
 

 

Iterative Decoding of K/N Convolutional Codes based on 
Recurrent Neural Network with Stopping Criterion 

 
Johnny W. H. Kao, Stevan M. Berber 

Department of Electrical and Computer Engineering, University of Auckland 
jkao004@ec.auckland.ac.nz, s.berber@auckland.ac.nz 

 
 

Abstract 
This paper outlines a novel iterative decoding technique 
for a rate K/N convolutional code based on recurrent 
neural network (RNN) with stopping criterion. The 
algorithm is introduced by describing the theoretical 
models of the encoder and decoder. In particular this 
paper focuses on the investigation of a stopping criterion 
on the iterating procedure in order to minimize the 
decoding time yet still obtain an optimal BER performance. 
The simulation results of a rate 1/2 and 2/3 encoders 
respectively in comparison with the conventional Viterbi 
decoder are also presented. 
 
 

1. Introduction 
 
The Viterbi algorithm (VA) was proposed in 1967 [1] 

and it is known as an optimum method for decoding 
convolutional code in sequential estimation based on 
maximum likelihood (ML) estimation [2, 3]. Later on, the 
algorithm is developed into turbo codes, which recently 
becomes very popular in digital communication. A large 
amount of research is devoted in designing and optimizing 
the turbo codes in order to achieve minimum bit error rate 
(BER) while maintaining adequate data rate [4-6]. 
However, the complexity of the Viterbi algorithm increases 
exponentially with the number of constraint length of the 
encoder [7]. As a result, this algorithm becomes more 
challenging and resource-exhaustive for modern 
communication applications where the constraint length in 
the convolutional code can easily reach up to seven or nine 
[8]. 

Recently, researchers are finding different alternatives to 
VA, hoping to combat exactly this issue. This has lead to 
the proposal of many suboptimal decoding techniques. One 
of the techniques that have caught more attention is one that 
is based on neural networks (NN). 

Neural networks (NN) are based on the biological 
structure of the mammalian brain. There are several 
properties which makes this structure very attractive for 
digital communication applications. Some of these 

properties include: highly parallelized structure, adaptive 
processing, self-organization, and efficient hardware 
implementation [8, 9]. In particularly their capabilities to 
solve complex non-linear problems make this structure 
well-suited for decoding convolutional code, which itself is 
a non-linear process. 

Initially neural networks have only been limited to 
predicting errors for turbo decoders [7, 10], or to optimize 
and enhance the transmission protocols [7]. 

However, during the recent years, there is a strong 
emphasis on designing new decoding algorithms purely 
based on the advantages of neural networks. In 1996, an 
artificial neural net Viterbi decoder was proposed in [11]. 
The Viterbi Algorithm was implemented using artificial 
analog neurons. It was also noted that the proposed decoder 
fit very well for VLSI circuits. In 2000, another novel 
convolutional decoder is proposed using recurrent neural 
network [12]. It has shown that its performance approaches 
very close to VA and it can be easily implemented in 
hardware.  

In 2003, two further researches are attempted on 
recurrent neural network (RNN) decoders [13, 14]. The 
preliminary results all reinforce the promising BER 
performance of the RNN decoder. However, due to the 
inherent nature of the iterative process, it is difficult to 
reduce the decoding time if the number of iterations has to 
be arbitrarily chosen for each encoder. On the other hand, it 
is undesirable to sacrifice the decoder’s performance by 
restricting on an under-estimated iteration number. This 
issue has never been properly addressed by any previous 
researches. 

Therefore the motivation for this paper is to implement 
an efficient stopping criterion on the RNN decoder that can 
automatically identify the minimal iteration number, which 
would still give a near-optimum result in the least time. 
Furthermore, some other parameters such as the packet size 
are also investigated in order to optimize the result as much 
as possible. 

 
   



 

2. Theoretical Background 
 
2.1. Theoretical Model of the Encoder 

Consider a rate K/N convolutional encoder that generates 
a set of coded N bits for a set of K message bits at input of 
the encoder at time instant t, as shown in figure 1. The 
encoder is composed of K sub-encoders defined by their 
own constraint length L1, L2, …, Lk, …,LK, where generally 
each sub-encoder can have its unique constraint length. 

The bits contained in the kth sub-encoder cells are 
denoted by bk(T0+t-ik+1), and 

0 max( )k
k

T L= , where ik=1, 2, 

…Lk. Each cell in the sub-encoder is connected to each 
output node of the encoder through the combination of the 
feedback logic depicted in figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The structural diagram of the encoder, AWGN 
channel and the received data.  

 
Hence the encoder can be represented by an impulse 

response matrix that contains all sub-matrices from each 
sub-encoder, i.e., 
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and the kth sub-matrix, which represents the impulse 
response of the kth sub-encoder, is expressed as 
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To reduce the mathematical complexity, polar mapping 
of additive group {0, 1} is mapped into multiplicative 
group of {1, -1}, similar to [7] for block codes. Therefore 

the encoder becomes a process of mapping a N-dimensional 
coded vector, γ n(t) = [γ

0, 
γ

1,…, γ
s,…, γ

N], from a 
K-dimensional message vector, b(t) = [b1(t), b2(t), …, bk(t), 
…, bK(t)], via 
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The received bits will also be N-bits which have been 
corrupted by additive white Gaussian noise. 

 

2.2. Theoretical Model of the Decoder 
The decoder’s task is to find an estimate of a sequence of 

message bits that is the closest to the source message being 
sent. The problem of decoding then can be defined as a 
problem of finding the minimum difference between the 
message sequence sent and that one received, or as a 
minimization problem of the noise energy function defined 
as, 
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(4) 
The gradient descent algorithm is employed to minimize 

the function by sequentially estimating a single bit from the 
previous estimate and the gradient of the function is used as 
an updating factor, i.e., 
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where the last term is the gradient updating factor. The 
partial differential in respect to bk(t) can be derived as 
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      (6) 
where the variable a denotes the index of referred bit in the 
message sequence at decoding time t. This forms a basis of 
a neuron that is used for decoding through successive 
estimations. 

3. Iterative Decoding Techniques 
 
It is obvious that (5) implies that the decoding processing 

itself becomes an iterative procedure. Theoretically a larger 
number of iterations should always yield a more 
satisfactory result because the successive estimation can 
tend closer to the actual value. The cost however, is the 
long decoding time required. Therefore at this point it 
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becomes critical to have a suitable strategy that can 
minimize the decoding time without sacrificing the overall 
performance too much. This issue was never formally 
addressed before. In this section, three methods are 
proposed to deal with this difficulty. 

 

3.1. Fixed iterations 
The easiest method would be simply to fix on a 

pre-determined number of iterations on the decoder. It 
totally becomes a designer’s decision to force all the 
received information to pass through the required iterations 
before producing any output. The advantage of this method 
is that the designer can have greatest control on the iterative 
process which is directly linked to the overall performance 
of the decoder. However, without prior knowledge on the 
behavior of the encoder, it is very easy to set on an 
‘overly-estimated’ large number. As a result, not only the 
final estimation can not give the performance gain as 
expected for the extra iteration cycles, it may even lead to a 
worse outcome, compared with a smaller number of 
iterations. This problem is particular evident for a single 
input encoder as demonstrated in the simulation results 
shown in the latter section. 

 

3.2. Stopping Criterion 
Another approach is to set a stopping criterion prior to 

the iterative procedure. Once this criterion is met, the 
iterative estimation will terminate immediately, regardless 
of the iteration number. This means that each code vector 
will not necessarily terminate on the same number of 
iteration. The designer can no longer decide on the iteration 
number because it has becomes an unpredictable factor. 

One of the criterions is defined by the following 
condition: terminate the iteration if two successive 
iterations yield the same estimate of the source message. In 
another word, it basically asks decoder to stop estimating if 
it is situated into a local minimum of the noise function. 
Hence adapting this criterion implies that the decoding time 
can be kept to a minimal while still obtain a reasonable 
estimate. However because this simple criterion lacks the 
sophistication so that the minimum point it found is usually 
not a good strong local minima or even the global minima 
of the function, therefore performance loss is inevitable. 
This finding is later confirmed from the simulation results. 

 

3.3. Extension of Stopping Criterion 
The two approaches mentioned above all have its own 

advantages and disadvantages: the first method can always 
yield a good result but generally requires a long decoding 
time whereas the second can shorten the required 

processing time with a degraded performance. Therefore, a 
method is proposed that is a combination of both 
approaches, or can be regarded as an extension of the 
second one. 

While still employing the same stopping criterion, this 
time the decoded estimate is forced to pass through a fixed 
minimum number of iterations before the criterion can be 
triggered. From simulation results, it shows that that this 
minimum threshold can be a value as small as five. 
Furthermore, it is observed that this modification can lead 
to a significant performance gain compared with the 
previous method for only an increase of 10% decoding time. 
Therefore, at the time of investigation, this becomes a 
favorable approach that generates the best result in the least 
time. 

4. Simulation Examples 
 
Two encoders with rate 1/2 and 2/3, which have been 

analyzed in [13] and [14] respectively are used to verified 
the theoretical findings. Only the final formulae are 
presented in this paper. 

 

4.1. Example 1: 1/2 Encoder 
Consider a rate 1/2 encoder with constraint length 3, 

which has the impulse generator matrix:  
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The estimation rule can be derived as, 
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This update rule allows the decoder to estimate a particular 
bit at time t, using the combination of the received signal 
and the previous estimate. This relationship can be 
represented using a neuron diagram, which has been 
illustrated clearly in [15]. 

One decoding cycle is completed when every message 
bit has been estimated from the received sequence. In the 
next cycle, the most recent message estimate is combined 
with the same received sequence to produce another new 
estimate. The iterative process continues until either a fixed 
number has been reached or the stopping criterion has been 
triggered. 

Parallel processing is possible for such network by 
connecting multiple neurons together to form a complete 
neural network. Thus the overall processing speed can be 
further increased. This is one of the distinct advantages of 
this algorithm compared with other conventional methods, 
such as the Viterbi algorithm. 



 

4.2. Example 2: 2/3 Encoder 
Another example of an encoder with a higher rate of 2/3 

has the generator matrix as: 
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Using the general formulae of (5) and (6), a specific 

update rule for this encoder can be developed into:  
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(9) 
This encoder is important to study because it is a 

desirable characteristic for a coding scheme to cope with a 
multi-user environment. Traditional Viterbi decoders and 
turbo codes are only limited to a single input and hence are 
less suitable for modern large communication systems. 
Therefore the investigation of this encoder can verify the 
capability of this algorithm for processing multiple 
simultaneous data streams and the potential for the 
algorithm to be applied on a multi-user network. 

5. Simulation Results and Discussion 
 
A simulated digital communication system was 

implemented to validate the BER performance of such 
decoding scheme using the two encoders mentioned in the 
previous section. The rate 1/2 encoder and rate 2/3 encoder 
will be named as encoder A and B respectively from this 
point on for convenience. 

All simulations were conducted by calculating the BER 
from transferring the encoded random binary message 
sequences in different packet sizes through an AWGN 
channel and decode with the recurrent neural network 
(RNN) decoder. In addition, uncoded BPSK and 
conventional soft-decision Viterbi decoders are also 
implemented in the simulation as a benchmark for 
comparison. 

 

5.1. Effect of Packet Size 
The main objective in this simulation is to investigate the 

effect of different packet sizes for the RNN decoder.  The 
simulated Eb/No span is from 0 to 4 dB. A total of 50k test 
bits are sent across, in order to truly reflect the BER in the 
specified SNR range, according to [16]. The packets sizes 
simulated were: 8, 16, 32 and 64 bits per packet. Each 
packet is transferred independently, and the number of 
iterations is fixed at 50 cycles without the stopping 
criterion. 

The results summarized in figure 2 and 3 show that the 
packet size does not impose too much effect for encoder A, 
whereas the effect is more significant for a multi-input 
encoder B. A possible reason for this is because of the 
header registers that are in front of the message bits act as a 
perfect estimate for the beginning few bits. As the length of 
the message increases, such effect is gradually diminished, 
therefore lead to the growing errors. 

Nevertheless, the encoder A can have a BER that is 
comparable and somewhat close to the soft-decision 
Viterbi decoder. The performance margin between the 
RNN decoder and the VA decoder for encoder B is also 
very small too (even better in some cases), in small packet 
sizes.  

Therefore it can be concluded that the transmitted packet 
size will have some impact on the decoder’s BER 
performance depending on the choice of the encoder (in 
particular a single input or a multi-input one). As long as 
the size is kept reasonable small (around 8 bits per packet), 
then the RNN decoder is able provide an impressive 
performance. 

