Large-scale synthesis and gas sensing application of vertically aligned and double-sided tungsten oxide nanorod arrays

DSpace/Manakin Repository

Search OPUS


Advanced Search

Browse

My Account

Show simple item record

dc.contributor.author Shen, X
dc.contributor.author Wang, G
dc.contributor.author Wexler, D
dc.date.accessioned 2011-02-07T06:18:53Z
dc.date.issued 2009-01
dc.identifier.citation Sensors and Actuators B: Chemical, 2009, 143 (1), pp. 325 - 332
dc.identifier.issn 0925-4005
dc.identifier.other C1UNSUBMIT en_US
dc.identifier.uri http://hdl.handle.net/10453/13112
dc.description.abstract Large-scale vertically aligned and double-sided Co-doped hexagonal tungsten oxide nanorod arrays have been successfully synthesized by a facile hydrothermal method without using any template, catalyst, or substrate. Scanning electron microscopy and transmission electron microscopy analyses reveal an interesting three-order hierarchical nanostructure from small, single-crystalline nanorods via nanorod bundles to double-sided nanorod arrays. The optical absorption properties of the Co-doped WO3 samples were investigated by ultravioletvisible spectroscopy, and the results indicate that the Co-doped WO3 nanostructures are semiconducting with direct band gaps of 2.26 eV and 2.77 eV. The gas sensing performance of the as-prepared Co-doped WO3 double-sided nanorod arrays was tested towards a series of typical organic solvents and fuels. The sample shows excellent gas sensing performance towards 1-butanol vapor, with rapid response and high sensitivity. We propose that the double-sided nanorod arrays are formed from urchin-like microspheres via a self-assembly and fusion process. This new synthesis strategy could be extended to prepare other well-aligned nanorod arrays for many functional applications.
dc.publisher Elsevier SA
dc.relation.isbasedon 10.1016/j.snb.2009.09.015
dc.subject Tungsten oxide, Nanorod arrays, Hydrothermal synthesis, Gas sensing, Sens, Analytical Chemistry
dc.subject Tungsten oxide; Nanorod arrays; Hydrothermal synthesis; Gas sensing; Sens; Analytical Chemistry
dc.title Large-scale synthesis and gas sensing application of vertically aligned and double-sided tungsten oxide nanorod arrays
dc.type Journal Article
dc.parent Sensors and Actuators B: Chemical
dc.journal.volume 1
dc.journal.volume 143
dc.journal.number 1 en_US
dc.publocation Switzerland en_US
dc.identifier.startpage 325 en_US
dc.identifier.endpage 332 en_US
dc.cauo.name SCI.Faculty of Science en_US
dc.conference Verified OK en_US
dc.for 0912 Materials Engineering
dc.for 0301 Analytical Chemistry
dc.personcode 0000062981 en_US
dc.personcode 109499 en_US
dc.personcode 0000062987 en_US
dc.percentage 50 en_US
dc.classification.name Analytical Chemistry en_US
dc.classification.type FOR-08 en_US
dc.edition en_US
dc.custom en_US
dc.date.activity en_US
dc.location.activity en_US
dc.description.keywords Tungsten oxide; Nanorod arrays; Hydrothermal synthesis; Gas sensing; Sens en_US
dc.description.keywords Tungsten oxide
dc.description.keywords Tungsten oxide
dc.description.keywords Nanorod arrays
dc.description.keywords Nanorod arrays
dc.description.keywords Hydrothermal synthesis
dc.description.keywords Hydrothermal synthesis
dc.description.keywords Gas sensing
dc.description.keywords Gas sensing
dc.description.keywords Sens
dc.description.keywords Sens
dc.description.keywords Tungsten oxide
dc.description.keywords Nanorod arrays
dc.description.keywords Hydrothermal synthesis
dc.description.keywords Gas sensing
dc.description.keywords Sens
pubs.embargo.period Not known
pubs.organisational-group /University of Technology Sydney
pubs.organisational-group /University of Technology Sydney/Faculty of Science
pubs.organisational-group /University of Technology Sydney/Faculty of Science/School of Chemistry and Forensic Science
pubs.organisational-group /University of Technology Sydney/Strength - Materials and Technology for Energy Efficiency


Files in this item

This item appears in the following Collection(s)

Show simple item record