Link prediction with signed latent factors in signed social networks

Publisher:
ACM
Publication Type:
Conference Proceeding
Citation:
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, pp. 1046-1054
Issue Date:
2019-07-25
Filename Description Size
3292500.3330850.pdfPublished version1.54 MB
Adobe PDF
Full metadata record
© 2019 Association for Computing Machinery. Link prediction in signed social networks is an important and challenging problem in social network analysis. To produce the most accurate prediction results, two questions must be answered: (1) Which unconnected node pairs are likely to be connected by a link in future? (2) What will the signs of the new links be? These questions are challenging, and current research seldom well solves both issues simultaneously. Additionally, neutral social relationships, which are common in many social networks can affect the accuracy of link prediction. Yet neutral links are not considered in most existing methods. Hence, in this paper, we propose a signed latent factor (SLF) model that answers both these questions and, additionally, considers four types of relationships: positive, negative, neutral and no relationship at all. The model links social relationships of different types to the comprehensive, but opposite, effects of positive and negative SLFs. The SLF vectors for each node are learned by minimizing a negative log-likelihood objective function. Experiments on four real-world signed social networks support the efficacy of the proposed model.
Please use this identifier to cite or link to this item: