Metal-Phenolic network and metal-organic framework composite membrane for lithium ion extraction

Publisher:
Elsevier BV
Publication Type:
Journal Article
Citation:
Applied Materials Today, 2020, 21, pp. 100884-100884
Issue Date:
2020-12-01
Filename Description Size
1-s2.0-S2352940720303322-main.pdfPublished version2.95 MB
Adobe PDF
Full metadata record
© 2020 Elsevier Ltd To tackle the increased demand of lithium production, the separation of monovalent and divalent cations is crucial for lithium recovery from brine. Recently, metal-organic framework (MOF) has shown great potential in such application due to its tuneable pore size and pore channel chemistry in the sub-atomic scale. Commercialization of ion-selective MOF-based membrane requires the fabrication of MOF thin film on a polymeric support that enables scale-up procedure. Herein, we specifically design a facile method of fabricating zeolitic imidazolate framework (ZIF-8) on a flexible polymeric membrane, using versatile tannic acid and iron complexes (TA-FeIII) as an intermediate layer to promote heterogenous MOF nucleation and growth. The TA-FeIII/ZIF-8 film demonstrated ion selectivity ratio of K+/ Mg2+ (4.49), followed by Na+/ Mg2+ (4.0) and Li+/ Mg2+ (3.87); while the selectivity ratio of Ca2+/ Mg2+ is 1.1. Further investigation suggests that partial dehydration-hydration process plays a role for ion transport mechanism across the TA-FeIII/ZIF-8. However, the separation between monovalent ions remains a difficult challenge due to the trade-off between low dehydration energy of K+ and fast ion transport of dehydrated Li+. This study provides an insight in utilizing the versatile TA-FeIII coating for scale-up growth of MOF thin film for molecular separations.
Please use this identifier to cite or link to this item: