A comparison of digital elevation models generated from different data sources

Publisher:
Elsevier
Publication Type:
Journal Article
Citation:
Geomorphology, 2009, 106 (3-4), pp. 261 - 270
Issue Date:
2009-01
Filename Description Size
Thumbnail2008003112OK.pdf2.24 MB
Adobe PDF
Full metadata record
It can be challenging to accurately determine the topography of physically complex landscapes in remote areas. Ground-based surveys can be difficult, time consuming and may miss significant elements of the landscape. This study compares digital elevation models (DEMs) generated from three different data sources, of the physically complex Narran Lakes Ecosystem, a major floodplain wetland ecosystem in Australia. Topographic surfaces were generated from an airborne laser altimetry (LiDAR) survey, a ground-based differential GPS (DGPS) survey containing more than 20,000 points, and the 9? DEM of Australia. The LiDAR- and DGPS-derived data generated a more thorough DEM than the 9? DEM; however, LiDAR generated a surface topography that yielded significantly more detail than the DGPS survey, with no noticeable loss of elevational accuracy. Both the LiDAR- and the DGPS-derived DEMs compute the overall surface area and volume of the largest floodplain lake within the system to within 1% of each other. LiDAR is shown to be a highly accurate and robust technique for acquiring large quantities of topographic data, even in locations that are unsuitable for ground surveying and where the overall landscape is of exceptionally low relief. The results of this study highlight the potential for LiDAR surveys in the accurate determination of the topography of floodplain wetlands. These data can form an important component of water resource management decisions, particularly where environmental water allocations for these important ecosystems need to be determined
Please use this identifier to cite or link to this item: