Dartboard arrangements

DSpace/Manakin Repository

Search OPUS

Advanced Search


My Account

Show simple item record

dc.contributor.author Cohen, GL
dc.contributor.author Tonkes, E
dc.date.accessioned 2010-05-14T07:42:42Z
dc.date.created 2010-05-14T07:42:42Z en_US
dc.date.issued 2001
dc.identifier.citation Electronic Journal of Combinatorics, 2001, 8 (2)
dc.identifier.issn 1077-8926
dc.identifier.other C1 en_US
dc.identifier.uri http://hdl.handle.net/10453/6078
dc.description.abstract This note considers possible arrangements of the sectors of a generalised dartboard. The sum of the pth powers of the absolute differences of the numbers on adjacent sectors is introduced as a penalty cost function and a string reversal algorithm is used to determine all arrangements that maximise the penalty, for any p ≥ 1. The maximum value of the penalty function for p = 1 is well known in the literature, and has been previously stated without proof for p = 2. We determine it also for p = 3 and p = 4.
dc.language eng
dc.title Dartboard arrangements
dc.type Journal Article
dc.parent Electronic Journal of Combinatorics
dc.journal.volume 2
dc.journal.volume 8
dc.journal.number 2 en_US
dc.publocation Atlanta, USA en_US
dc.identifier.startpage en_US
dc.identifier.startpage 1 en_US
dc.identifier.endpage en_US
dc.identifier.endpage 8 en_US
dc.cauo.name SCI.Mathematical Sciences en_US
dc.conference Verified OK en_US
dc.for 01 Mathematical Sciences
dc.personcode 984186
dc.percentage 100 en_US
dc.classification.name Mathematical Sciences en_US
dc.classification.type FOR-08 en_US
pubs.embargo.period Not known
pubs.organisational-group /University of Technology Sydney
pubs.organisational-group /University of Technology Sydney/Faculty of Science
pubs.organisational-group /University of Technology Sydney/Faculty of Science/School of Mathematical Sciences
utslib.copyright.status Open Access
utslib.copyright.date 2015-04-15 12:23:47.074767+10
utslib.collection.history General (ID: 2)

Files in this item

This item appears in the following Collection(s)

Show simple item record