corridor (1985–1995) .. 171
Table 3.13 Corridor counts and growth rate (1985–1995) ... 174
Table 3.14 Results from Mewton’s regression analyses .. 177
Table 5.1 Annual passenger trips in the Sydney Region 1946–1981 222
Table 5.2 AADT counts for the M4 Motorway and Great Western Hwy showing values from permanent and sample traffic stations from 1983 to 1996 233
Table 5.3 Rigid and articulated truck traffic composition (2002) 238
Table 5.4 AADT counts for Windsor Road (88.046) from 1983 to 1996 239
Table 5.5 AADT counts for Richmond Road (71.059) from 1983 to 1996 242
Table 5.6 AADT counts for Power Street (71.096 and 71.172) from 1985 to 1996 showing axle pairs and vehicle numbers .. 244
Table 5.7 AADT counts for Eastern Road (71.067) from 1983 to 1996 245
Table 5.8 AADT counts for Elizabeth Drive (64.033) from 1983 to 1996 248
Table 5.9 AADT counts for Walgrove Road (65.013) from 1983 to 1996 249
Table 5.10 Calculation of AADT for 64.022 for 1993 ... 251
Table 5.11 AADT counts for Elizabeth Drive (64.022) from 1983 to 1996 251
Table 5.12 AADT counts for Bringelly Road (64.097) from 1983 to 1996 254
Table 5.13 AADT for six key trunk routes along Screenline 12 256
Table 5.14 AADT counts for rigid and articulated heavy vehicles on trunk routes along Screenline 12 using M4 conversion rates for Richmond Road 257
Table 5.15 AADT counts for rigid and articulated heavy vehicles on trunk routes along Screenline 12 using Windsor Road conversion rates for Richmond Road 258
Table 5.16 AADT for six key trunk routes along Screenline 12 (using Windsor Road heavy-vehicle conversion rates) ... 259
Table 5.17. Trip rates for rail ticket types .. 264
Table 5.18 P-values, R-square values and coefficients of M4 from cubic regressions . 268
Table 5.19 P-values, R-square values and coefficients of M4 from regressions with lagged variables for the WSRL and IRL ... 270
Table 5.20 P-values, R-square values and coefficients of M4 from regressions with lagged variables for the WSRL and IRL using Bankstown data to control for service level changes ... 271
Table 6.1 Logistical features of different transport modes .. 314
Table 6.2 Places to intervene in a system ... 325
Table 7.1 EPR values for a range of energy sources .. 343
Table 7.2 Responses to greenhouse gas emissions from the transport sector 349
Abbreviations and units

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>Annual Average Daily Traffic</td>
</tr>
<tr>
<td>AAPG</td>
<td>American Association of Petroleum Geologists</td>
</tr>
<tr>
<td>ABS</td>
<td>Australian Bureau of Statistics</td>
</tr>
<tr>
<td>ADT</td>
<td>Average Daily Traffic</td>
</tr>
<tr>
<td>AGO</td>
<td>Australian Greenhouse Office</td>
</tr>
<tr>
<td>AP</td>
<td>Accounting Period</td>
</tr>
<tr>
<td>ASPO</td>
<td>Association for the Study of Peak Oil</td>
</tr>
<tr>
<td>ARIMA</td>
<td>Auto-Regressive Integrated Moving Average</td>
</tr>
<tr>
<td>ARR</td>
<td>Amsterdam Ring Road</td>
</tr>
<tr>
<td>BRL</td>
<td>Bankstown Rail Line</td>
</tr>
<tr>
<td>BRF</td>
<td>British Roads Federation</td>
</tr>
<tr>
<td>CART</td>
<td>Citizens Against Route Twenty</td>
</tr>
<tr>
<td>CBA</td>
<td>Cost–Benefit Analysis</td>
</tr>
<tr>
<td>CBD</td>
<td>Central Business District</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>DOTARS</td>
<td>Department of Transport and Regional Services</td>
</tr>
<tr>
<td>EPR</td>
<td>Energy Profit Ratio</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>Gb</td>
<td>Giga barrels</td>
</tr>
</tbody>
</table>
GDP Gross Domestic Product
GHE Gore Hill Expressway
GLC Greater London Council
GLDP Greater London Development Plan
GRI Global Reporting Initiative
GRP Gross Regional Product
GST General Systems Theory
GWH Great Western Highway
HBR Homes Before Roads
HMSO Her Majesty’s Stationery Office
IBRD International Bank for Reconstruction and Development
ICLEI International Council on Local Government Initiatives
IEA International Energy Agency
IPCC Intergovernmental Panel on Climate Change
IRL Illawarra Rail Line
ISF Institute for Sustainable Futures (University of Technology, Sydney)
ISTP Institute for Sustainability and Technology Policy (Murdoch University)
LATA London Amenity and Transport Association
LMAG London Motorway Action Group
MIIM Macquarie Infrastructure Investment Management
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP</td>
<td>Member of Parliament</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-government Organisation</td>
</tr>
<tr>
<td>NRMA</td>
<td>National Roads and Motorists Association</td>
</tr>
<tr>
<td>NS</td>
<td>Natural Step</td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value</td>
</tr>
<tr>
<td>OD</td>
<td>Origin and Destination</td>
</tr>
<tr>
<td>PTRC</td>
<td>Planning Transport, Research and Computation</td>
</tr>
<tr>
<td>RRL</td>
<td>Richmond Rail Line</td>
</tr>
<tr>
<td>RTA</td>
<td>Roads & Traffic Authority of New South Wales</td>
</tr>
<tr>
<td>RWRR</td>
<td>Rochester Way Relief Road</td>
</tr>
<tr>
<td>SACTRA</td>
<td>Standing Advisory Committee on Trunk Route Assessment</td>
</tr>
<tr>
<td>SARS</td>
<td>Severe Acute Respiratory Syndrome</td>
</tr>
<tr>
<td>SDP</td>
<td>State Domestic Product</td>
</tr>
<tr>
<td>SEAC</td>
<td>State of the Environment Advisory Council</td>
</tr>
<tr>
<td>SHLM</td>
<td>State Highway Lane Miles</td>
</tr>
<tr>
<td>SHB</td>
<td>Sydney Harbour Bridge</td>
</tr>
<tr>
<td>SHT</td>
<td>Sydney Harbour Tunnel</td>
</tr>
<tr>
<td>SMH</td>
<td>Sydney Morning Herald</td>
</tr>
<tr>
<td>SSD</td>
<td>Sydney Statistical Division</td>
</tr>
<tr>
<td>SSM</td>
<td>Soft Systems Methodology</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>STPP</td>
<td>Surface Transportation Policy Project</td>
</tr>
<tr>
<td>TBL</td>
<td>Triple Bottom Line</td>
</tr>
<tr>
<td>TDC</td>
<td>Transport Data Centre</td>
</tr>
<tr>
<td>TPDC</td>
<td>Transport and Population Data Centre</td>
</tr>
<tr>
<td>UITP</td>
<td>International Association (Union) of Public Transport Providers</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>US</td>
<td>United States (of America)</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geographical Survey</td>
</tr>
<tr>
<td>VKT</td>
<td>Vehicle Kilometres Travelled</td>
</tr>
<tr>
<td>WCED</td>
<td>World Commission on Environment and Development</td>
</tr>
<tr>
<td>WSRL</td>
<td>Western Sydney Rail Line</td>
</tr>
</tbody>
</table>
List of sole and joint publications by the author

Conference presentations

Newspaper articles

Zeibots, M. E. 1999, ‘Heading off along the road to nowhere’ in Sydney Morning Herald, 4 January.

Abstract

This thesis investigates the implications that urban motorway development has for the sustainability of cities. It does this by focusing on the sudden increase in road traffic that follows after the opening of additional motorway capacity, known as induced traffic growth, and asking whether induced traffic growth affects the ability of an urban system to sustain its essential economic functions. The investigation also addresses how urban systems impact on the biosphere.

Induced traffic growth, and the urban motorway development responsible for it, are often cited as a threat to sustainability because they are seen to increase fuel consumption and air pollution without necessarily improving accessibility within a city. Opponents to urban motorway construction claim that it merely represents a reshuffling of system elements, such that the spatial relationships between transport and land-use are changed, but the amount of time spent travelling, and the number of economic exchanges made by people, remain much the same. Motorway development advocates refute these claims, arguing that motorway construction reduces travel times, cuts emissions and fuel consumption and increases economic activity, thereby enhancing sustainability.

While it should be possible to resolve these issues through a program of empirical analysis, the phenomenon remains contested, raising questions about why and how its contested status affects transport decision-making and transport science. These questions are answered in this thesis by first investigating the social and political context in which debate over induced traffic growth has taken place. To do this, Soft Systems Methodology is used to investigate the way in which conflicts over urban motorway development have been resolved in London, Sydney and Zürich. The comparative analysis highlights differences between the rules of the political decision-making systems in each of the cities, and how these distribute power to different groups within society. While the history of conflicts is similar in each of the cities, more power is given to special interest groups from industry in London and Sydney. By contrast, the system in Zürich gives more power to resident populations through its system of
direct democracy. Consequently, urban motorway development, the induced traffic growth it gives rise to and the impacts they have on city operations are acted upon in Zürich to the extent that transport policy has focused more on the development of comprehensive public transport systems. This leads to the conclusion that the contested status of induced traffic growth is more a product of the socio-economic goals of particular interest groups within society than it is of shortcomings in the empirical record or essentially unresolved theoretical issues.

With the political context as background, the thesis then reviews the empirical analyses and theoretical explanations for the phenomenon. First, a review of past empirical analyses is undertaken to identify the grounds that have been cited to refute the induced traffic growth hypothesis. Two key areas are identified. The first involves difficulties with distinguishing the sources of induced traffic growth from traffic reassignment. The second concerns the absence of traffic data for routes that are potential alternatives to a new motorway from which traffic reassignment may have taken place. A case study of the M4 Motorway in Sydney is presented with data for all arterial through-routes that cross relevant screenlines, thereby overcoming several of the shortcomings identified in the review. This case study adds to the general literature of case studies that corroborate the induced traffic growth hypothesis, but provides the first substantial documented case for an Australian city.

A review of the theoretical explanations for the phenomenon finds that while both microeconomic evaluation and standard modelling procedures provide accounts for the phenomenon that meet institutional expectations of technical veracity, neither constitutes a substantial description of the causal mechanism for the phenomenon, leaving unanswered questions about some findings in the empirical record. This conclusion prompts the development of a systems-based explanation for induced traffic growth that defines it as a form of multiple system feedback processes controlled by a travel budget time constant. By accounting for the phenomenon and its effects in this way, an explanation is provided for changes to travel behaviour and patterns of land-use development that reveals how urban motorway development affects urban systems in an holistic way.
The final section of the thesis combines the insights gained by examination of the politics of the transport decision-making system with empirical analyses and theoretical explanations for induced traffic growth, to produce a general systems view of cities and their place within the earth’s biosphere. This treatment considers the problems of oil depletion and global climate change, and the effects that urban motorway development has on the ability of urban systems to adapt to changes in the system environment brought about by these problems. The thesis concludes that urban motorway development and the processes that it triggers, which are embodied in the phenomenon of induced traffic growth, can undermine a city’s comparative ability to sustain the accessibility needs of its residents.