A state-of-the-art protocol to minimize the internal concentration polarization in forward osmosis membranes

Publication Type:
Journal Article
Citation:
Desalination, 2020
Issue Date:
2020-01-01
Full metadata record
© 2020 Elsevier B.V. The main reason for the lower water flux, than expected, in the forward osmosis (FO) process, is the internal concentration polarization (DICP). Usually, the structural parameter (S) is used as an indicator of the intensity of DICP. Small S value is desirable for the FO membrane due to the low DICP. However, due to design and construction problems, structural parameter reduction has some drawbacks. In this work, DICP reduction in FO membranes will be investigated using an approach other than structural parameter reduction. Accordingly, during the FO process, the feed solution (FS) valve is opened and closed at a constant period of time (feed valve timing (FVT)). Four types of FO membranes with different S parameters were used. The effects of the implementation of the proposed protocol on the water flux (Jw), reverse salt flux (Js), specific reverse solute flux (Js/Jw) and effective driving force were investigated. The effects of the S parameter and draw solution (DS) concentration also investigated separately. The results showed that the proposed protocol significantly increased Jw. Also, the values of Js/Jw decreased with increasing the FVT values and reached the lowest level in the practical recovery time (PRT).
Please use this identifier to cite or link to this item: