Theory of Gaussian variational approximation for a Poisson mixed model

DSpace/Manakin Repository

Search OPUS

Advanced Search


My Account

Show simple item record Hall, P Ormerod, JT Wand, M 2012-10-12T03:32:48Z 2011-01
dc.identifier.citation Statistica Sinica, 2011, 21 (1, Special Issue), pp. 369 - 389
dc.identifier.issn 1017-0405
dc.identifier.other C1UNSUBMIT en_US
dc.description.abstract Likelihood-based inference for the parameters of generalized linear mixed models is hindered by the presence of intractable integrals. Gaussian variational approximation provides a fast and effective means of approximate inference. We provide some theory for this type of approximation for a simple Poisson mixed model. In particular, we establish consistency at rate m(-1/2) + n(-1), where in is the number of groups and n is the number of repeated measurements.
dc.publisher Academia Sinica
dc.title Theory of Gaussian variational approximation for a Poisson mixed model
dc.type Journal Article
dc.parent Statistica Sinica
dc.journal.volume 1, Special Issue
dc.journal.volume 21
dc.journal.number 1, Special Issue en_US
dc.publocation Taiwan en_US
dc.identifier.startpage 369 en_US
dc.identifier.endpage 389 en_US SCI.Mathematical Sciences en_US
dc.conference Verified OK en_US
dc.for 0101 Pure Mathematics
dc.personcode 110509
dc.percentage 100 en_US Pure Mathematics en_US
dc.classification.type FOR-08 en_US
dc.edition en_US
dc.custom en_US en_US
dc.location.activity en_US
dc.description.keywords Asymptotic theory
dc.description.keywords generalized linear mixed models
dc.description.keywords Kullback-Liebler divergence
dc.description.keywords longitudinal data analysis
dc.description.keywords maximum likelihood estimation
pubs.embargo.period Not known
pubs.organisational-group /University of Technology Sydney
pubs.organisational-group /University of Technology Sydney/Faculty of Science
utslib.copyright.status Open Access 2015-04-15 12:23:47.074767+10
pubs.consider-herdc false
utslib.collection.history General (ID: 2)
utslib.collection.history School of Mathematical Sciences (ID: 340)

Files in this item

This item appears in the following Collection(s)

Show simple item record