Human Action Recognition Based on Radon Transform

DSpace/Manakin Repository

Search OPUS


Advanced Search

Browse

My Account

Show simple item record

dc.contributor.author Chen, Y
dc.contributor.author Wu, Q
dc.contributor.author He, S
dc.contributor.editor Lin, W
dc.contributor.editor Tao, D
dc.contributor.editor Kacprzyk, J
dc.contributor.editor Li, Z
dc.contributor.editor Izquierdo, E
dc.contributor.editor Wang, H
dc.date.accessioned 2012-10-12T03:31:31Z
dc.date.issued 2011-01
dc.identifier.citation Studies in Computational Intelligence vol 346. Multimedia Analysis, Processing and Communications, 2011, Studies in Computational Intelligence, pp. 369 - 389
dc.identifier.isbn 978-3-642-19550-1
dc.identifier.other B1 en_US
dc.identifier.uri http://hdl.handle.net/10453/17749
dc.description.abstract A new feature description is used for human action representation and recognition. Features are extracted from the Radon transforms of silhouette images. Using the features, key postures are selected. Key postures are combined to construct an action template for each action sequence. Linear Discriminant Analysis (LDA) is applied to obtain low dimensional feature vectors. Different classification methods are used for human action recognition. Experiments are carried out based on a publicly available human action database.
dc.publisher Springer-Verlag Berlin / Heidelberg
dc.title Human Action Recognition Based on Radon Transform
dc.type Chapter
dc.parent Studies in Computational Intelligence vol 346. Multimedia Analysis, Processing and Communications
dc.journal.number en_US
dc.publocation Berlin/Heidelberg en_US
dc.publocation Berlin/Heidelberg
dc.publocation Berlin/Heidelberg
dc.publocation Berlin/Heidelberg
dc.publocation Berlin/Heidelberg
dc.identifier.startpage 369 en_US
dc.identifier.endpage 389 en_US
dc.cauo.name FEIT.School of Computing and Communications en_US
dc.conference Verified OK en_US
dc.for 0801 Artificial Intelligence and Image Processing
dc.personcode 990421
dc.personcode 000748
dc.percentage 100 en_US
dc.classification.name Artificial Intelligence and Image Processing en_US
dc.classification.type FOR-08 en_US
dc.edition Studies in Computational Intelligence en_US
dc.edition Studies in Computational Intelligence
dc.edition Studies in Computational Intelligence
dc.edition Studies in Computational Intelligence
dc.edition Studies in Computational Intelligence
dc.custom en_US
dc.date.activity en_US
dc.location.activity en_US
dc.description.keywords en_US
dc.description.keywords Familial hypercholesterolaemia
dc.description.keywords model of care
dc.description.keywords adults
dc.description.keywords children
dc.description.keywords adolescents
dc.description.keywords diagnosis
dc.description.keywords genetic testing
dc.description.keywords cascade screening
dc.description.keywords assessment
dc.description.keywords treatment
pubs.embargo.period Not known
pubs.organisational-group /University of Technology Sydney
pubs.organisational-group /University of Technology Sydney/Faculty of Engineering and Information Technology
pubs.organisational-group /University of Technology Sydney/Faculty of Engineering and Information Technology/School of Computing and Communications


Files in this item

This item appears in the following Collection(s)

Show simple item record