Accumulation of cyanobacterial oxadiazine nocuolin A is enhanced by temperature shift during cultivation and is promoted by bacterial co-habitants in the culture

Publication Type:
Journal Article
Citation:
Algal Research, 2019, 44
Issue Date:
2019-12-01
Filename Description Size
1-s2.0-S2211926419302061-main.pdfPublished Version733.89 kB
Adobe PDF
Full metadata record
© 2019 Elsevier B.V. Proper setting of cultivation conditions is essential for production of high-value compounds in microbial biotechnology. The present study characterizes photoautotrophic growth and capacity to accumulate the antiproliferative secondary metabolite Nocuolin A (NoA) in cyanobacterium Nostoc sp. CCAP 1453/38. As the cyanobacterial culture was found to be non-axenic, the bacteria accompanying the culture were characterized, then the growth demands and NoA production in the Nostoc-bacterial consortium were determined, and finally an axenic strain was prepared. For the purposes of growth characterization, the culture was maintained in a quasi-continuous regime under various light intensities, temperatures, and inorganic carbon concentrations in a small-scale laboratory photobioreactor. The maximum biomass growth rate obtained was 0.10 h−1 (doubling time Dt = 6.93 h). Following optimal growth conditions were identified: temperature of 35 °C, light intensity 600 μmol(photons) m−2 s−1, and 2500 ppm CO2 in the sparging gas. As the temperature optima for the biomass production and for NoA accumulation differed, biphasic cultivation for maximal NoA yield was designed, leading to a three times more effective cultivation procedure compared to batch culture maintained at a temperature optimal for NoA production. The increased NoA accumulation at reduced temperature that correlated with enhanced expression of NoA biosynthetic genes after the temperature shift suggested its regulation occurs at the expression level. It has further been shown that NoA production is reduced in axenic culture, which indicates that it is also triggered by presence of bacteria. This study shows an example of how a biphasic cultivation mode with different temperatures can be used in high-value compound production processes. It also brings direct evidence that cyanobacterial strain axenization can lead to a rapid decrease in production of valuable compounds and that non-axenic strains may be considered more suitable for retrieval and initial production of novel pharmaceutical leads.
Please use this identifier to cite or link to this item: