Roles of tyrosine-rich precursor glycoproteins and dityrosine-/DOPA-mediated protein crosslinking in oocyst wall assembly in the coccidian parasite, Eimeria maxima

American Society for Microbiology
Publication Type:
Journal Article
Eukaryotic Cell, 2003, 2 (3), pp. 456 - 464
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2008006814OK.pdf2.73 MB
Adobe PDF
The oocyst wall of apicomplexan parasites protects them from the harsh external environment, preserving their survival prior to transmission to the next host. If oocyst wall formation could be disrupted, then logically, the cycle of disease transmission could be stopped, and strategies to control infection by several organisms of medical and veterinary importance such as Eimeria, Plasmodium, Toxoplasma, Cyclospora, and Neospora could be developed. Here, we show that two tyrosine-rich precursor glycoproteins, gam56 and gam82, found in specialized organelles (wall-forming bodies) in the sexual stage (macrogamete) of Eimeria maxima are proteolytically processed into smaller glycoproteins, which are then incorporated into the developing oocyst wall. The identification of high concentrations of dityrosine and 3,4-dihydroxyphenylalanine (DOPA) in oocyst extracts by high-pressure liquid chromatography, together with the detection of a UV autofluorescence in intact oocysts, implicates dityrosine- and possibly DOPA-protein cross-links in oocyst wall hardening. In addition, the identification of peroxidase activity in the wall-forming bodies of macrogametes supports the hypothesis that dityrosine- and DOPA-mediated cross-linking might be an enzyme-catalyzed event. As such, the mechanism of oocyst wall formation in Eimeria, is analogous to the underlying mechanisms involved in the stabilization of extracellular matrices in a number of organisms, widely distributed in nature, including insect
Please use this identifier to cite or link to this item: