TY - JOUR
AB - Many existing results on statistical learning theory are based on the assumption that samples are independently and identically distributed (i.i.d.). However, the assumption of i.i.d. samples is not suitable for practical application to problems in which samples are time dependent. In this paper, we are mainly concerned with the empirical risk minimization (ERM) based learning process for time-dependent samples drawn from a continuous-time Markov chain. This learning process covers many kinds of practical applications, e.g., the prediction for a time series and the estimation of channel state information. Thus, it is significant to study its theoretical properties including the generalization bound, the asymptotic convergence, and the rate of convergence. It is noteworthy that, since samples are time dependent in this learning process, the concerns of this paper cannot (at least straightforwardly) be addressed by existing methods developed under the sample i.i.d. assumption. We first develop a deviation inequality for a sequence of time-dependent samples drawn from a continuous-time Markov chain and present a symmetrization inequality for such a sequence. By using the resultant deviation inequality and symmetrization inequality, we then obtain the generalization bounds of the ERM-based learning process for time-dependent samples drawn from a continuous-time Markov chain. Finally, based on the resultant generalization bounds, we analyze the asymptotic convergence and the rate of convergence of the learning process. © 2012 IEEE.
AU - Zhang, C
AU - Tao, D
DA - 2012/12/01
DO - 10.1109/TNNLS.2012.2217987
EP - 1883
JO - IEEE Transactions on Neural Networks and Learning Systems
PY - 2012/12/01
SP - 1872
TI - Generalization bounds of ERM-based learning processes for continuous-time markov chains
VL - 23
Y1 - 2012/12/01
Y2 - 2020/07/07
ER -