 

 
 
Figure 2.  BER of the RNN decoder for a rate 1/2 encoder in 
different packet sizes. 
 



 

 
Figure 3.  BER of the RNN decoder for a rate 2/3 encoder in 
different packet sizes. 
 

5.2. Effect of Different Iterations 
It is critical to study the effect of different number of 

iteration for the RNN decoder in order to find the optimum 
number, which is especially useful in implementing the first 
method of the decoding techniques discussed earlier. 

The simulation result from figure 4 indicates that for 
encoder A the BER drops sharply after a few initial cycles 
of iterations, then errors begin to rise again as iteration 
number continue to increase. This implies that a designer 
must be very cautious not to allow the iteration procedure to 
carry on further than the necessary value. Otherwise not 
only extra decoding time is wasted, more undesirable errors 
are bound to occur, which ends up as a ‘lose-lose’ situation. 

This problem is not so evident for encoder B, as shown 
from figure 5. However encoder B would take a few more 
iterations than encoder A to reach a more stable BER. This 
is especially more obvious for larger packet sizes. After the 
errors have settled, then it remains reasonably constant for 
the rest of the iterations. Therefore this simulation vividly 
illustrates that it is unnecessary to locate the global minima 
of noise energy function, defined in (4), through iteratively 
estimate the message. This is because the local minima 
would not have too much difference with the global minima 
since the errors always converge to a constant after some 
small value of iterations. 

 
Figure 4.  BER of the RNN decoder for a rate 1/2 encoder in 
different iterations at a SNR of 2 dB. 

 
Figure 5.   BER of the RNN decoder for a rate 2/3 encoder 
in different iterations at a SNR of 2 dB. 
 

5.3. Effect of Stopping Criterion 
This simulation is comparing the performance of 

employing the simple stopping criterion and the extension 
of this criterion. Other than the final BER, the other key 
aspect that is noticed from this simulation is the average 
iterations required to reach the stopping criterion, ending 
the decoding procedure. This parameter is important 
because it directly relates to the required processing time of 
the decoder.  

For both encoders, the maximum number of iteration 
allowed is set to 30, in case that the stopping criterion (S.C.) 
is never reached. The extension S.C. simply adds a 
minimum threshold of 5 iterations before the criterion can 
be triggered. The packet size is fixed to 8 bits. This result 
can be summarized in the following table, 
 
Table 1.  Average iterations required to reach the stopping 
criterion for both encoders. 

Encoder A (rate 1/2) Encoder B (rate 2/3)  
Stopping 
Criterion 

Extension 
of S. C. 

Stopping 
Criterion 

Extension 
of S. C. 

Average 
Iterations 

3.04 6.02 4.6 6.3 

 
Both encoders coherently require around 10% more 

decoding time after the new extension of the simple 
stopping criterion is applied. Nevertheless, referring to 
figure 6 and 7, the BER has decreased significantly after 
this adjustment. This improvement is especially evident on 
a high SNR. Furthermore, for both encoders, the BER 
curves provided by the RNN decoder after the modification 
are almost identical or even better than the conventional 
Viterbi decoder. Therefore this small loss in the decoding 
time due to the threshold requirement can be easily 
compensated by its outstanding decoding performance. 

 



 

 
Figure 6.   BER of the RNN decoder for a rate 1/2 encoder 
under stopping criterion and stopping criterion with a 
minimum of 5 iterations. 
 

 
Figure 7.   BER of the RNN decoder for a rate 2/3 encoder 
under stopping criterion and stopping criterion with a 
minimum of 5 iterations. 

6. Conclusions 
 
In conclusion, a novel iterative decoding technique for a 

general rate K/N convolutional code based on neural 
network is presented in this paper. From the results of 
simulation, it indicates that as long as appropriate 
parameters are carefully chosen: specifically a small packet 
size accompanied by a suitable stopping criterion, the RNN 
decoder has the potential to outperform the traditional 
Viterbi Algorithm. Moreover, this algorithm can be easily 
adapted for a multi-user environment as its support for 
multiple-input encoders. Therefore this decoding scheme 
may possess great values for modern and future 
communication systems. 
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