Eutrophication and arsenic speciation in lake waters

Nova Science
Publication Type:
Eutrophication: Ecological Effects, Sources, Prevention and Reversal, 2010, 1, pp. 187 - 195
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2010004996.pdf55.19 kB
Adobe PDF
Arsenic (As) is widely distributed in aquatic environments in various forms. In natural waters, the dominant inorganoarsenicals (iAs) are incorporated into microorganisms such as phytoplankton, and are converted to methylarsenicals and/or more high order organoarsenicals. In addition, the organoarsenicals are mineralized to iAs and methylarsenicals by bacteria. The cycling of As species would depend on the bioactivity of organisms. Microorganisms, such as phytoplankton and organisms of higher trophic levels, produce methylarsenicals in natural waters with maximum concentrations in summer. The degradation and mineralization of organoarsenic compounds are thought to depend mostly on bacterial activities, which influence the As cycling in aquatic environment. Arsenic metabolism in aquatic organisms results in the occurrence of thermodynamically unstable arsenite and methylarsenic compounds in natural waters. The inorganic forms (As(V) and As(III)) and the methylated forms (methylarsonic acid (CH3AsO(OH)2); MMAA(V) and dimethylarsinic acid ((CH3)2AsO(OH)); DMAA(V)) are the main arsenic species present in natural waters. Although the predominant form of methylarsenicals is consistently DMAA(V) followed by MMAA(V), the existence of trivalent methylarsenic species in the environment has also been reported.
Please use this identifier to cite or link to this item: