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Abstract

This paper outlines a novel iterative decoding technique
for a rate K/N convolutional code based on recurrent
neural network (RNN) with stopping criterion. The
algorithm is introduced by describing the theoretical
models of the encoder and decoder. In particular this
paper focuses on the investigation of a stopping criterion
on the iterating procedure in order to minimize the
decoding timeyet still obtain an optimal BER perfor mance.
The simulation results of a rate 1/2 and 2/3 encoders
respectively in comparison with the conventional Viterbi
decoder are also presented.

1. Introduction

The Viterbi algorithm (VA) was proposed in 1967 [1]
and it is known as an optimum method for decoding
convolutional code in sequential estimation based o
maximum likelihood (ML) estimation [2, 3]. Later pthe
algorithm is developed intturbo codes, which recently
becomes very popular in digital communication. Agé&a
amount of research is devoted in designing andrigtig
the turbo codes in order to achieve minimum biberate
(BER) while maintaining adequate data rate [4-6].
However, the complexity of the Viterbi algorithntheases
exponentially with the number of constraint lengfhthe
encoder [7]. As a result, this algorithm becomesemo
challenging and resource-exhaustive for modern
communication applications where the constraingtierin
the convolutional code can easily reach up to severine
[8].

Recently, researchers are finding different altévea to
VA, hoping to combat exactly this issue. This heexdl to
the proposal of many suboptimal decoding technicQes
of the techniques that have caught more atterdioné that
is based on neural networks (NN).

Neural networks (NN) are based on the biological
structure of the mammalian brain. There are several
properties which makes this structure very attvacfor
digital communication applications. Some of these

properties include: highly parallelized structuaglaptive
processing, self-organization, and efficient handwa
implementation [8, 9]. In particularly their caphtigs to
solve complex non-linear problems make this stmectu
well-suited for decoding convolutional code, whitdelf is

a non-linear process.

Initially neural networks have only been limited to
predicting errors for turbo decoders [7, 10], opfgimize
and enhance the transmission protocols [7].

However, during the recent years, there is a strong
emphasis on designing new decoding algorithms yurel
based on the advantages of neural networks. In,1296
artificial neural net Viterbi decoder was proposedl1].
The Viterbi Algorithm was implemented using artiic
analog neurons. It was also noted that the propdseadder
fit very well for VLSI circuits. In 2000, anotheromel
convolutional decoder is proposed using recurreuiral
network [12]. It has shown that its performancerapphes
very close to VA and it can be easily implementad i
hardware.

In 2003, two further researches are attempted on
recurrent neural network (RNN) decoders [13, 14eT
preliminary results all reinforce the promising BER
performance of the RNN decoder. However, due to the
inherent nature of the iterative process, it ididift to
reduce the decoding time if the number of iteratibas to
be arbitrarily chosen for each encoder. On therdthrad, it
is undesirable to sacrifice the decoder’'s perfocaaby
restricting on an under-estimated iteration numfdris
issue has never been properly addressed by anjopsev
researches.

Therefore the motivation for this paper is to inmpéant
an efficient stopping criterion on the RNN decothat can
automatically identify the minimal iteration numbeich
would still give a near-optimum result in the leéiste.
Furthermore, some other parameters such as thetmizk
are also investigated in order to optimize theltesumuch
as possible.



2. Theoretical Background the encoder becomes a process of mapphtgianensional
coded vector,y(t) = [yo, Y1---» Vs---» ¥n], from a

21 Theoretical Model of the Encoder K-dimensional message vectbt) = [by(t), ba(t), ..., b(t),

Consider a rat/N convolutional encoder that generates "’ bi(D)], via
a set of codedl bits for a set oK message bits at input of L
the encoder at time instahtas shown in figure 1. The y.(t) = L—I{ - bK(T0+t+1—ik)g”k"k} (3)
encoder is composed & sub-encoders defined by their A 4=
own constraint lengthy, Ly, ..., L, ....L, where generally  The received bits will also bi-bits which have been
each sub-encoder can have its unique constraigthien corrupted by additive white Gaussian noise.

The bits contained in tHd" sub-encoder cells are
denoted by (To+t-iy+1), and-r0 =max(, ): wherei, =1, 2, .
k 2.2. Theoretical Model of the Decoder
The decoder’s task is to find an estimate of a segel of
message bits that is the closest to the sourceages®ing
sent. The problem of decoding then can be defireed a

...Lx. Each cell in the sub-encoder is connected to each
output node of the encoder through the combinaifche
feedback logic depicted in figure 1.

Wit problem of finding the minimum difference betwedr t
— ' message sequence sent and that one received, @r as
ba(t) gt n® 8 yrn®m  minimization problem of theoise energy function defined
ba(t-1) | W(t) as, "
Listage O | 720 p[]—>rat) f(b)—iZN: r (t+s)- s b, (T, +t+s+1-i )g;,k
ba(t-2) ] : S=| " H rl ° -
i i V\ﬁ(t) 4
ba(t-La+1) R RALCE IR RS The gradient descent algorithm is employed to rrizem
bx(®) . the function by sequentially estimating a singlfitoim the
previous estimate and the gradient of the fundsarsed as
Ly stage br(t-1) an updating factor, i.e.,
K : _ of (b) (5)
bk(t-Lx+1) AN B () new = B (1) am
Encoder Channel where the last term is the gradient updating facidre
Figure 1. The structural diagram of the encoder, AWGN partial differential in respect ta(t) can be derived as
channel and the received data. of (b) o &L
- 7 =(-2 .
TYEEREACE

Hence the encoder can be represented by an impulse

response matrix that contains all sub-matrices feaoh K ook o5
; r(t+s+a-1 t+s+a—i )" —b.(t+a)"«
sub-encoder, i.e., n( )D !;llbk( Wb (t+a)

g= [gt giz cee gtk cee gEK ] (]_) i #S (6)

h . . .
and the k' su?}-matnx, which represents the impulse \yhere the variabla denotes the index of referred bit in the
response of thie” sub-encoder, is expressed as message sequence at decoding tirfidnis forms a basis of
~ ~ a neuron that is used for decoding through suocgessi
9, 9 - Oy, o Oy estimations.
gk g k eve gk ) eve gk . . . .
Lo Tk T 2) 3. Iterative Decoding Techniques

k

9, =
It is obvious that (5) implies that the decodingqassing

: : - itself becomes an iterative procedure. Theoreticalarger
Oh: O%e - Oy, O number of iterations should always yield a more
N N satisfactory result because the successive estimatn
tend closer to the actual value. The cost howegethe
long decoding time required. Therefore at this pain

k k k k
Ou Gn2 - gnik gnLk

To reduce the mathematical complexity, polar magpin
of additive group {0, 1} is mapped into multipliced
group of {1, -1}, similar to [7] for block codes.hErefore



becomes critical to have a suitable strategy that c
minimize the decoding time without sacrificing treerall

processing time with a degraded performance. Toergh
method is proposed that is a combination of both

performance too much. This issue was never formallyapproaches, or can be regarded as an extensiomeof t

addressed before.
proposed to deal with this difficulty.

3.1. Fixed iterations

The easiest method would be simply to fix on a
pre-determined number of iterations on the decotter.
totally becomes a designer’s decision to force tadl
received information to pass through the requitehtions
before producing any output. The advantage ofrtieithod
is that the designer can have greatest contrdieitdrative
process which is directly linked to the overallfpemance
of the decoder. However, without prior knowledgetba
behavior of the encoder, it is very easy to setaon
‘overly-estimated’ large number. As a result, notyathe
final estimation can not give the performance gam
expected for the extra iteration cycles, it mayrelead to a
worse outcome, compared with a smaller number o
iterations. This problem is particular evident #osingle
input encoder as demonstrated in the simulationltes
shown in the latter section.

3.2. Stopping Criterion

Another approach is to set a stopping criteriompito
the iterative procedure. Once this criterion is ,ntbe
iterative estimation will terminate immediatelygegdless
of the iteration number. This means that each cedor
will not necessarily terminate on the same numbler o
iteration. The designer can no longer decide orit¢hnation
number because it has becomes an unpredictabte.fact

One of the criterions is defined by the following
condition: terminate the iteration if two successiv
iterations yield the same estimate of the sourcesage. In
another word, it basically asks decoder to stojnesing if
it is situated into a local minimum of the noisadtion.
Hence adapting this criterion implies that the diog time
can be kept to a minimal while still obtain a rezsue
estimate. However because this simple criteriokddhe
sophistication so that the minimum point it fousdisually
not a good strong local minima or even the globiainma
of the function, therefore performance loss is itadble.
This finding is later confirmed from the simulaticesults.

3.3. Extension of Stopping Criterion

In this section, three methods arsecond one.

While still employing the same stopping criteridhis
time the decoded estimate is forced to pass thraugted
minimum number of iterations before the criteri@nde
triggered. From simulation results, it shows thetttthis
minimum threshold can be a value as small as five.
Furthermore, it is observed that this modificataam lead
to a significant performance gain compared with the
previous method for only an increase of 10% deaptiine.
Therefore, at the time of investigation, this beesna
favorable approach that generates the best redhiileast
time.

4. Simulation Examples

Two encoders with rate 1/2 and 2/3, which have been

fanalyzed in [13] and [14] respectively are usestenfied

the theoretical findings. Only the final formulagea
presented in this paper.

4.1. Example 1. 1/2 Encoder

Consider a rate 1/2 encoder with constraint lergyth
which has the impulse generator matrix:

100
9711 0 1

The estimation rule can be derived as,

b(t) e =1/ 31, )1, €0 E—2)+1, ¢+ 20 €+ 2] (7)
This update rule allows the decoder to estimataricolar
bit at timet, using the combination of the received signal
and the previous estimate. This relationship can be
represented using a neuron diagram, which has been
illustrated clearly in [15].

One decoding cycle is completed when every message
bit has been estimated from the received sequémdbe
next cycle, the most recent message estimate ibinerh
with the same received sequence to produce anoéver
estimate. The iterative process continues untieeia fixed
number has been reached or the stopping criteeeroben
triggered.

Parallel processing is possible for such network by
connecting multiple neurons together to form a detep
neural network. Thus the overall processing spesdbe
further increased. This is one of the distinct adages of

The two approaches mentioned above all have its ownthis algorithm compared with other conventional mefs,

advantages and disadvantages: the first methodleays
yield a good result but generally requires a loegatling

such as the Viterbi algorithm.

time whereas the second can shorten the required



4.2. Example 2: 2/3 Encoder 5.1. Effect of Packet Size

Another examp|e of an encoder with a h|gher rat2/3f The main ObjeCtive in this simulation is to iananb the

has the generator matrix as: effect of different packet sizes for the RNN deaod€&he
1000011 simulatedEy/N, span is from 0 to 4 dB. A total of 50k test

g :[g g, ]: 0100101 bits are sent across, in order to truly reflectBtEeR in the

b1 Pk 0100100 specified SNR range, according to [16]. The packitss

simulated were: 8, 16, 32 and 64 bits per packathE
) ~ packet is transferred independently, and the nundaber
Using the general formulae of (5) and (6), & speCif jierations is fixed at 50 cycles without the stoppi

update rule for this encoder can be developed into: criterion.
n (b, (t =1)b,(t - 2), (- 3) g The results summarized in figure 2 and 3 show tinat
B, (1),e = =| Hr(t+Db,(t + Db, ¢ — 1) ®) packet size does not impose too much effect foodeicA,
+1,(t +1)b, (t + Lo, ¢ - 2) whereas the effect is more significant for a minlpiut

1 encoder B. A possible reason for this is becausth®f
B, () e = ;[fz(t)bl(t =Db,(t = 2)+r,(t),t - 1p,t - 3) header registers that are in front of the messigeadt as a
fect estimate for the beginning few bits. Aslérgth of
+1, (t+1)b, (t+ 1), ¢t ~ 1p, ¢ - 2 per ! . .
(4L (t+ 1D, ~1b, ¢~ 2) the message increases, such effect is gradualipidmad,

o (t+2)b, (t+ 2)0, (t + 1P, ¢~ 1) therefore lead to the growing errors.

+,(t+2)b (t+ b, ¢ + 2) Nevertheless, the encoder A can have a BER that is
+,(t+3)b (t +3)b, ¢+ 2D, ¢ + 1) comparable and somewhat close to the soft-decision
+1,(t+3)b, (t + 2)b, ¢ + 3) Viterbi decoder. The performance margin between the

) RNN decoder and the VA decoder for encoder B is als
very small too (even better in some cases), inlgmaaket

Slzes.

This encoder is important to study because it is a

desirable characteristic for a coding scheme te euith a . .
multi-user environment. Traditional Viterbi decoslemd Therefore it can be concluded that the transmjitezket

turbo codes are only limited to a single input aedce are size will have somg impact on ,the decoder’s. BER
less suitable for modern large communication system Performance depending on the choice of the enc@der

Therefore the investigation of this encoder carifyene  Particular a single input or a multi-input one). &g as
capability of this algorithm for processing muldpl the size is kept reasonable small (around 8 bitpaeket),

simultaneous data streams and the potential for the"en the RNN decoder is able provide an impressive
algorithm to be applied on a multi-user network. performance.

Performance of the RNN Decoder (ENC:1/2) for Different Packet Sizes

5. Smulation Results and Discussion 10

A simulated digital communication system was 10® ,,

implemented to validate the BER performance of suchm
decoding scheme using the two encoders mentiontitein 247

. . [—2—RNN-8 :
previous section. The rate 1/2 encoder and rater&i8der —4—RNN-16 . ;
will be named as encoder A and B respectively fihin ol T e i ' S
point on for convenience. i T neretcal | e
All simulations were conducted by calculating theRB ; ; : ; : ‘ : | |
0 0.5 3 35 4

from transferring the encoded random binary message
sequences in different packet sizes through an AWGN
channel and decode with the recurrent neural n&twor Figure 2. BER of the RNN decoder for a rate 1/2 encoder in
(RNN) decoder. In addition, uncoded BPSK and different packet sizes.

conventional soft-decision Viterbi decoders areoals

implemented in the simulation as a benchmark for

comparison.

1.5 2 25
Eb/No (dB)
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Figure 3. BER of the RNN decoder for a rate 2/3 encoder in
different packet sizes.

5.2. Effect of Different Iterations

It is critical to study the effect of different nier of
iteration for the RNN decoder in order to find tgimum
number, which is especially useful in implementing first
method of the decoding techniques discussed earlier

The simulation result from figure 4 indicates tliat
encoder A the BER drops sharply after a few initiadles
of iterations, then errors begin to rise againtagaiion
number continue to increase. This implies that sigher
must be very cautious not to allow the iteratioogedure to
carry on further than the necessary value. Othernist
only extra decoding time is wasted, more undesrahiors
are bound to occur, which ends up as a ‘lose-kisgation.

This problem is not so evident for encoder B, asish
from figure 5. However encoder B would take a fearen
iterations than encoder A to reach a more stablR.BHhis
is especially more obvious for larger packet si2dter the
errors have settled, then it remains reasonablgtaahfor
the rest of the iterations. Therefore this simolatividly
illustrates that it is unnecessary to locate tlobdgl minima
of noise energy function, defined in (4), throutgratively
estimate the message. This is because the locanenin
would not have too much difference with the glabalima
since the errors always converge to a constant sdi@e

small value of iterations.
Performance of the RNN Decoder (ENC:1/2) for Different [terations
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Figure 4. BER of the RNN decoder for a rate 1/2 encoder in
different iterations at a SNR of 2 dB.
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Iteration Number

Figure 5. BER of the RNN decoder for a rate 2/3 encoder
in different iterations at a SNR of 2 dB.

5.3. Effect of Stopping Criterion

This simulation is comparing the performance of
employing the simple stopping criterion and theeagton
of this criterion. Other than the final BER, théhext key
aspect that is noticed from this simulation is #vwerage
iterations required to reach the stopping criteriemding
the decoding procedure. This parameter is important
because it directly relates to the required pranggsne of
the decoder.

For both encoders, the maximum number of iteration
allowed is set to 30, in case that the stoppirtgiéon (S.C.)
is never reached. The extension S.C. simply adds a
minimum threshold of 5 iterations before the cidarcan
be triggered. The packet size is fixed to 8 bitsisTesult
can be summarized in the following table,

Table 1. Average iterations required to reach the stopping
criterion for both encoders.
Encoder A (rate 1/2) Encoder B (rate 2/3)

Stopping Extension Stopping Extension
Criterion of S.C. Criterion of S C.
Av
erage 3.04 6.02 4.6 6.3
Iterations

Both encoders coherently require around 10% more
decoding time after the new extension of the simple
stopping criterion is applied. Nevertheless, réferrto
figure 6 and 7, the BER has decreased significaaftigr
this adjustment. This improvement is especiallgert on
a high SNR. Furthermore, for both encoders, the BER
curves provided by the RNN decoder after the meatibn
are almost identical or even better than the catiweal
Viterbi decoder. Therefore this small loss in tleeading
time due to the threshold requirement can be easily
compensated by its outstanding decoding performance
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Figure 6. BER of the RNN decoder for a rate 1/2 encoder
under stopping criterion and stopping criterion with a

minimum of 5 iterations.

Decoding Performance of the RNN Desoder (ENC: 2/3)
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Figure 7. BER of the RNN decoder for a rate 2/3 encoder
under stopping criterion and stopping criterion with a

minimum of 5 iterations.

6. Conclusions

In conclusion, a novel iterative decoding technitprea
general rateK/N convolutional code based on neural
network is presented in this paper. From the resoft
simulation, it indicates that as long as appropriat
parameters are carefully chosen: specifically dlgraaket
size accompanied by a suitable stopping critettmmnRNN
decoder has the potential to outperform the troualti
Viterbi Algorithm. Moreover, this algorithm can leasily
adapted for a multi-user environment as its supfart
multiple-input encoders. Therefore this decodingesce

(3]

[4]

[5]

(6]
[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

may possess great values for modern and future

communication systems.
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