TY - JOUR
AB - As many data mining applications involve networked data with dynamically increasing volumes, graph stream classification has recently extracted significant research interest. The aim of graph stream classification is to learn a discriminative model from a stream of graphs represented by sets of edges on a complex network. In this paper, we propose a fast graph stream classification method using DIscriminative Clique Hashing (DICH). The main idea is to employ a fast algorithm to decompose a compressed graph into a number of cliques to sequentially extract clique-patterns over the graph stream as features. Two random hashing schemes are employed to compress the original edge set of the graph stream and map the unlimitedly increasing clique-patterns onto a fixed-size feature space, respectively. The hashed cliques are used to update an "in-memory" fixed-size pattern-class table, which will be finally used to construct a rule-based classifier. DICH essentially speeds up the discriminative clique-pattern mining process and solves the unlimited clique-pattern expanding problem in graph stream mining. Experimental results on two real-world graph stream data sets demonstrate that DICH can clearly outperform the compared state-of-the-art method in both classification accuracy and training efficiency. © Springer-Verlag 2013.
AU - Chi, L
AU - Li, B
AU - Zhu, X
DA - 2013/12/01
DO - 10.1007/978-3-642-37453-1_19
EP - 236
JO - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
PY - 2013/12/01
SP - 225
TI - Fast graph stream classification using discriminative clique hashing
VL - 7818 LNAI
Y1 - 2013/12/01
Y2 - 2021/06/17
ER -