A hybrid nonlinear-discriminant analysis feature projection technique

Publication Type:
Chapter
Citation:
2008, 5360 LNAI pp. 544 - 550
Issue Date:
2008-12-01
Full metadata record
Feature set dimensionality reduction via Discriminant Analysis (DA) is one of the most sought after approaches in many applications. In this paper, a novel nonlinear DA technique is presented based on a hybrid of Artificial Neural Networks (ANN) and the Uncorrelated Linear Discriminant Analysis (ULDA). Although dimensionality reduction via ULDA can present a set of statistically uncorrelated features, but similar to the existing DA's it assumes that the original data set is linearly separable, which is not the case with most real world problems. In order to overcome this problem, a one layer feed-forward ANN trained with a Differential Evolution (DE) optimization technique is combined with ULDA to implement a nonlinear feature projection technique. This combination acts as nonlinear discriminant analysis. The proposed approach is validated on a Brain Computer Interface (BCI) problem and compared with other techniques. © 2008 Springer Berlin Heidelberg.
Please use this identifier to cite or link to this item: