Any 2 Circle Times N Subspace Is Locally Distinguishable

Publisher:
Amer Physical Soc
Publication Type:
Journal Article
Citation:
Physical Review A, 2011, 84 (1), pp. 1 - 3
Issue Date:
2011-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2010004644.pdf89.86 kB
Adobe PDF
A subspace of a multipartite Hilbert space is said to be locally indistinguishable if any orthonormal basis of this subspace cannot be perfectly distinguished by local operations and classical communication. Previously it was shown that any m . n bipartite system with m > 2 and n > 2 has a locally indistinguishable subspace. However, it has been an open problem since 2005 whether there is a locally indistinguishable bipartite subspace with a qubit subsystem.We settle this problem in negative by showing that any 2 . n bipartite subspace contains a basis that is locally distinguishable. As an interesting application, we show that any quantum channel with two Kraus operators has optimal environment-assisted classical capacity.
Please use this identifier to cite or link to this item: