
API Recommendation for Mashup
Creation: A Comprehensive Survey

Hadeel Alhosaini1,2,Sultan
Alharbi1,Xianzhi Wang1,Guandong Xu1

1University of Technology Sydney, NSW 2007, Australia
2University of Jeddah, Jeddah, Saudi Arabia

Email: hadeel.alhosaini@student.uts.edu.au

Mashups are Web applications that integrate multiple Application Programming
Interfaces (APIs) to reuse existing resources and expedite software development
maximally. API recommendations play a critical role in assisting developers
in building such Web applications easily and efficiently. And the proliferation
of publicly available APIs on the Internet has inspired the community
to adopt various models to accomplish the recommendation task. Until
present, considerable efforts have been made to recommend the optimal
set of APIs, delivering fruitful results with varying performance in the
recommendation accuracy. This paper presents a timely overview of the topic
of API recommendations for mashup creation. We investigate and make
comparisons between not only traditional approaches based on data mining and
recommendation techniques but also more recent approaches based on network
representation learning and deep learning techniques. Analyzing the merits and
pitfalls of existing approaches, we pinpoint a few promising directions to resolve
the remaining challenges. This survey provides a comprehensive overview of
the API recommendation research and could be a useful reference for relevant

researchers and practitioners.

Keywords: API recommendation; Collaborative Filtering; Network Representation Learning;
Deep Learning; Future Directions

1. INTRODUCTION

The revolution of the World Wide Web infrastructure
and the development of Web 2.0 technology has
drawn the advancement of building innovative Internet
software systems and multiple techniques to share
resources. Enterprises and organizations have been
attempting to apt to encapsulate their business
applications into numerous lightweight blocks (Web
APIs) to be remotely accessed by lots of potential
users or customers. As a result, they brought numerous
benefits to the Service-oriented computing (SOC)
community and have been widely employed by a wide
range of consumers [1].

Application Programming Interfaces (APIs) are a set
of programming standards that allow interaction with
external applications to facilitate software development.
They have significantly helped developers accomplish
their software construction efficiently, faster, and
easier manner [2]. They can avail web developers by
integrating or customizing advanced functionalities into
their websites and as well can be profitable and a
powerful marketing tool for their providers.

They have emerged in several industries such as cloud
computing, mobile applications, Internet of Things

(IoT) services, machine learning, and big data services.
Hence, the dramatic proliferation of published web APIs
by developers has imposed the need for competent
storage to keep up with its high demand and usage and
for efficient searching and recommendation techniques.
Also, the number of invoked web APIs has grown huge
in the past few years, and it started to become prevalent
in several applications.

Mashup, a new development technique that was
brought on by API; is an approach that allows
developers to compose several, e.g., web APIs, to
facilitate Web application creation. Mashups have
become popular due to their features, yet due to the
dynamic nature of web APIs and their rising number,
the process of manually selecting a set of web APIs for
mashup service is a difficult task for software developers.

Traditional mashup recommendation systems such
as collaborative filtering and content-based filtering
techniques have been widely applied, for instance,
matrix factorization in [3, 4], and context-aware
methods in [5]; as well as the hybrid approaches that
merge both of the previous popular techniques [6,
7, 8, 9] to leverage historical records and different
data to assist capturing the users’ behavior and items



2 H. Alhosaini et al.

FIGURE 1. API Mashups Recommendation

features. Hybrid models have been used nowadays to
alleviate issues like cold start and generate accurate
recommendations. Traditional techniques have gained
popularity yet still suffer serious issues like cold-
start. Other studies [10, 11, 12] have endeavored
to integrate deep learning methods, i.e. Doc2Vec,
Deep-FM, LSTM, Attention Mechanism, etc, in their
architectures implementation to learn the complex
interaction among web APIs and tackle some of the
traditional recommendation systems data issues like
sparsity.

Though there were numerous attempts, there is
still a need for an efficient mashup recommendation
system, Fig. 1, to help select the potential relevant
and diverse APIs for mashup development. The system
should be able to identify the user(or previously built
mashups) behaviors and the complex item features
and interactions. It should also provide leverage by
automatically suggesting and ranking top-K sets of API
to suit developers’ demands [13] best. Further, it is
a crucial element that the system should be able to
comprehend the type of APIs the users are requesting.

Platforms like Programmableweb3 directory and
several others can be very beneficial as they were
established to offer open APIs storage for further
analysis. They store a wide variety of readily
available web APIs and their documents along with
previously created mashups. The availability of such
platforms encourages service clients and providers
to communicate and share value-added composite
services easily and quickly as well as provide the
recommendation systems developers with input data.

There is a significant advancement in the computing
community, which has positively affected the mashup
recommendation systems in some aspects. Xu et
al. [14] have inspected the characteristics and the
disparity of several traditional mashup recommendation
systems, i.e. the content-based and collaborative

3http://www.programmableweb.com/

filtering techniques. They also presented the potential
future directions researchers may be interested in. Yet,
there are various other directions of recommendation
techniques that can be further explored.

The adoption of recommender systems helps alleviate
some of the challenges arising in mashup creation.
Therefore, mashup recommender systems can assist
developers in identifying suitable APIs based on
the textual description of their requirements from
collections of available Web APIs. The availability
of reliable, effective recommender systems eases the
process of building mashups and saves time and effort
in software development. To our knowledge, no fully
updated and comprehensive survey has investigated the
APIs and mashup recommendation approaches. Our
contribution in this paper is to highlight the growth
of APIs and mashup recommendation systems and
analyse the advantages and drawbacks of their current
techniques.

Furthermore, we will discuss a few trends and
directions in recommender systems research later
in this article. The prospects of these approaches
can be investigated further and applied to API
recommendation systems. The implementation of
explainable recommendation systems for API mashup
building, for instance, can provide both a means of
providing recommendations that satisfy user needs
and also help them make an informed decision by
providing insights into the reasoning behind the
recommendations.

This study is organised as follows. A brief history
and the basics of the field and is conveyed in
Section 2. The initial procedures of searching the
research area and obtaining a shortlist of studies to
be examined are discussed in Section 3. In Section 4,
we present different types of implemented APIs and
mashup recommendation systems. Section 5 presents
the potential future directions researchers are currently
tempted to take in their research; finally, the paper
conclusion is drawn in Section 6.



API Recommendation for Mashup Creation: A Comprehensive Survey 3

2. PRELIMINARIES

2.1. APIs and Mashups

Application Programming Interfaces, commonly cited
as Web APIs, refer to the published services on
the web that can be called by users via HTTP
requests and responses. It enables the data transmission
between software and another, in Fig. 2. As a software
requests to access specific information or functionality
from another software, it calls its API with the
specified requirements on how to obtain the demanded
data/functionality. There are two mechanisms for
communication via HTTP used to build Web APIs
and assist in exchanging messages between applications
called Simple Object Access Protocol(SOAP) and
Representational State Transfer(REST). While the
former is a protocol that is structured, designed to be
lightweight, and mainly uses XML format, the latter
is an architectural style that represents a client-server
architecture, is more flexible, and can support various
other data formats. There are other technologies that
can be used for communication; however, when it comes
to security, scalability, and fault-tolerant distributed
systems, SOAP and REST are more efficient. [15] The
decision to select either one of them depends on the API
users’ requirements and should follow some criteria such
as the overall application design, security, consistency,
etc.

FIGURE 2. API Usage Setup

Since the 2000s, APIs have been of interest to
researchers for their significance in interconnecting
people, applications, and systems. Their types may vary
based on their availability or use cases. The usability of
APIs benefits not only the users but also programmers
in some instances. Software developers don’t have
to grasp the knowledge of the source code of these
APIs; they need to understand how APIs generally
operate. The API specifications aim at standardizing
the data interchange between web applications. The
final documentation on integrating APIs into systems
needs to be structured and straightforward to satisfy
and attract the users’ attention. Nowadays, the role
of APIs not only in the community of software
development but also in the collaboration of businesses
is increasing and has become critical; hence, they need

to be carefully selected to meet expectations.
With the advent of open APIs and data sources, a

new trend toward web mashups has emerged in an effort
to speed up and simplify the development process. The
approach is defined as the composition of selected APIs
that meet specific criteria to fit the demands. Mashups
are generally data-centric and lightweight applications
that are created to have a particular purpose. The
notion of reusing pre-implemented functions of already
published APIs has always enticed developers for its
advantages.

The history of API Mashups began over a decade
ago, and they have attracted wide attention in the
software community. Mashups have diverse categories
with distinct features, the most popular ones like
mapping, video/photo, weather, shopping, etc. Early
mashups for example aimed at utilizing Google Maps
with their data for consumer use, and over the years,
the number of elected APIs has increased to more than
two APIs. As mashups have gained enormous support
from various platforms, recommendation techniques
were developed to assist the mashup creation.

2.2. Recommender Systems

Recommender Systems (RS) aim to help users discover
a wide range of relevant products and solutions and
select the best to suit their purpose. They can be
applied in several domains, such as entertainment,
research, social networks, software engineering, etc.
Many recommendation systems have been applied to
medicine and drug recommendations. For instance,
Zhanget al. [18] have introduced a novel algorithm
named LEAP, which captures the interdependence of
diseases and medications, aiming to sequentially suggest
the most suitable treatment plans for patients.

In another study, Wanget al. [19] have incorporated
the advantages of both the supervised and reinforce-
ment learning approaches in an approach named SRL-
RNN that is designed to provide recommendations
for treatment plans in dynamic medical contexts. In
addition, Wanget al. [20] have presented a dynamic
graph convolutional reinforcement learning framework
named Combined Order-free Medicine Prediction Net-
work (CompNet) as another means for medicine pre-
diction. Moreover, various recommender solutions in
the medical field have further attempted to focus on
the safety aspect of the recommendation outputs, such
as Wanget al. [21] where they proposed a novel model
named Safe Medicine Recommendation (SMR) to learn
the complex relations between diseases, patients and
medicine for safe medicine recommendations for new
patients.

There were several solutions attempting to utilize
the adversarial Drug-Drug Interaction (DDI) knowledge
graph along with EHR data for the recommendation.
For example, Symeonidiset al. [22] used them for
safe and explainable recommendations of medication



4 H. Alhosaini et al.

combinations for patients. Symeonidiset al. in their
work [23] also attempted to predict the mortality
of critically ill patients and identify any associated
significant predictors. This study [24] has further
utilized the Post Hoc Re-rank technique to minimise
the risks and safely recommend the drug prescription
for patients.

Similarly, Symeonidiset al. [25] have detailed an
extended version of Matrix Co-Factorization (MCF)
to include additional auxiliary data and a Post Hoc
Re-Ranking technique with the purpose of learning
the drug-drug interactions and generate safe medicine
recommendations for patients. Others like Shanget
al. [26] implemented an end-to-end framework called
Graph Augmented Memory Networks (GAMENet) that
incorporated Drug-Drug interactions knowledge graph
and patient records to offer safe and personalized
recommendations.

As online news platforms grow, news recommenda-
tion systems are also becoming popular. For instance,
Symeonidiset al. in their study [27] have employed the
Markov chain modelling to assist in generating session-
aware news recommendations by analyzing the long-
term preferences of the user over items in recent ses-
sions.

In general, traditional recommender systems are
characterised as either Content-Based Filtering (CBF),
Collaborative Filtering (CF), or Hybrid Filtering (HF).
The Content-based filtering methods consider the
previous choices users have either bought or were
interested in and recommend those relevant items.
These systems depend on a single user’s preferences and
item ratings. As a result, they do not perform well with
a few numbers of ratings. Moreover, the large datasets
can be could cause difficulty in implementing such a
system [28].

While CBF is attentive to the item description,
the collaborative filtering (CF) approaches are much
more drawn into constructing users’ profiles. CF is
built to recommend those liked items of similar users,
those who are close to him in some way. It examines
user-item historical data and users’ relationships to
draw the similarity in-between. Its systems are divided
into two genera: memory-based approaches and model-
based approaches. Memory-based CF techniques tend
to study the users’ similarities based on cosine similarity
or Pearson correlation. The model-based methods use
data mining or machine learning algorithms to find
the rates of unrated items such as the latent semantic
models and the Bayesian networks. CF has been hugely
adopted in several studies and is considered the most
common one.

Hybrid filtering models are another basic one that
takes advantage of combining two or more of the
above recommendation techniques in several ways to
enhance the overall accuracy and efficiency. Though
many studies have attempted to prove its benefits and
how it overcomes the challenges of previous methods,

it is still argued that it adds more complexity to the
process; therefore, many find it strenuous to implement.

Despite the popularity and effectiveness of these
traditional methods, they have been limited by several
challenges such as data sparsity, cold-start, and
diversity [29]. To overcome the stated problems, many
papers have proposed other recommendation models as
the ones based on the use of deep learning. The goal
is to enhance the current methods in terms of their
accuracy and diversity. In this paper, there will be an
inspection of the published research on traditional and
modern models related to API recommendation.

2.3. API Recommendation Procedure

2.3.1. Requirements Elicitation

Requirements engineering (RE) is referred to
the critical steps of defining, documenting, and
maintaining requirements in software development. The
key activities of the RE process are elicitation &
definition, quality assurance, negotiation, and release
planning [30]. The poor execution of the requirements
engineering steps would eventually lead to the failure of
the established software.

The requirements elicitation phase aims to collect
the system requirements from distinct stakeholders.
The final output is textual documentation describing
software requirements, scenarios, use cases, expected
prototypes, or all of the previous. As recommender
systems are a type of system that monitors and
aggregates various patterns of information to conclude
the final output. There are several key characteristics
that distinguish the details of requirements of typical
recommender systems from those of domain-dependent
systems, e.g. API mashup recommender systems.

The next step would be to identify the scope of
the problem and the expected solution requirements.
It can be investigated by surveying customers/users or
researching the area of research thoroughly. The process
of gathering data from users can be classified into two
approaches: explicit and implicit. While the former
approach involves obtaining the data directly from
users, such as by completing forms or questionnaires,
the latter data is collected by monitoring user behavior
or any information traces.

The purpose of an API mashup recommender system
could vary from one enterprise to another; for example,
some may be set only to recommend API mashups
with regard to the stated project features, while others
may demand the list to be ranked following specific
standards. The appropriate recommendation technique
would be selected according to the recommender
model’s articulated and verified specifications.

2.3.2. Method Preparation

The recommendation model preparation includes
multiple steps of planning. One of them is to identify



API Recommendation for Mashup Creation: A Comprehensive Survey 5

the task of API recommendation and the challenges
to be addressed. In addition, it includes the process of
selecting the appropriate recommender algorithms and
defining the testing methodology for evaluating their
performance. Each recommendation technique varies
in setting, implementation, and performance; selecting
any of them can be based on the application’s specific
requirements, popularity, or effectiveness. For example,
query-based approaches aim to build a knowledge base
of all existing API candidates from the available data
sources to retrieve query-relevant API selections. In
addition, the decision for selecting the methods and
testing metrics may involve other factors, such as the
size and type of the available dataset. Metrics such
as recall, precision, fall-out, etc., can also be selected
depending on the purpose of the evaluation.

It is significant to learn the features and interactions
of APIs and Mashups datasets for link prediction and
recommendation procedures. There are various means
for building datasets, and in API recommendation sys-
tems, the most effective way to do so is to crawl online
repositories such as ProgrammableWeb. A properly es-
tablished method for mashup recommendation should
fully utilize the dataset to achieve the aims of the sys-
tem. In Section 4, we will discuss some of the techniques
selected for API recommendation models and how they
use input data.

2.3.3. The Recommendation Model

The framework of API recommendation is designed
to assist the creation of mashups by recommending
a list of API candidates given descriptions of the
mashup. Typically, the system is expected to take in
a set of requirements from developers, and in return,
the recommended mashup should be able to fulfil the
purpose of their application. As stated, specifically, the
main goal of mashup recommendation models is to
recommend a set of Mashups (M), API compositions, of
several APIs (A) to appease users’ needs. For instance,
the top restaurant mashup in Fig. 3 is built to search
for restaurants with top reviews and better feedback as
well as to identify the ones located close to the users. For
mashup to provide the user with a list of restaurants,
it includes web services like WordPress, Google Maps,
Twitter, Yelp, and Web Search.

Developers provide a set of key terms or a
requirements document, which includes terms that
describe functionalities needed for their software
development for the recommendation model. The model
would exploit the specified terms in their approach
to output a list of top API recommendations for
mashup creation, Fig. 4. The applied techniques for API
compositions differ in function, and each has benefits
and drawbacks. The selection of the most appropriate
one depends on the key purpose of the developer’s
model and should pay attention to the accuracy and
diversity of recommendations.

FIGURE 3. Top Restaurant Mashup Example

FIGURE 4. API Recommendation

3. RESEARCH METHODS

3.1. Search Process

This primary step is performed in an effort to collect
the list of relevant studies and involves various tasks,
such as identifying the primary data sources, construct-
ing the search key terms, and utilizing the search pro-
cedures. These different databases, as in Table 1, are
used to conduct the literature search and selection of
papers within the scope of the article. These repositories
were selected based on their comprehensiveness, qual-
ity control, subject specificity, and the ability of citation
tracking. Furthermore, the advanced search functionali-
ties offered by these databases will greatly facilitate the
process of conducting searches.

TABLE 1: Databases Information

Database
Name

Database URL

Google Scholar https://scholar.google.com.au/
IEEE Xplore
Digital Library

https://ieeexplore.ieee.org

ACM Digital Li-
brary

https://dl.acm.org/

ScienceDirect https://www.sciencedirect.com/
Springer https://link.springer.com/

Various search terms were used to search the
existing literature from the databases. The selected
key terms are designed to be relevant to the scope of
the article. In order to capture the related academic



6 H. Alhosaini et al.

papers, the final query terms are constructed by using
the Boolean operators, e.g. AND, OR (For example:
”Web API recommendation”, ”APIs” OR ”services”
AND ”mashup” AND ”recommendation”).

Furthermore, the period of the published papers is
selected between 2014-2022, and the main focus was
on recent publications within the last seven years. The
initial search filtration process on the selected databases
has yielded countless academic papers yet few are
selected. The list of papers will be further filtered out
in the next step based on the inclusion and exclusion to
obtain the final selection outcome.

3.2. Data Filtering

In this stage, we mainly used the defined inclusion and
exclusion criteria to lead the search procedure to select
the most relevant papers, they are applied as follows:

• Inclusion criteria: The studies included in the
literature review need to meet the following inclu-
sion criteria:
Criteria 1: The paper should discuss API recom-
mendations for mashups.
Criteria 2: It must have been published between
2014-2022.
• Exclusion criteria: If any study meets the
following criteria, it will be excluded from the
literature process:
Criteria 1: The scientific document is written in a
language other than English. =
Criteria 2: It is published as a thesis, book, or book
chapter.
Criteria 3: The paper does not relate to web API
or web service mashup recommendation systems.
Criteria 4: It is a duplicate of any previous studies.

During the search process, it has been observed that
certain articles occasionally utilize the terms ”API”
and ”service” interchangeably. The output shortlisted
articles are first scanned for titles and abstracts, then
filtered to include only related papers and remove
duplicates. The final number of studies resulted in more
than 68 papers, and they are organized across distinct
sections of the document.

3.3. Data Analysis

In the last few years, there has been an increase in
the number of published research articles on API and
mashup recommendations. In this paper, techniques
are organized into four main components: Data
Mining Techniques, Traditional Recommender Systems,
Network Representation Learning, and Deep Learning
Techniques. As Figure 5 expresses the distribution
of the cited articles, it also indicates the popularity
of traditional recommender systems. Deep learning
approaches come in second on the list, and as noted
here recently, they are becoming widely applicable.

10.53%
42.11%

10.53%36.8%
Data Mining

Traditional RS

Network Representation

Deep Learning

FIGURE 5. Studies Distribution across Sections

4. DISCUSSION OF WEB API RECOM-
MENDATION MODELS

In recent years, web-based APIs, also known
as Application Programming Interfaces (APIs), have
become an essential tool in software development. Yet,
the increased number of Web APIs has added a new
challenge for the developers to be able to choose the
appropriate ones among the huge set of APIs to invoke
and assist in the creation of new mashups. According
to our quick analysis of the ProgrammableWeb site in
2021, Fig. 6, the shown number of APIs which was
invoked in mashups by developers is still relevantly
less than expected and despite all of the efforts spent
so far, the challenge of efficiently utilizing APIs in
mashups still exists. Various research on recommending
the relevant set of web APIs and services have emerged
in the field of service computing. The existing methods
and research trends in this area can be distributed
into numerous categories such as collaborative filtering,
functional properties-based, content-based, and deep
learning-aided recommendation systems.

92.3%

7.7%
Uninvoked APIs (20453)

Invoked APIs (1706)

FIGURE 6. Percentages of Invoked and Univoked APIs in
mashups(based on Programmableweb site analysis)

Several of these traditional systems are evolving to
overpower issues like data sparsity. For instance, those
who are functional-based APIs, which focus on the web
services, and user queries functional-based similarity
matching, can be limited by the short services’
description while constructing mashups. Therefore,
some have attempted to enrich the description using
multiple data sources. Still, most of these methods
fail to capture the essential features or most relevant
function terms. As a result, it is not guaranteed whether



API Recommendation for Mashup Creation: A Comprehensive Survey 7

they can be applied in every situation.
Recently, content-based recommendation with deep

learning techniques has attracted the attention of
numerous researchers. They can learn the items’
features automatically and therefore achieve further
success with the recommendation. Yet, their approaches
can’t capture the elements’ dependencies and assign
distinct weights to these items.

Similarity computation solutions can be impractical
in large-scale settings, and also the APIs description
sparsity adds a new challenge. Therefore, further re-
search has put forward other solutions like the semantic-
based models for improving the recommendation in
which it would examine the APIs’ textual description
for further analysis. Several have pursued the usage of
APIs textual documents for constructing graphs to ful-
fill the requested queries in almost natural language. It
helps easily with catching the interaction patterns be-
tween APIs for building proper mashups.

Thus, many have argued that the lack of semantic de-
scriptions may have imposed difficulty in implementing
these methods. They still tried to cope with the issue
by developing approaches that can help capture the rel-
evant details of web APIs and mashups to enrich these
APIs’ descriptions.

With the revolution and the emergence of many APIs
recommendation systems mechanisms, it is essential to
have a comprehensive review for further assessment and
improvement. In the coming subsections, we will discuss
the tactics of multiple recommendation methodologies
alongside their benefits and drawbacks.

4.1. Data Mining Techniques

Machine learning (ML) is a subset of the Artificial
Intelligence (AI) applications in which its methods
automatically, with no human intervention, help
computer programs access data and learn its common
patterns to assist in making decisions and improve
users’ experience. Since ML algorithms are influenced
by data, they have been widely applied in data
science. They range from supervised, unsupervised,
reinforcement learning, and so many others.

Data mining and analytical techniques have been
positively influencing the process of Web APIs discovery
and recommendation. The Association rule algorithm
is a popular ML rule-based method that sets the
model rules in accordance with previously identified
relationships and correlations between variables. It has
been adopted in various recommendation studies. For
example, in Thung et al. [32] work, the association
rule mining technique was employed as a component
to extract APIs libraries’ usage patterns and, therefore,
assist in building a recommendation framework based
on previous similar projects. The FP-growth-based
association mining algorithm is a popular method that
was employed by Tang et al. [33] as their approach
to capturing the existing collaboration patterns in the

stored APIs textual descriptions and tags for future
mashup creation. Their work has also discussed the
expansion of API tags as a potential solution to the
sparsity problem.

Another common method is the clustering technique
which tends to offer an efficient search mechanism
by grouping APIs in different clusters using similarity
measures and therefore helps reduce their number.
Clusters of APIs can be built as topics similarly, e.g.,
Cao et al. [34] have implemented a domain-aware
mashup service clustering method. The method models
data topics by calculating the service topics’ similarity
to enhance the mashup creation process. Yet, their
work does not perform well in a heterogeneous network
information setting since they handle service documents
independently.

A multi-description topic-based service clustering
framework (MDT) was presented by Hu et al. [35].
Their technique tends to learn the topics from services’
descriptions and composes clusters of the related ones.
Therefore, it can help to discover the most topic-similar
set of services to the input queries. An attempt to
enhance traditional web service clustering algorithms’
accuracy was proffered by Liang et al. [36] in their
novel web service co-clustering approach that employs
both services WSDL documents and tags, named
WTO. In order to avoid tagging problems such as
overly personalized and ambiguity, they have also
brought forward two tag recommendation methods for
enhancing the web service tagging process and data
quality.

A lot of researchers have studied regression analysis
as an approach to explore and model relationships
between one or more variables to be used for mashup
suggestions. Regression models are frequently used in
predictive analysis to forecast users’ items and mashup
preferences. Zhao et al. [37] have proposed a regression
analysis-based Web API recommendation method that
extracts and merges trivial features such as mashup-
API invocation, textual, API tags, etc... to estimate
the relevance between mashups and APIs. The model
further utilizes a learning-to-rank method to rank and
recommend APIs and recommend APIs.

Traditional recommendation systems have failed to
exploit the ever-growing and dynamic APIs data and
cope with the various business demands. They need
massive computational resources and time to achieve
a considerable amount of accuracy. Consequently, new
approaches have been studied to overcome the imposed
challenges and incorporate further enhancement.

Transfer Learning, Fig. 7, is a methodology wherein
knowledge acquired from solving a certain problem
can be applied to solve another one. The information
gained from recommending a couple of APIs according
to the developers’ needs can be used to recommend alike
helpful APIs since many have found not to be invoked
yet.

Recent work, i.e., Lei et al. [38] has introduced



8 H. Alhosaini et al.

TABLE 2: Data Mining Techniques Studies

Studies Algorithm Specifications

Thung et al. (2016) Association Rule APIs libraries Usage Patterns Extraction, Personalized Ranking
Model

Tang et al. (2019) Association Rule FP-growth-based association algorithm, textual descriptions & tags

Cao et al. (2017) Clustering Algorithm Domain-aware mashup service clustering, topics similarity

Hu et al. (2019) Clustering Algorithm Multi-description topic-based service clustering framework (MDT),
services descriptions

Liang et al. (2019) Clustering Algorithm Web service co-clustering approach, services WSDL documents and
tags

Zhao et al. (2019) Regression Analysis Mashup-API data analysis, learning-to-rank method

Lei et al. (2020) Transfer Learning Latent Dirichlet Allocation (LDA) and word2vec techniques, matrix
factorization, service descriptions

Liu et al. (2020) Transfer Learning Natural Language queries, Two-Steps Transfer Learning Steps, Deep
Learning Model

FIGURE 7. Transfer Learning Model

transfer learning to help to alleviate the data scarcity
challenge. They use word2vec and Latent Dirichlet
Allocation (LDA) techniques to analyze the service
descriptions for their content and location details
interrelationship. External information, i.e., location
here, with latent learned topics are used in the
architecture to regularize MF for better results.
Moreover, there were some attempts to build an
intelligent system [39] that infuses natural language
queries and transfer learning to train the Web API
search and discovery model. In addition, it proposed
a method to help collect useful information on APIs
from their documentation as the model depends on the
collected data, such as the Web API description.

4.2. Summary

Machine learning does support training systems
based on previous experience to provide preferred
recommendations. Its techniques, in Table 2, can be
combined with others to gain further advantages in
various aspects and help predict the user’s best interests
and therefore offer high accuracy recommendations [40].
In the era of big data, traditional ML technologies have
fallen short of performing efficiently. Since APIs are

2015 2016 2017 2018 2019 2020 2022

1.4

1.6

1.8

2

2.2

2.4

·104

13,924

15,943

17,962

19,981

22,000 22,159

24,000

FIGURE 8. APIs Approximate Counts (based on
Programmableweb Site)

skyrocketing Fig. 8, there was an urgent need for more
robust techniques to handle the big rise of information.
Though transfer learning has brought many advantages,
it cannot be trusted to recommend APIs accurately in
every scenario.

4.3. Traditional Recommender Systems

4.3.1. Collaborative Filtering (CF)

The collaborative filtering (CF) technique is a very
common approach used by numerous recommender
systems to predict potential users’ interests based on
neighbours’ preferences, Fig. 9. Commonly, it can be
noticed in movie recommendation applications where
they tend to find users with a similar-like taste and
suggests movies that appeal to them [42].

Its derived models can be either memory-based
methods or model-based methods. The memory-based
models are restricted by the accuracy of similar
neighbors or item selection; therefore, they can be



API Recommendation for Mashup Creation: A Comprehensive Survey 9

FIGURE 9. Collaborative Filtering Technique

limited by the high data sparsity challenge in historical
records. They face various challenges when dealing with
large sets of data. On the other hand, model-based
methods do perform well when a sparsity problem
exists. They basically utilize various machine learning
algorithms to predict unrated items of users. They tend
to use historical records and items’ features to acquire
latent representations and reduce data dimensions.

Matrix factorization (MF) is one of the most popular
CF models. It has the ability to learn the latent features
of both users and items from their stored historical
interaction records. It is widely adopted by search
engines and recommendation systems to generate an
output. Yin et al. [3] developed a personalized holistic
recommendation framework with a data collection
model. It includes a joint of the matrix factorization
with cognitive knowledge mining to study the hidden
relationships among users and APIs and their types.
The model does handle not only the historical records
but also the content information of APIs. Similarly, Xu
et al. [4] have proposed a joint matrix factorization
technique that employs different types of information
on both users and APIs for prediction.

Joining MF and popular clustering approach has
been widely applied in research, i.e., in [43], they
have pursued employing the matrix factorization (MF)
along with the ICNC approach, named ICNC-MF,
for Web APIs recommendation. It applies MF with
the associated web APIs clusters and ranks them
to produce the final results. ICNC-MF outperforms
other baseline methods in terms of accuracy and
diversity. Though this study does not overlook the
least standard and unpopular APIs, unlike the
previous studies, it still focuses on popularizing
them with no such consideration for other factors.
Moreover, this method utilizes the Pearson correlation
coefficient (PCC) as its similarity function, which
proved to not performs well when the mashups-APIs
invocation matrix becomes sparse. Unlike traditional
MF techniques, where neighborhood information is

neglected and not considered with weights assigning,
a novel model was implemented in [44] that integrates
neighborhood information in the weighting mechanism
and checks both the accuracy and diversity of
recommendations.

The rapid growth of similar functional Web APIs
has led researchers such as Cao et al. [45] who have
attempted to enhance the mashup recommendation
systems’ diversity and accuracy. Their work presented
the relational topic model (RTM) usage to mine the
latent topics from APIs-mashups link relationships. It
later utilizes them with the help of the factorization
machine (FM) method to recommend top-k Web APIs
for mashup development.

Moreover, Li et al. [46] have suggested integrating
factors such as tag, topic, co-occurrence, and popularity
in their model for mashup API recommendation. Their
rational topic model (RTM) is used to output the
mashups and APIs tags and topics for similarity
calculation in-between Web APIs and mashups. API
popularity is recognized in the model by information
like historical invocation times and their category
details. Information like mashups and API similarity,
co-occurrence, and APIs popularity are fed to a
Factorization Machine (FM) method to recommend
top-k distinct and related APIs for a target mashup
creation. Users’ invocation records, similar to APIs and
mashups, can be incorporated to enhance the APIs
recommendation process. In [4, 47], they developed
several APIs recommendation models based on a
collaborative framework and a joint MF technique for
information fusion to mine users’ preferences over APIs
and the in-between relationships.

Matrix factorization (MF) can have accurate results,
but it is a shallow method that has low scalability.
It can’t learn the deeply hidden features of users and
services. Its accuracy is limited by the richness of the
input in which APIs description can be insufficient. Yao
et al. [48] introduce a probabilistic matrix factorization
(PMF) approach for mashup recommendation. It
learns the influence of explicit similarities and implicit
correlations of APIs on the co-invocations of APIs.
The framework decomposes the API-mashup matrix
into two low-dimensional matrices: API and mashup
latent subsets. It unveils the latent APIs’ implicit
correlations from their co-invocation patterns using a
designed latent variable model for MF regularization. It
leverages the advantages of the MF technique and the
APIs relations from historical mashup-API invocation
records.

4.3.2. Content-based Filtering (CBF)

Content-based filtering recommendation model at-
tempts to recommend similar items to the past interests
of the users. As in our study, CBF does depend on the
textual documents of the APIs and the descriptions of
previously built mashups to build their future APIs pre-



10 H. Alhosaini et al.

diction model. There are various types of CBF models
and will discuss some of them.

These types of CBF methods depend on matching
the items, such as APIs, and extracted keywords
with the input query for outputting the results.
Keyword-based models play an important factor
in the system’s information filtering and facilitate
item recommendation. These models focus mainly on
similarity computing and comparison.

The context-aware WISeR framework proposed by
Bianchini et al. [5] aimed at utilizing the multi-
dimensional to model the APIs features such as cate-
gories, tags, functional features, and their usage history
in mashups for keyword searching for the best set and
ranking them afterwards. Their technique dynamically
updates the dimensional attributes according to the de-
velopers’ mashup selections.

Hao et al. [49] presented an automatic mashup query-
based recommendation strategy that built upon the
Targeted Reconstructing Service Descriptions (TRSD).
TRSD is a technique that leverages the reconstruction
of services description. First, it takes in the mashup
descriptions and identifies the hidden information.
Then, it calculates the similarity between previously
developed mashup information and the mashup query
input for leveraging services description information.
Finally, the model will be able to recommend a ranked
list of relevant services.

In an effort to utilize the deep networks for
API mashups recommendation, Xiao et al. [50]
have proposed a Deep Interest Network-based API
Recommendation approach (DINRec) that captures
the functional related semantic information and the
composition relationship of mashups’ APIs. It updates
the mashup features vector while selecting relevant
candidate APIs incrementally. Doc2sim mechanism is
based on Doc2vec and cosine similarity that is used to
extend the dataset for the deep network model training.

Zhou et al. [51] have attempted to improve
existing APIs query-based recommendation methods by
proposing a Boosting RecommendAtin with Implicit
FeeDback (BRAID) that supports users’ feedback. The
model leverages learning-to-rank (LTR) techniques that
provide a user’s personalized ordered recommendation
list of services based on his personal interaction
history. Also, it integrates an active learning component
to alleviate the “cold start” problem of feedback
information. The study does not lay down a new
recommendation but rather presents a boosting method
for the existing approaches.

Semantic analysis approaches give the opportunity
to explore the APIs and mashups of textual docu-
ments for similarity measurement. It can outperform
traditional methods by adding the API semantic fea-
tures knowledge to enhance the recommendation pro-
cess, e.g. [52]. Their effectiveness relies heavily on the
quality of the collected information [53].

For instance, the records of historical mashups can

be studied along with the software developer’s inputs to
develop API recommendation techniques, such as [54],
that identify the expected functional requirements
and capture the potential composition of functionally
satisfied and compatible APIs. Moreover, Gu et
al. [55] developed a service packaging recommendation
technique to recommend the best composition of
services for mashup creation. It employs discourse
analysis to study the mashup textual description and
the semantic relevance between the services regarding
their functionalities. Therefore, it incorporates the
learned relationships and the mashup functional
specifications input for a service set recommendation.

NLP techniques can be very useful and supportive
when we deal with the APIs description or textual doc-
uments analysis in general for semantic-based recom-
mendations. Lin et al. [56] developed an unsupervised
framework Natural Language to service APIs (NL2API)
to recommend services to users based on their input
queries and services descriptions. NL2API is a boot-
strap recommender that helps to capture in-between
services relationships. It deals even with newly added
services in a set of constructed communities of seman-
tically similar services. Communities are built in a tree
form in which nodes refer to their topics. It applies the
Latent Semantic Index (LSI) technique for matching
queries and existing communities and recommends top-
k services.

Models have explored not only ranking the optimal
recommended set but also the diversity of their items for
developers to make a decision, i.e. Almarimi et al. [57]
proposed a novel automatic approach SerFinder for
service set recommendation. It runs the non-dominated
sorting genetic algorithm (NSGA-II) as a services
search technique. NSGA-II selects the optimal sets of
APIs with regards to these objectives: their historical
usage, functional matching to the expected mashup
requirements, and functional diversity. The ranking
component would use the output sets for recommending
the common or most redundant services in these sets.

Some researchers have headed in the direction of
improving the recommendation system in terms of best-
capturing users’ specifications, e.g. Jiang et al. [58]
have implemented a novel semantic-based similarity
approach, Service Discovery approach for Agile Mashup
Development (SDAMD), that employed the user story
concept of agile development to capture the user
requirements. The method utilizes NLP to extract the
three elements of the user’s requirements and extract
the three service attributes in an agile manner. The
final step is to calculate the similarity between the
service description and the search input and recommend
the relevant services. Others tried to achieve a goal-
driven mashup recommendation, such as [59], as they
created a novel context-aware approach to attain the
potential next service composition based on the under-
construction mashups and selected services.

Zhang et al. [60] have implemented Recommendation



API Recommendation for Mashup Creation: A Comprehensive Survey 11

APIs by Stack Overflow posts and Java Packages
(RASOP) that utilized word embedding techniques and
question-and-answer information collected from Stack
Overflow posts. LDA and LSA models are used to
calculate the similarity of the extracted APIs topic word
vectors and the previously assembled questions for a
suitable API recommendation.

A similar study has studied the relationship between
projects and their APIs, Thung et al. [61] developed
a novel automated API recommendation framework
called WebAPIRec. The model analyzes historical
profiles of projects and their services into a personalized
ranking model for project-specific web API ranking.
It takes the project’s textual description as input and
utilizes learned information to find the most relevant
web APIs. The approach ranks these APIs in descending
order according to their relevancy and recommends the
ranked list of services. A drawback is that this method
does not recommend a composition of web APIs for the
project when needed.

Probabilistic models are normally built based on
the system’s previously observed data with the goal of
classifying its items into separate groups. These models
employ knowledge acquired from previous events to
filter the data and predict their classes. Therefore, they
help greatly with multi-feature dataset classification,
e.g., textual dataset.

For instance, Li et al. [62] attempted to assist
mashup developers by presenting a probabilistic model
to recommend the k-top of APIs. The model studies
mashups-APIs’ relationships via a relational topic
model that helps obtain their latent relevant topics.
Also, it incorporates the APIs’ popularity to enhance
the mashup recommendation process.

Various probabilistic models have endeavored to
utilize the heterogeneous information network (HIN), a
kind of directed graph that can model the dataset as in a
network of nodes and edges with various defined types,
as a helpful method to improve their recommendations.
For example, Xie et al. [63] presented a mashup group
preference-based service recommendation, GPSRec, on
HIN. It employs the Bayesian personalized ranking
algorithm to study the dense mashup interactions and
therefore recommends personalized and ranked sets of
services.

The importance of suggesting the best compatible
mashup for applications during the design phase is
to cut the development cost and save time. With
that, some researchers have attempted to investigate
the potential factors that influence the popularity of
a mashup. Alshangiti et al. [64] have presented an
approach that learns the influence of features such as
functionality, novelty, efficient use of tags, selection of
services, and the combination of selected services/tags
in an early stage before the Bayesian model puts forth
a confidence level for each of its predictions. They have
drawn their focus on data provided by repositories such
as ProgrammableWeb for analyzing popular mashups.

The model aims at examining services from scratch
at the designing level to save the time of developing
shunned ones.

4.3.3. Hybrid Approaches

The merge of two distinct recommendation techniques,
such as content-based and collaborative filtering, can
significantly help to gain efficiencies and better results;
this process is called a hybrid approach. These hybrid
models can aid the merged methods in overcoming
their shortcomings while working together in the same
architecture to solve the problem. Numerous researchers
have endeavored to solve some collaborative filtering
challenges using various approaches. For instance, Jiang
et al. [6] have developed an improved hybrid technique
that combines word embedding and node embedding
along with historical records of API invocation to
generate output.

Traditional CF methods like matrix factorization are
unable to capture the very sparse complex interactions
between mashups and services. Hybrid approaches that
take collaborative filtering and deep learning advan-
tages to improve the precision of recommender systems
have emerged recently. In [7], they have established
an ensemble-based model engaging Word2vec similar-
ity and Matrix Factorization techniques to obtain and
select features for recommendations. Xiong et al. [65]
also proposed a DL Hybrid Service Recommendation
approach (DHSR) that takes on CF and the textual
content, i.e., descriptions and tags of mashups and ser-
vices. Historical mashups-services invocation interac-
tions and functionality information are integrated by
the DL model to learn complex mashups-services rela-
tionship features.

An innovative web service classification technique was
proposed by Ye et al. [8]. They have explored the short
services’ functional description problems such as data
sparsity for a solution. Their technique is based on
implementing both the Wide learning and the Bi-LSTM
models on the Web services’ description documents
inputs to predict their category. A linear regression
algorithm is used in the framework as the final step
to perform the service classification process. Their work
can serve as a good basis for other web service discovery
and recommendation systems.

An enhanced web services classification framework
that exploits both the Bi-LSTM to learn the services
feature representations and the topical attention
mechanism to obtain their topic vector was proposed
by Cao et al. [66]. In order to perform the final step
of service classification, their work used the softmax
neural network layer. Their work addresses function-
based clustering approaches’ challenges and offers an
upgraded classification technique in terms of accuracy.

In an attempt to improve their recommendation
system prediction, Xie et al. [67] approached utilizing
the heterogeneous information network (HIN) of



12 H. Alhosaini et al.

mashups and services and their interactions in the
prediction model. They proposed a novel factorization
machine-based model, called FMRec, on HIN. It obtains
the semantic similarity of selected meta paths and
therefore builds the mashup-service matrices for MF to
use with other sources of information to create a feature
vector. The FMRec model automatically employs the
process of learning the latent features of both mashups
and services to predict the ratings of users on services
for recommending the expected set of services.

Xie et al., in their work [68], have suggested infusing
both the DL and the HIN by adopting the Generative
Adversarial Network (GAN) approaches to be able
to study the data distribution and handle services
that may not have been invoked by developers before.
It presented an innovative method based on GAN
and HIN, called HINGAN. First, it constructs a
heterogeneous information network (HIN) using the
semantic information of the mashups, services, their
rich attribute, and various other sources. HIN has the
power to express the mashup developer’s preferences
for services. Then, the approach samples numerous
meaningful meta-paths from HIN to build similarity
matrices of mashup services. Developers’ required
mashup attribute details are used as a condition in the
GAN’s adversarial training process. Using the learned
vector, the model would recommend a list of services
and create the expected mashup. The model does not
only utilize the mashup and service information but also
their historical invocation records. Yet, as an advantage,
it does not require a vast set of these records.

Some users might not be able to describe their
mashup requirements correctly for the best service
recommendations. Therefore, there was a need for a
comprehensive hybrid Open APIs discovery approach
with regard to the user’s preferences. Few have initiated
the utilization of user stories from agile software
development settings for robust data acquisition. For
example, Jiang et al. [9] proposed the Hybrid Open
API Selection Approach for Mashup development
(HyOASAM) to discover open APIs that comply with
the developers’ requests. The system captures the
mashup requirements from the offered user stories and
extracts the three corresponding features matrix. Then,
an FM model is employed to calculate the similarities
or the association scores of mashups and public APIs
to recommend the Top-N lists for mashup creation.

4.3.4. Summary

Traditional recommendation systems, see Table 3,
are widely used in various industries to enhance
user experiences and generate revenue. These systems
rely on a range of algorithms to make personalized
recommendations based on user-items preferences and
behaviour.

Popular approaches like collaborative filtering are
effective in identifying patterns among users. They

have been used often, along with other techniques
in recommendation systems implementation [69].
Traditional CF may not be robust and practical to
deal with real-world problems such as the severe data
sparsity challenge. Since it is dependent on historical
records of user-item interactions, it may be affected by a
cold-start problem when the information is unavailable
at the time. Besides, it might lead to improper
recommendations due to the provided inaccurate or
inadequate service descriptions. In addition, CF-based
system computation can become very expensive with
the enormous growth of information over the Internet.
Therefore, researchers have been tempted to investigate
other techniques to bring forward further improvements
to the recommendation systems.

Other traditional techniques, such as content-based
filtering, relies on item characteristics to personalize
suggestions. CBF models can be inflexible and limited
in handling API extracted features and face a challenge
in capturing their inter-dependencies. Unlike the CF
methods, when recommending a set of APIs for
mashup creation to satisfy the user’s query, CBF
methods might recommend entirely similar to those
recommended before with no regard to other details like
the compatibility of APIs. As a result, they will cause
a problem for the newly added and the already existing
APIs that haven’t been invoked yet and affect the
quality of the results. CBF approaches are frequently
used to boost the performance of other techniques,
such as the CF methods. They have been applied
successfully in various domains to offer personalized
recommendations [70].

Hybrid recommendation systems combine the two ap-
proaches to provide even more accurate recommenda-
tions by leveraging both user behaviour and item fea-
tures. They successfully come in various combinations
and have been used a lot nowadays to alleviate the dis-
advantages of standard techniques such as the cold-start
issue [71, 72]. Though the hybrid models have properly
combined several advantages of multiple techniques and
have proven to be better than the baseline methods,
they can be complex and expensive to implement.

Despite their effectiveness in generating relevant
recommendations for individuals, traditional APIs
recommender systems face several limitations, such as
cold-start problems when new APIs or mashups are
introduced. To address these limitations and provide
better recommendations for API users and developers
alike, several new approaches have emerged in recent
years.

4.4. Network Representation Learning

Information networks have surfaced in recent years
due to the need to capture complex relationships, yet
they can become difficult to be analyzed. Network
representation learning has been suggested by many
analysts as a new paradigm to reconstruct network



API Recommendation for Mashup Creation: A Comprehensive Survey 13

TABLE 3: Traditional Recommender Systems

Studies Algorithm Specifications
Yin et al. (2020) Collaborative Filtering Matrix Factorization, Cognitive Knowledge Mining, Hidden

Relationships Evaluation
Xu et al. (2021) Collaborative Filtering Joint Matrix Factorization Model, Similarity Computation,

Neural Networks
Rahman et al. (2017) Collaborative Filtering Matrix Factorization, Ranked Clusters of Web APIs, Pearson

Correlation Coefficient (PCC)

Wang et al. (2021) Collaborative Filtering Div PreAPI, Mashup-API interactions, Matrix factorization

Cao et al. (2016) Collaborative Filtering Factorization Machine (FM), Relational Topic Model (RTM),
APIs-mashups latent topics

Li et al. (2017) Collaborative Filtering Factorization Machine (FM), Relational Topic Model (RTM),
latent topics, tags, historical invocation

Xu et al. (2021) Collaborative Filtering Joint matrix factorization, Doc2vec, Similarity computation
methods

Yao et al. (2018) Collaborative Filtering Probabilistic Matrix Factorization (PMF), APIs implicit
correlations, latent variable model, mashup-API invocation
records

Bianchini et al. (2017) Content-based Filtering Context-aware WISeR framework, APIs features modelling,
keyword searching

Hao et al. (2017) Content-based Filtering Automatic mashup query-based strategy, Targeted Recon-
structing Service Descriptions (TRSD), mashup descriptions

Xiao et al. (2019) Content-based Filtering Deep Interest Network based API Recommendation approach
(DINRec), mashups-APIs functional information, Doc2sim
mechanism

Zhou et al. (2020) Content-based Filtering Boosting RecommendAtin with Implicit feeDback (BRAID),
learning-to-rank (LTR) techniques, active learning

Gu et al. (2016) Content-based Filtering Service packaging recommendation technique, discourse anal-
ysis, mashup functional features

Qi et al. (2021) Content-based Filtering WAR(text), Compatibility-aware, text description-driven rec-
ommendation

Gu et al. (2016) Content-based Filtering Mashup textual description mining, Semantic relations
analysis

Lin et al. (2018) Content-based Filtering Unsupervised framework Natural Language to service APIs
(NL2API), bootstrap recommender, Latent Semantic Index
(LSI) technique

Almarimi et al. (2019) Content-based Filtering SerFinder, non-dominated sorting genetic algorithm (NSGA-
II), APIs optimal sets

Jiang et al. (2019) Content-based Filtering Service Discovery approach for Agile Mashup Development
(SDAMD), semantic-based similarity approach, NLP tech-
niques

Xie et al. (2022) Content-based Filtering Goal-driven and context-aware machine learning method,
Representation learning

Zhang et al. (2019) Content-based Filtering Recommendation APIs by Stack Overflow posts and Java
Packages (RASOP), LDA and LSA techniques, APIs topic
vectors

Thung et al. (2017) Content-based Filtering WebAPIRec, ranked project-specific web APIs, projects
textual description

Li et al. (2014) Content-based Filtering Relational topic model, mashups-APIs’ latent relevant topics

Xie et al. (2019) Content-based Filtering Mashup group preference-based service recommendation
(GPSRec), bayesian personalized ranking algorithm



14 H. Alhosaini et al.

Studies Algorithm Specifications
Alshangiti et al. (2020) Content-based Filtering Bayesian model, popular mashups data features analysis

Jiang et al. (2022) Hybrid Approaches WMD-NV, Historical invocation information, Word embed-
ding, Node embedding

Chen et al. (2022) Hybrid Approaches Ensemble-based approach, Word2vec similarity, Matrix Fac-
torization techniques, GBDT, GRU

Xiong et al. (2018) Hybrid Approaches Deep Learning Hybrid Service Recommendation (DHSR), CF,
mashups-services historical invocation

Ye et al. (2019) Hybrid Approaches the Wide learning and the Bi-LSTM models, Web services
description, Linear regression algorithm

Cao et al. (2019) Hybrid Approaches Bi-LSTM model, topical attention mechanism, service classifi-
cation, function-based clustering approaches

Xie et al. (2018) Hybrid Approaches Heterogeneous information network (HIN), Factorization
machine-based model (FMRec), mashup-service latent features

Xie et al. (2019) Hybrid Approaches HIN, Generative Adversarial Network (GAN), mashups and
services semantic information & matrices

Jiang et al. (2020) Hybrid Approaches Hybrid Open API Selection Approach for Mashup development
(HyOASAM), software agile development, FM model

information into a low-dimensional vector with regards
to not losing any vital details [73].

The task of manually discovering the qualified and
compatible cluster of web APIs from massive candidates
is time-consuming, inefficient, and stressful. Qi et
al. [74] present a weighted APIs correlation graph (W-
ACG) to help learn the functions and compatibilities
of APIs. Later on, they use the learned details to feed
the Keywords-based and Compatibility-aware APIs
Recommendation (K-CAR) model for recommending
the function-qualified and compatibility-guaranteed set
of APIs. K-CAR as a dynamic recommendation model
can aid users in searching for APIs to satisfy their
complex requirements with no need for prior knowledge
of APIs structure. Then, the novel W-ACG model
constructs a graph of APIs with their descriptive words
as the nodes and the weight values as the edges. K-CAR
heavily depends on historical API integration data to
learn their compatibility, yet in a practical setup, the
majority of them haven’t been invoked by developers
for building apps. Besides, this model does not scale
well with the web APIs for the recommendation.

Qi et al. [75] proposed a data-driven approach called
Web APIs Recommendation (WAR) that discovers,
verifies, and selects web APIs based on users’ search
keywords. It helps programmers select the appropriate
APIs without detailed knowledge of web APIs. The
framework first builds a web API correlation graph of
their compatibility from their vast existing data. Then,
WAR aids with recommending a compatible and diverse
set of APIs based on the typed keywords. It returns a
sub-graph of APIs that fulfil the search.

Knowledge graphs have been widely discussed as
they can bring forward fruitful facts that can enhance

recommendation methods. Wang et al. [76] in their
research have proposed an unsupervised method based
on the mashup-API knowledge graph embedding and
the dynamically deep random walk to adjust the results
for developers’ preferences.

Modeling API recommendation as a graph search
problem has gained increased attention recently as
several studies have focused on API compatibility and
how to achieve it by treating it as a Steiner Tree
search problem that needs to be addressed. A series
of approaches, e.g., as that presented in [77, 78, 79,
80], have employed the usage APIs correlation graph-
based approach and the Steiner Tree search problem to
recommend a personalized set of functional-satisfactory
APIs for APP developers. In [81], they have further
enhanced the Steiner Tree search approach-based
recommendation by incorporating API popularity into
the equation to find the optimal set of APIs for mashups
to ensure the diversity and quality of results.

4.4.1. Summary

Influenced by the deep learning ability to learn data
features, network representation learning frameworks,
Table 4, came to interest as they can obtain represen-
tation vectors from the data network. Therefore, they
can efficiently assist significant tasks such as the net-
work’s nodes classification, clustering, and links predic-
tion and display an overview of the network data and
pattern recognition. Hence, data sparsity and limited
scalability may impose a challenge for traditional net-
work analysis [82].



API Recommendation for Mashup Creation: A Comprehensive Survey 15

TABLE 4: Network Representation Learning Studies

Studies Technique Specifications

Qi et al. (2019) Weighted APIs correlation
graph

Keywords based and Compatibility-aware APIs Recommenda-
tion (KCAR), historical APIs invocation

Qi et al. (2020) API correlation graph Web APIs Recommendation (WAR), data-driven approach

Wang et al. (2021) Graph Embedding Technique,
Deep Random Walk

Mashup-API co-invocation patterns, Knowledge Graph, entity
bias procedure

Qi et al. (2021) Steiner Tree search problem,
Correlation graph-based ap-
proach (PC-WAR)

Web APIs correlation graph, Personalized and compatible Web
APIs recommendation problem

Gong et al. (2022) Steiner Tree search problem,
Diversity-aware Web APIs rec-
ommendation approach

Keyword search technique, Determinantal point process (DPP)

Gong et al. (2020) Steiner Tree search problem,
Keywords-driven web APIs
recommendation approach

Weighted web APIs-specific correlation graph, Keywords-
driven and compatibility-aware multiple API group recommen-
dation

Gong et al. (2021) Steiner Tree search problem,
DivCAR

Diversified and Compatible web APIs Recommendation
approach, Random walk technique

Wu et al. (2022) Steiner Tree search problem,
PD-WACR

Popularity-aware and diverse method of web API composi-
tions’ recommendation, APIs’ correlation graph

4.5. Deep Learning Techniques

Many researchers have attempted to tackle the CF
common challenges, such as sparsity and its limited
predictability. Several have investigated the usage of
neural network (NN) and deep neural network (DNN)
techniques Fig. 10 since they can automatically learn
the nonlinear mashup-service interactions and the
ability to represent the extracted features efficiently.
Therefore, deep learning models were introduced in
recommendation systems to solve some of the existing
problems. They have been infused with many other
recommendation techniques to make an effort to
improve them and to handle the emerging high number
of developed APIs.

FIGURE 10. A Simple Deep Learning model

For instance, Zhang et al. [10] have expressed while
creating mashups not only to consider the relevant APIs
but also the ones that have high-order composition
interactions in between. It employs the Doc2Vec
mechanism for extracting the functionality features

from the raw APIs descriptions as vectors. Then, it
proposed to cluster the APIs with similar functions
based on their feature vectors to match the target
mashup description. It further utilized the Deep-FM,
which takes advantage of using both techniques, the
deep neural network factor and factorization machine,
to learn these clusters’ interaction information for a
better API recommendation.

For recommender systems, mashup establishment
may require adequate domain knowledge, yet inex-
perienced developers face the challenge of identifying
sufficient knowledge to aid the services recommenda-
tion process. Chen et al. [84] proposed a keyword-
based deep reinforcement learning model (K-DRSTS)
that uses a service-keyword correlation graph to learn
their relationships and the Steiner tree search algorithm
for service discovery. Huang et al. [85] proposed Bi-
Information source-based KnowledgE Recommendation
BIKER, an API recommendation approach that tackles
issues such as lexical and knowledge gaps. Their method
employs word embedding techniques and incorporates
both the Stack Overflow posts and API documentation
to recommend a ranked top-k APIs list that matches
the developer’s program task.

In an effort to capture the developers’ updated pref-
erences and requirements, Ma et al. [11] implemented a
deep learning model named DLISR. Their multi-round
recommendation approach aims to learn the mashup
interactions via historical records and recommend the
appropriate composition of APIs. Zhang et al. [86] have
implemented an offline and online framework where the
offline deep neural network module learns the mashup-
APIs relationship. The online component recommends



16 H. Alhosaini et al.

the APIs based on the requested mashup description.
With the successful prevalence of NN frameworks

to effectively learn useful word representations, several
scientists have tried to employ a wide range of NN
techniques in their research. Though factorization
machine models have shown an improved accuracy
than traditional CF models, they still may lack
capturing complex or different weight interactions. The
integration of a deep neural network framework and
attention mechanism with the factorization machine
model, named the Neural and Attentional Factorization
Machine for Web API Recommendation (NAFM ) [87]
was implemented to capture the non-linear interactions
and the significance of their features.

Similarly, Cao et al. [88] have proposed the usage of
the Attentional Factorization Machine recommendation
method (AFMRec) for service recommendation. It em-
ploys the traditional matrix factorization of decompos-
ing both the multi-dimensional features and their im-
plicit cross-interactions. The model, as a start, tends
to use the Doc2Vec technique to extract significant se-
mantic latent features from the raw dataset and trans-
form them into the model input format. Next, the
model would utilize multi-dimensional information to
predict the mashup-service ratings for service recom-
mendations. Deep Factorization Machine models have
displayed higher performance than traditional collabo-
rative filtering ones. Yet, as these models ignore signifi-
cant features and assign the same weights, an attention
mechanism is employed to capture the varying impor-
tance of interactions, such as the NAFM model in [89].
Cao et al. [90] attempted to predict and rank web APIs
for building their relationship network. They used the
graph attention network (GAT) and the DeepFM mod-
els to classify APIs into clusters based on their func-
tional features.

Nguyen et al. [12] have proposed a probabilistic
matrix factorization (PMF) model called an attentional
PMF model. It addresses one of the shortcomings
of traditional PMF as it emphasizes studying the
importance of assigning different weights or scores
to the extracted latent feature interactions from the
historical invocation since not all of them may provide
the same significantly useful information. The attention
mechanism in NN is employed in this model first
to parametrize the attention scores and learn them
before weighing the latent features of mashup-APIs
invocations. In addition, the utilization of the implicit
relationships between the APIs, along with their history
of co-invocations, enhances the prediction model.
Doc2Vec technique is used by the model to learn the
document embeddings and generate the corresponding
matrix. The contextual similarity and the APIs co-
invocation are added to the model for regularization. It
helps to reduce the PMF model overfitting and enhance
the recommendation further. Moreover, Nguyen, in
their paper [91], employed the Attentional PMF (AMF)
to set weights and determine the significance of latent

features of mashups and APIs for outperforming the
traditional PMF.

The integration of content-based recommendation
with deep learning was presented by Shi et al. [92]
as a solution to the service description’s data sparsity
challenge. They proposed a novel probabilistic model
to expand service descriptions at a sentence level to
relieve the feature sparsity gap problem. Additionally,
it utilized a Long Short-Term Memory (LSTM) model-
based deep architecture with two attention mechanisms
for recommending top-N ranks. A functional attention
mechanism that focuses on the most decisive features,
which may affect the recommendation accuracy, and
a contextual attention mechanism to select services
to match the user’s specific requirements. Previous
approaches fell short of weighing the significant features
found in the descriptions, which this paper has taken
into consideration.

Shi et al. [93] have also presented a model based on
Bi-LSTM networks to obtain the services’ functional
features and the functional requirements of mashups.
Their model also consists of an attention mechanism
that utilizes service tags to assign attention scores to
the different service description words.

The development of new mashups has caused the
cold-start challenge. Since deep neural representation
learning is powerful with hidden features extraction, Ma
et al. [94] have implemented a multiplex interaction-
oriented service recommendation mechanism (MISR).
The model studies three types of interactions between
mashups and services, which are content interaction,
implicit neighbor interaction, and explicit neighbor
interaction. These interactions are incorporated into
a DNN model to predict the probability of candidate
services invocation in a new mashup. A novel mashup-
oriented recommendation technique was presented by
Wu et al. [95] named neural framework (MTFM). Their
method aims to model the feature interactions between
mashups and APIs and generate API recommendations
matching mashup requirements. They further utilized
other auxiliary information, such as metadata, to
develop a metric for compatibility evaluation.

Early-on keyword-based API discovery approaches
have long suffered the term-mismatch problem due to
the differences in user queries and service descriptions.
With that, few have attempted to incorporate
alternative feature learning methods that can achieve
better results. For instance, Lizarralde et al. [96]
introduced the use of Variational Autoencoders neural
networks as a way of restricting the encoded
representation of learned latent features. Autoencoders,
as a type of NN, have had a significant contribution by
reducing input dimensions and therefore helping with
learning data hidden features and modeling complex
data relationships.

The application of Stacked AutoEncoders (SAE), a
deep feedforward network model, for predicting the
future mashups services compositions and substitutions



API Recommendation for Mashup Creation: A Comprehensive Survey 17

interactions was proposed by Labbaci et al. [97]. The
goal of using SAE is to learn the latent service
characteristics such as text description, categories,
constraints, and others and use them with previous
interactions to predict new ones. It helps to alleviate
the cold-start problem that traditional recommendation
approaches suffer from, as well as can be relied on
for identifying compatible services for potential mashup
development. Interactions are constructed in a service
network graph with services as the nodes and the
composition and substitution relationships.

Moreover, Bai et al. [98] have presented a deep learn-
ing framework for long-tail services recommendations
(DLTSR). The approach adopts Stacked Denoising Au-
toEncoders (SDAE) as the main component for effective
feature extraction. The procedure does utilize the hot
services invocation records and the modeled developer’s
preferences for SDAE outputs regularization.

Studies like [99, 100] Knowledge Graphs have been
used as auxiliary information to alleviate user-service
interactions and matrix sparsity. Dang et al. [99]
presented a deep knowledge-aware method that utilizes
textual contents and the knowledge graph to capture
the complex relations between mashups and web
services in a setting of a sparse invocation matrix. A
graph attention network model was developed by Li et
al. [100] (WSR-MGAT) to fully exploit the knowledge
graph meta-path information to improve the accuracy
and interpretability of recommendations. Yu et al. [101]
have also attempted to handle the data sparsity by
implementing an API Knowledge Graph and Intent
Network based Mashup-Oriented API recommendation
method (AKGIN) that models the mashup intention
through the mashup-API high-order interactions.

The deep learning-based open API recommendation
(DLOAR) approach proposed by Wang et al. [102]
aimed to help developers find the most relevant and
high-quality open APIs for their composition applica-
tion development. It uses a combination of hierarchical
density-based spatial clustering, TextRank algorithm,
and neural network-based similarity calculation to rec-
ommend the best APIs. It outperforms the baseline ap-
proaches in terms of precision, recall, and F1-measure.

WANG et al. [103] presented a novel mashup creation
method, named the Functional and Structural Fusion
Model (FSFM) to address the challenges faced by
current Web API recommendation methods such as
relying solely on API information. The methodology
involves a structural component for capturing the
latent interactions between mashups and APIs in
a heterogeneous network and a functional semantic
component to help generate the embedding vectors of
mashups and APIs to fuse them later and recommend
a list of candidate APIs for mashup developers. The
model is evaluated against different baselines, including
traditional Collaborative Filtering (CF) methods and
Neural Collaborative Filtering (NCF). The results
show that the FSFM method outperforms other

methods. However, it is worth noting that the proposed
model may have limitations in terms of scalability
and computational complexity, as it involves multiple
components and the integration of different types of
features.

He et al. [104] proposed a probabilistic generative
model called Binary-API Topic (BAT) to help
developers select appropriate APIs for their mashup
projects. The recommendation model is built upon
mashup data and API co-occurrence patterns to learn
sparse interactions between mashups and APIs. Its
objective is to extract binary APIs and predict unknown
pairwise interactions, improving user satisfaction and
promoting more popular web applications. The results
show that BAT yields a higher-quality recommendation
list. Though the model attempts to alleviate the severe
sparsity issue of individual mashups, the global mashup
repository is required to learn the topic distribution
across all mashups.

Yu et al. [105] focused on handling the cold start
problem in the mashup creation setting by proposing
a novel approach named SRMG for web service recom-
mendation for mashup. They employ the Bidirectional
Encoder Representations from Transformers (BERT) to
discover any functionally similar mashups and Graph
Generative Adversarial Networks (GraphGAN) to ob-
tain the mashups and services representation vectors
based on the historical invocation records. Their model
learns the mashup preferences for each service to de-
rive the list of service candidates that match the new
mashup preference.

The objective of works such as Xiao et al. [106] is to
propose a new method for web API recommendation
that effectively reflects the relationship between
mashups and APIs. The proposed method, called
the Hypergraph Convolutional Network for Web API
Recommendation (MRHN), uses motifs to extract a
hypergraph structure and a hypergraph convolutional
network to obtain feature embeddings of mashups.
The method also uses a channel error attention
mechanism to adjust the weight of each channel and
graph convolution to obtain a representation vector
that contains mashup-API calling information. The
results of the experimental analysis and evaluation
show that the MRHN method outperforms existing
methods in terms of accuracy. Wang et al. [107]
have also employed a motif-based attention mechanism
in their Motif-based Graph Attention Network for
service recommendation (MGSR) approach to capture
high-order interactions in the Mashup-API interaction
bipartite graph along with a collaborative filtering
model to derive the recommendations. Moreover, Zheng
et al. [108] have developed a Hierarchical Motif-based
Graph attention network for Service Recommendation
(H-MGSR) that applies node-level and motif-level
attention mechanisms to help capture the significance
of different motifs and their impact on the accuracy of
service recommendations.



18 H. Alhosaini et al.

TABLE 5: Deep Learning Techniques

Studies Technique Specifications
Zhang et al. (2018) Deep-FM Doc2Vec mechanism, APIs functionality-based cluster-

ing
Chen et al. (2022) K-DRSTS, Steiner tree

search problem
Keyword-based Deep Reinforced Steiner Tree Search,
Service-keyword correlation graph

Huang et al. (2018) Deep Learning Technique Bi-Information source-based KnowledgE Recommenda-
tion (BIKER), word embedding techniques, Stack Over-
flow posts and API documentation

Ma et al. (2022) DLISR, Hybrid model Service bundle recommendation framework based on
deep learning, HISR

Zhang et al. (2021) Deep recommendation
framework

Feature extraction, Matrix decomposition, Neural
network learning mapping

Kang et al. (2020) Neural and Attentional
Factorization Machine
(NAFM)

Classical FM, Multi-dimensional Features Incorporation

Cao et al. (2019) Attentional Factorization
Machine

Doc2Vec technique, services semantic latent features

Kang et al. (2021) NAFM, Novel neural net-
work architecture

Hybrid factorization machine model, Attention mecha-
nism

Cao et al. (2022) GAT, DeepFM Graph attention representation, Web API relationship
network

Nguyen et al. (2020) Attentional probabilis-
tic matrix factorization
(PMF)

Doc2Vec technique, APIs co-invocation data

Nguyen et al. (2021) Attentional PMF Model
(AMF)

Matrix factorization, Neural attentional network,
Doc2Vec

Shi et al. (2018) probabilistic model with
LSTM and attention

Novel probabilistic model, Two attention mechanisms

Shi et al. (2019) Bi-LSTM networks with
attention

Bi-LSTM networks, attention mechanism, services tags

Ma et al. (2020) Deep Learning Techniques Multiplex interaction-oriented service recommendation
mechanism (MISR), mashups-services interactions

Wu et al. (2021) MTFM, MTFM++ multi-model fusion and multi-task learning for Mashup-
oriented Web API recommendation

Lizarralde et al. (2020) Variational Autoencoders Variational Autoencoders neural networks, complex
data relationships modelling

Labbaci et al. (2017) Stacked AutoEncoders
(SAE)

latent service characteristics, service network graph

Bai et al. (2017) Stacked Denoising Au-
toEncoders (SDAE)

Deep learning framework for long-tail services recom-
mendations (DLTSR)

Dang et al. (2021) Deep knowledge-aware ap-
proach

Knowledge Graph, Knowledge Representation, Mashup-
Service relationships learning

Li et al. (2022) WSR-MGAT Metapath-guided Graph Attention Network Model,
Knowledge Graph, Novel distance-aware-based path
sampling strategy

Yu et al. (2023) AKGIN Knowledge Graph, Intent Network, LDA
Wang et al. (2023) DLOAR Hierarchical Density-based Spatial Clustering, Tex-

tRank algorithm, and Neural Network-based similarity
calculation

Wang et al. (2023) FSFM Structural Component, Functional Semantic Compo-
nent, Embeddings Fusion

He et al. (2023) BAT Binary API Topic Extraction, API co-occurance
patterns learning

Yu et al. (2023) SRMG Bidirectional Encoder Representations from Transform-
ers, Graph Generative Adversarial Networks, Mashup-
Service preferences



API Recommendation for Mashup Creation: A Comprehensive Survey 19

Studies Technique Specifications
Xiao et al. (2023) MRHN Motifs, Hypergraph Convolutional Network, Attention

mechanism
Wang et al. (2023) MGSR Motif-based Attention Mechanism, Mashup-API Inter-

action Bipartite Graph, Collaborative Filtering Model
Zheng et al. (2023) H-MGSR Node-level Attention Mechanism, Motif-level Attention

Mechanism

4.5.1. Summary

Deep Learning-based recommender models have
achieved significant advances in recent years in their
flexibility, effectiveness, and high-quality output. Their
techniques in Table 5 can assist with learning users’
preferences, item characteristics, and mashup-item
interactions. They have garnered considerable interest,
and their successful widespread has influenced their
adoption in many real-world problems, i.e., API mashup
recommendations. However, deep learning models are
still suffering limitations and drawbacks that can affect
their productivity and accuracy, such as interpretability
and the rich dataset requirement. Yet, this field is still
flourishing and has shown signs of improvement.

5. FUTURE DIRECTIONS

In previous sections, we discussed how recommenda-
tion techniques could be used to create API mashups.
As recommendation techniques can have limitations or
be enhanced, there are several interesting areas of re-
search in recommendation systems that can be consid-
ered to be employed in API recommendation to facil-
itate mashup creation. This section discusses a few of
these open research areas and active topics in recom-
mendation systems. We will tackle a couple of innova-
tive recommendation systems, such as on-the-fly recom-
mendation and explainable systems, that have attracted
researchers to the community.

5.1. Bootstrapping Cold-start Items

New recommender systems may fail to provide
sufficient and helpful recommendations because of their
limited datasets. Systematic bootstrapping cold-start
items is a technique used in recommender systems to
handle the problem of recommending items with little
or no historical interaction data available, also known
as ”cold-start” items. The essence of bootstrapping
recommenders is to enrich the inadequate history of
interactions and hence accelerate these models.

A data-centric bootstrapping approach was devel-
oped by [110] to support the launched system with new
user interactions and improve its model performance.
Their machine learning framework involves building an
initial model based on metadata or auxiliary informa-
tion about the item, such as genre, director, actors, year
released, etc., rather than relying solely on user-item in-
teraction data. For instance, some research like [109,

111] have pushed forward the implementation of infor-
mation elicitation methods based on conducting user in-
terviews for assembling the new user preferences data.
These user interviews are gathered following carefully
selected seed-set items with various features.

Many deep reinforcement learning models were
utilized by many system designers such as Lee et
al. [112], where they applied two neural networks to
learn from each other and to identify the potential
positive user-item interactions. They aimed to overcome
some of the drawbacks of one-class collaborative
filtering (OCCF) and increase the robustness of
bootstrapping techniques. As the initial stage of
recommender systems may be affected by the lack
of information required for generating high-quality
recommendations, bootstrapping recommender models
were established to fill the gaps in the dataset. They
have gained the interest of system developers to
deal with the cold-start problem many recommenders
encounter.

Bootstrapping Cold-start Items is a useful technique
for addressing cold-start issues in recommenders when
generating recommendations in recommender systems
by leveraging additional information beyond the user-
item interactions. It has become an essential part of
recommendation systems’ strategies as it significantly
improves their accuracy and helps provide relevant
and timely recommendations. In the article, there
were several studies have incorporated bootstrapping
techniques to enrich their dataset, yet it is still a new
area of research that can be investigated.

5.2. Leveraging External Side-information

Some researchers have done pioneer work considering
the rich side information like social network data
(e.g., social comments or tags on APIs) to support
API or service recommendations. Social network-based
approaches aim to personalize the recommendation
results; however, processing large-scale data can
be time-consuming. Network representation learning
approaches have recently surfaced, and researchers
have been interested as they can be beneficial. Wu
et al. [113], for example, have discussed a hybrid
network representation learning technique for service
recommendation based on integrating the users’ co-
tag and social networks. Their approach brings further
improvement as it can help learn users’ preferences and
handle big information networks.



20 H. Alhosaini et al.

Clustering-based recommendation techniques have
emerged to be commonly used for service and API
recommendations. Yet, they could be evolved and
enhanced to include user-service traditional relations
and other data sources. Information like temporal,
spatial, and others can affect users’ preferences;
therefore, it can be used as auxiliary information
in recommendation systems. Mezni et al. [114] have
proposed a context-aware service recommendation
technique that focuses on the temporal information and
the K-means clustering method to suggest the top-rated
list of services.

Wang et al. [115] developed a novel Diversified
Recommendation method based on LSH (DivRec LSH)
as an attempt to enhance the traditional CF-based
recommendation solution diversity as well as its
accuracy for users’ satisfaction. The architecture makes
use of historical records and the efficient search
technique Locality-Sensitive Hashing (LSH). The model
emphasizes that the recommended items for users need
not be redundant. It experimented on a movie data
set, Movie-Lens, for efficiency results. (related but not
quietly for web services)

The implicit invocation feedback data of APIs
can enhance the recommendation system’s accuracy.
Contextual information, such as geographical location,
can significantly impact API invocations. With the help
of side information, API recommendation systems can
be enhanced and their output can be refined even
further. For example, in Botangen et al. [116] work they
have suggested an approach that calculates preference
scores from geographical location information and API
functionality descriptions. Afterwards, they incorporate
them into their matrix factorization recommendation-
based approach for generating favored mashup-API
recommendations.

5.3. On-the-fly Recommendation

The rapid changes in users’ interests or data patterns
can pose a critical challenge for recommendation
models. Similarly, for multiple domains, the relevance
and the order of information may drop over time,
which adds another challenge. For instance, articles in
the news or fashion domains are continuously updated
based on shifting trends.

Since the requirements of businesses and customers
can be modified at any time, recommendation
systems should also be flexible and configurable
at runtime. In [117], a sequential pattern mining
approach was developed to generate updated news
recommendations. In their approach, the ongoing user
session information is analyzed for pattern extraction
and compared with the user clickstream’s real-time
inputs for the recommendation. Wang et al. [118]
has introduced a new family of online multi-task
collaborative filtering (OMTCF) to improve the issues
of existing online collaborative filtering algorithms. It

applies the principles of online multi-task learning and
collaborative filtering techniques to learn the model
accurately and update the relevant data based on the
matrix of user interaction.

In a different setting, Safran et al. [119] have imple-
mented two novel algorithms to help generate on-the-
fly recommendations in crowdsourcing systems. They
have investigated the characteristics and relationships
of task/worker and utilized the ”categories” key factor
to accelerate the recommendation model. As online rec-
ommender systems, e.g. API recommendation systems
for mashups, efficiency and scalability can be enhanced,
the development research of the on-the-fly recommender
systems is still ongoing.

5.4. Explainable Recommendation

The current personalized recommendation techniques
may provide good predictions but cannot give proper
justifications or feedback which can help users un-
derstand the results and guarantee their satisfaction.
Therefore, a new trend of recommendation models,
called Explainable recommendation models, has arisen
to generate high-quality recommendations and help
users understand the algorithms’ insight, Fig. 11. Un-
like others, these types of models bring many ben-
efits as they improve the effectiveness, trustworthi-
ness, and user stratification of recommendation sys-
tems. Explainable recommendation systems can be ei-
ther model-intrinsic, interpretable models whose mech-
anisms provide the results and the explanations to-
gether to the users, or model-agnostic, or post hoc
models, a BlackBox-based recommendation mechanism
that generates explanations based on the recorded de-
cisions [120].

The aim of the explainable recommendation models
is to involve humans in the process of developing useful
and agreeable recommendations. It is a very interesting
and promising research area for API recommendation
systems researchers because it can help them analyze
users’ behavior and preferences, and give an explanation
for mashup developers to help make a decision of
whether the recommended mashup is useful or not.

5.5. User Tools

The vast amount of available application tools and
features led to the need for recommender systems to
help facilitate the software development process. A few
researchers endeavoured to implement recommenders
that act in a user’s role and recommend tools for
another user in the system. Brown et al. [121]
have conducted a study to explore the nature of
user-to-user recommendations via data analysis and
observing real-world cases of users recommending tools
to others. Again, the inadequate amount of previous
users interactions data at the initiation phase of the
system can bring the traditional issue of cold-start,



API Recommendation for Mashup Creation: A Comprehensive Survey 21

FIGURE 11. Explainable Recommendation Model Examples

which it needs to handle. It is challenging to picture
user interests fully as users behave diversely under
different circumstances. In addition, the automation of
tool recommendations may also have to meet a defined
set of metrics based on the characteristics of the project.
Research is still further examining the effectiveness of
relevant factors such as user experience, length, task
difficulty, and others.

6. CONCLUSIONS

Web API recommendation for mashup creation has
become a trending research topic for its benefits
in the service computing field. In this survey, we
briefly inspected the characteristics of recommender
systems and discussed the significant emergence of Web
APIs recommendation systems and their advancement.
Moreover, we investigated the current state-of-the-art
solutions and presented a review of their techniques
for mashup creation. We discussed the benefits and
limitations of popular traditional recommendation
methods, such as collaborative-based filtering and
content-based filtering techniques. Besides, this work
examined other models like network representation
learning and hybrid approaches. As deep learning
techniques attracted much interest, we introduced
various developed systems to identify their key points
and challenges. Finally, we suggested a couple of
potential future research directions for further analysis.
Nowadays, though many studies have attempted to offer
reliable approaches for accurate mashup development,
it is still believed to have room for improvement.

DATA AVAILABILITY STATEMENT

The data underlying this article will be available
from the corresponding author, [HA], upon reasonable
request.

REFERENCES

[1] Tan, W., Fan, Y., Ghoneim, A., Hossain, M. A.,
& Dustdar, S. (2016). From the service-oriented
architecture to the web api economy. IEEE
Internet Computing, 20 (4), 64–68.

[2] Lamothe, M., & Shang, W. (2020). When
apis are intentionally bypassed: An exploratory
study of api workarounds. 2020 IEEE/ACM
42nd International Conference on Software
Engineering (ICSE), Seoul, South Korea, 27
June-19 July, pp. 912–924.

[3] Yin, Y., Huang, Q., Gao, H., & Xu, Y. (2020).
Personalized apis recommendation with cogni-
tive knowledge mining for industrial systems.
IEEE Transactions on Industrial Informatics,
17 (9), 6153–6161.

[4] Xu, Y., Wu, Y., Gao, H., Song, S., Yin, Y., &
Xiao, X. (2021). Collaborative apis recommen-
dation for artificial intelligence of things with
information fusion. Future Generation Computer
Systems, 125, 471–479.

[5] Bianchini, D., Antonellis, V. D., & Melchiori, M.
(2017). Wiser: A multi-dimensional framework
for searching and ranking web apis. ACM
Transactions on the Web (TWEB), 11 (3), 1–32.

[6] Jiang, B., Li, H., Yang, J., Qin, Y., Wang, L.,
& Pan, W. (2022). Web service recommendation
based on word embedding and node embedding.
Mobile Information Systems, 2022.

[7] Chen, J., Wang, Y., Huang, Q., Jiang, B., &
Liu, P. (2022). Open apis recommendation with
an ensemble-based multi-feature model. Expert
Systems with Applications, 196, 116574.

[8] Ye, H., Cao, B., Peng, Z., Chen, T., Wen, Y., &
Liu, J. (2019). Web services classification based
on wide & bi-lstm model. IEEE Access, 7, 43697–
43706.

[9] Jiang, B., Liu, P., Wang, Y., & Chen,
Y. (2020). Hyoasam: A hybrid open api



22 H. Alhosaini et al.

selection approach for mashup development.
Mathematical Problems in Engineering, 2020.

[10] Zhang, X., Liu, J., Cao, B., Xiao, Q., & Wen,
Y. (2018). Web service recommendation via
combining doc2vec-based functionality cluster-
ing and deepfm-based score prediction. 2018
IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Ubiquitous Com-
puting & Communications, Big Data & Cloud
Computing, Social Computing & Network-
ing, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom),
Melbourne, VIC, Australia, 11-13 December,
pp. 509–516.

[11] Ma, Y., Geng, X., Wang, J., He, K., & Athana-
sopoulos, D. (2022). Deep learning framework for
multi-round service bundle recommendation in
iterative mashup development. CAAI Transac-
tions on Intelligence Technology.

[12] Nguyen, M., Yu, J., Bai, Q., Yongchareon, S.,
& Han, Y. (2020). Attentional matrix factoriza-
tion with document-context awareness and im-
plicit api relationship for service recommenda-
tion. Proceedings of the Australasian Computer
Science Week Multiconference, Melbourne, VIC,
Australia, 4-6 February, pp. 1–10.

[13] Xue, Q., Liu, L., Chen, W., & Chuah,
M. C. (2017). Automatic generation and
recommendation for api mashups. 2017 16th
IEEE International Conference on Machine
Learning and Applications (ICMLA), Cancun,
Mexico, 18-21 December, pp. 119–124.

[14] Xu, G., Lian, S., & Tang, M. (2023). Web api
service recommendation for mashup creation.
International Journal of Computational Science
and Engineering, 26 (1), 45–53.

[15] Halili, F., Ramadani, E., et al. (2018). Web
services: A comparison of soap and rest services.
Modern Applied Science, 12 (3), 175.

[16] Altexsoft. (2022). What is api: Definition,
types, specifications, documentation [Available
at https : / / www . altexsoft . com / blog /
engineering / what - is - api - definition - types -
specifications - documentation/, Accessed on
2022/11/05].

[17] DevExchange, C. O. (2017). Infographic - a
history of modern api mashups [Available at
https : / / medium . com / capital - one - tech /
infographic-a-history-of-modern-api-mashups-
9476dad7685b].

[18] Zhang, Y., Chen, R., Tang, J., Stewart, W. F.,
& Sun, J. (2017). Leap: Learning to prescribe
effective and safe treatment combinations for
multimorbidity. proceedings of the 23rd ACM
SIGKDD international conference on knowl-
edge Discovery and data Mining, Halifax, NS,
Canada, 13-17 August, pp. 1315–1324.

[19] Wang, L., Zhang, W., He, X., & Zha, H.
(2018). Supervised reinforcement learning with
recurrent neural network for dynamic treatment
recommendation. Proceedings of the 24th ACM
SIGKDD international conference on knowledge
discovery & data mining, London, UK, 19-23
August, pp. 2447–2456.

[20] Wang, S., Ren, P., Chen, Z., Ren, Z., Ma,
J., & de Rijke, M. (2019). Order-free medicine
combination prediction with graph convolutional
reinforcement learning. Proceedings of the 28th
ACM international conference on information
and knowledge management, Beijing, China, 3-7
November, pp. 1623–1632.

[21] Wang, M., Liu, M., Liu, J., Wang, S.,
Long, G., & Qian, B. (2017). Safe medicine
recommendation via medical knowledge graph
embedding. ArXiv, abs/1710.05980. https://api.
semanticscholar.org/CorpusID:3746317

[22] Symeonidis, P., Chairistanidis, S., & Zanker,
M. (2022). Safe, effective and explainable
drug recommendation based on medical data
integration. User Modeling and User-Adapted
Interaction, 32 (5), 999–1018.

[23] Symeonidis, P., Kostoulas, T., Danilatou, V.,
Andras, C., & Chairistanidis, S. (2022). Mor-
tality prediction and safe drug recommendation
for critically-ill patients. 2022 IEEE 22nd In-
ternational Conference on Bioinformatics and
Bioengineering (BIBE), Taichung, Taiwan, 7-9
November, pp. 79–84.

[24] Symeonidis, P., Manitaras, G., & Zanker, M.
(2023). Accurate and safe drug recommen-
dations based on singular value decomposi-
tion. 2023 IEEE 36th International Symposium
on Computer-Based Medical Systems (CBMS),
L’Aquila, Italy, 22-24 June, pp. 163–168.

[25] Symeonidis, P., Bellinazzi, L., Berbague, C.,
& Zanker, M. (2023). Safe and effective
recommendation of drug combinations based
on matrix co-factorization. 2023 IEEE 36th
International Symposium on Computer-Based
Medical Systems (CBMS), L’Aquila, Italy, 22-24
June, pp. 634–639.

[26] Shang, J., Xiao, C., Ma, T., Li, H., & Sun,
J. (2019). Gamenet: Graph augmented memory
networks for recommending medication combi-
nation. proceedings of the AAAI Conference on
Artificial Intelligence, Honolulu, Hawaii, USA,
27 January – 01 February, 33 (01), pp. 1126–
1133.

[27] Symeonidis, P., Chaltsev, D., Berbague, C.,
& Zanker, M. (2022). Sequence-aware news
recommendations by combining intra-with inter-
session user information. Information Retrieval
Journal, 25 (4), 461–480.

[28] Najmani, K., El habib, B., Sael, N., &
Zellou, A. (2019). A comparative study on



API Recommendation for Mashup Creation: A Comprehensive Survey 23

recommender systems approaches. Proceedings
of the 4th International Conference on Big Data
and Internet of Things, Rabat, Morocco, 23-24
October, pp. 1–5.

[29] Mohamed, M. H., Khafagy, M. H., & Ibrahim,
M. H. (2019). Recommender systems challenges
and solutions survey. 2019 International Con-
ference on Innovative Trends in Computer En-
gineering (ITCE), Aswan, Egypt, 2-4 February,
pp. 149–155.

[30] Felfernig, A., Ninaus, G., Grabner, H., Rein-
frank, F., Weninger, L., Pagano, D., & Maalej,
W. (2013). An overview of recommender systems
in requirements engineering. Managing require-
ments knowledge, 315–332.

[31] Peng, Y., Li, S., Gu, W., Li, Y., Wang, W., Gao,
C., & Lyu, M. R. (2022). Revisiting, benchmark-
ing and exploring api recommendation: How far
are we? IEEE Transactions on Software Engi-
neering, 49 (4), 1876–1897.

[32] Thung, F. (2016). Api recommendation system
for software development. 2016 31st IEEE/ACM
International Conference on Automated Soft-
ware Engineering (ASE), Singapore, Singapore,
3-7 September, pp. 896–899.

[33] Tang, M., Xia, Y., Tang, B., Zhou, Y., Cao, B.,
& Hu, R. (2019). Mining collaboration patterns
between apis for mashup creation in web of
things. IEEE Access, 7, 14206–14215.

[34] Cao, B., Liu, X. F., Liu, J., & Tang, M. (2017).
Domain-aware mashup service clustering based
on lda topic model from multiple data sources.
Information and Software Technology, 90, 40–54.

[35] Hu, R., Chen, J., Liu, J., & Nian, Q. (2019).
Mdt: A multi-description topic based clus-
tering approach for composite-service discov-
ery. 2019 IEEE 21st International Conference
on High Performance Computing and Com-
munications; IEEE 17th International Con-
ference on Smart City; IEEE 5th Interna-
tional Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Zhangjiajie, China,
10-12 August, pp. 130–137.

[36] Liang, T., Chen, Y., Gao, W., Chen, M., Zheng,
M., & Wu, J. (2019). Exploiting user tagging
for web service co-clustering. IEEE Access, 7,
168981–168993.

[37] Zhao, H., Wang, J., Zhou, Q., Wang, X., &
Wu, H. (2019). Web api recommendation with
features ensemble and learning-to-rank. CCF
Conference on Big Data, Wuhan, China, 26–28
September, pp. 406–419.

[38] Lei, C., Dai, H., Yu, Z., & Li, R. (2020).
A service recommendation algorithm with the
transfer learning based matrix factorization to
improve cloud security. Information Sciences,
513, 98–111.

[39] Liu, L., Bahrami, M., Park, J., & Chen, W.-P.
(2020). Web api search: Discover web api and
its endpoint with natural language queries.
International Conference on Web Services,
Honolulu, HI, USA, 18–20 September, pp. 96–
113.

[40] Das, D., Sahoo, L., & Datta, S. (2017). A survey
on recommendation system. International Jour-
nal of Computer Applications, 160 (7).

[41] Simpson, J. (2022). 20 impressive api economy
statistics: Nordic apis —. https : / /nordicapis .
com/20-impressive-api-economy-statistics/

[42] Sharma, M., & Mann, S. (2013). A survey of rec-
ommender systems: Approaches and limitations.
International journal of innovations in engineer-
ing and technology, 2 (2), 8–14.

[43] Rahman, M. M., Liu, X., & Cao, B. (2017). Web
api recommendation for mashup development
using matrix factorization on integrated content
and network-based service clustering. 2017 IEEE
International Conference on Services Computing
(SCC), Honolulu, HI, USA, 25-30 June, pp.
225–232.

[44] Wang, F., Wang, L., Li, G., Wang, Y., Lv,
C., & Qi, L. (2022). Edge-cloud-enabled matrix
factorization for diversified apis recommendation
in mashup creation. World Wide Web, 25 (5),
1809–1829.

[45] Cao, B., Shi, M., Liu, X. F., Liu, J., &
Tang, M. (2016). Using relational topic model
and factorization machines to recommend web
apis for mashup creation. Asia-Pacific Services
Computing Conference, Zhangjiajie, China, 16-
18 November, pp. 391–407.

[46] Li, H., Liu, J., Cao, B., Tang, M., Liu,
X., & Li, B. (2017). Integrating tag, topic,
co-occurrence, and popularity to recommend
web apis for mashup creation. 2017 IEEE
International Conference on Services Computing
(SCC), Honolulu, HI, USA, 25-30 June, pp. 84–
91.

[47] Xu, Y., Zhang, H., Gao, H., Song, S., Yin,
Y., Hei, L., Ding, Y., & Barroso, R. J. D.
(2021). Preference discovery from wireless social
media data in apis recommendation. Wireless
Networks, 27 (5), 3441–3451.

[48] Yao, L., Wang, X., Sheng, Q. Z., Benatallah, B.,
& Huang, C. (2018). Mashup recommendation
by regularizing matrix factorization with api
co-invocations. IEEE Transactions on Services
Computing.

[49] Hao, Y., Fan, Y., Tan, W., & Zhang, J. (2017).
Service recommendation based on targeted
reconstruction of service descriptions. 2017
IEEE International Conference on Web Services
(ICWS), Honolulu, HI, USA, 25-30 June, pp.
285–292.



24 H. Alhosaini et al.

[50] Xiao, Y., Liu, J., Hu, R., Cao, B., & Cao, Y.
(2019). Dinrec: Deep interest network based api
recommendation approach for mashup creation.
International Conference on Web Information
Systems Engineering, Hong Kong, China, 19–22
January, pp. 179–193.

[51] Zhou, Y., Yang, X., Chen, T., Huang, Z.,
Ma, X., & Gall, H. (2020). Boosting api
recommendation with implicit feedback. arXiv
preprint arXiv:2002.01264.

[52] Gu, Q., Cao, J., & Liu, Y. (2021). Csbr: A
compositional semantics-based service bundle
recommendation approach for mashup develop-
ment. IEEE Transactions on Services Comput-
ing.

[53] Ali, G., & ElKorany, A. (2014). Semantic-
based collaborative filtering for enhancing
recommendation. KEOD, Rome, Italy, 21-24
October, pp. 176–185.

[54] Qi, L., Song, H., Zhang, X., Srivastava, G., Xu,
X., & Yu, S. (2021). Compatibility-aware web
api recommendation for mashup creation via
textual description mining. ACM Transactions
on Multimidia Computing Communications and
Applications, 17 (1s), 1–19.

[55] Gu, Q., Cao, J., & Peng, Q. (2016). Service
package recommendation for mashup creation
via mashup textual description mining. 2016
IEEE International Conference on Web Services
(ICWS), San Francisco, CA, USA, 27 June - 02
July, pp. 452–459.

[56] Lin, C., Kalia, A., Xiao, J., Vukovic, M., & Aner-
ousis, N. (2018). Nl2api: A framework for boot-
strapping service recommendation using natural
language queries. 2018 IEEE International Con-
ference on Web Services (ICWS), San Francisco,
CA, USA, 2-7 July, pp. 235–242.

[57] Almarimi, N., Ouni, A., Bouktif, S., Mkaouer,
M. W., Kula, R. G., & Saied, M. A. (2019).
Web service api recommendation for automated
mashup creation using multi-objective evolution-
ary search. Applied Soft Computing, 85, 105830.

[58] Jiang, B., Chen, Y., Wang, Y., & Liu, P.
(2019). Service discovery method for agile
mashup development. CCF Conference on
Computer Supported Cooperative Work and
Social Computing, Kunming, China, 16-18
August, pp. 30–49.

[59] Xie, X., Zhang, J., Ramachandran, R., Lee,
T. J., & Lee, S. (2022). Goal-driven context-
aware next service recommendation for mashup
composition. arXiv preprint arXiv:2210.14127.

[60] Zhang, B., Sheng, L., Jin, L., & Wen, W. (2019).
Rasop: An api recommendation method based
on word embedding technology. International
Symposium on Intelligence Computation and
Applications, Guangzhou, China, 16-17 Novem-
ber, pp. 281–295.

[61] Thung, F., Oentaryo, R. J., Lo, D., & Tian,
Y. (2017). Webapirec: Recommending web apis
to software projects via personalized ranking.
IEEE Transactions on Emerging Topics in
Computational Intelligence, 1 (3), 145–156.

[62] Li, C., Zhang, R., Huai, J., & Sun, H. (2014).
A novel approach for api recommendation in
mashup development. 2014 IEEE International
Conference on Web Services, Anchorage, AK,
USA, 27 June - 02 July, pp. 289–296.

[63] Xie, F., Chen, L., Lin, D., Zheng, Z., & Lin,
X. (2019). Personalized service recommendation
with mashup group preference in heterogeneous
information network. IEEE Access, 7, 16155–
16167.

[64] Alshangiti, M., Shi, W., Liu, X., & Yu, Q. (2020).
A bayesian learning model for design-phase
service mashup popularity prediction. Expert
Systems with Applications, 149, 113231.

[65] Xiong, R., Wang, J., Zhang, N., & Ma, Y.
(2018). Deep hybrid collaborative filtering for
web service recommendation. Expert systems
with Applications, 110, 191–205.

[66] Cao, Y., Liu, J., Cao, B., Shi, M., Wen, Y., &
Peng, Z. (2019). Web services classification with
topical attention based bi-lstm. International
Conference on Collaborative Computing: Net-
working, Applications and Worksharing, Lon-
don, UK, 19-22 August, pp. 394–407.

[67] Xie, F., Chen, L., Ye, Y., Zheng, Z., & Lin,
X. (2018). Factorization machine based service
recommendation on heterogeneous information
networks. 2018 IEEE International Conference
on Web Services (ICWS), San Francisco, CA,
USA, 2-7 July, pp. 115–122.

[68] Xie, F., Li, S., Chen, L., Xu, Y., & Zheng,
Z. (2019). Generative adversarial network based
service recommendation in heterogeneous infor-
mation networks. 2019 IEEE International Con-
ference on Web Services (ICWS), Milan, Italy,
8-13 July, pp. 265–272.

[69] Thorat, P. B., Goudar, R., & Barve, S. (2015).
Survey on collaborative filtering, content-based
filtering and hybrid recommendation system.
International Journal of Computer Applications,
110 (4), 31–36.

[70] Lops, P., Jannach, D., Musto, C., Bogers, T.,
& Koolen, M. (2019). Trends in content-based
recommendation. User Modeling and User-
Adapted Interaction, 29 (2), 239–249.

[71] Bai, X., Wang, M., Lee, I., Yang, Z., Kong, X., &
Xia, F. (2019). Scientific paper recommendation:
A survey. IEEE Access, 7, 9324–9339.

[72] Saraswathi, K., Saravanan, B., Suresh, Y.,
Senthilkumar, J., et al. (2017). Survey: A
hybrid approach to solve cold-start problem
in online recommendation system. Proceedings
of the International Conference on Intelligent



API Recommendation for Mashup Creation: A Comprehensive Survey 25

Computing Systems (ICICS 2017–Dec 15th-16th
2017) organized by Sona College of Technology,
Salem, Tamilnadu, India.

[73] Zhang, D., Yin, J., Zhu, X., & Zhang, C. (2018).
Network representation learning: A survey.
IEEE transactions on Big Data, 6 (1), 3–28.

[74] Qi, L., He, Q., Chen, F., Dou, W., Wan, S.,
Zhang, X., & Xu, X. (2019). Finding all you
need: Web apis recommendation in web of things
through keywords search. IEEE Transactions on
Computational Social Systems, 6 (5), 1063–1072.

[75] Qi, L., He, Q., Chen, F., Zhang, X., Dou,
W., & Ni, Q. (2020). Data-driven web apis
recommendation for building web applications.
IEEE Transactions on Big Data.

[76] Wang, X., Liu, X., Liu, J., Chen, X., & Wu,
H. (2021). A novel knowledge graph embedding
based api recommendation method for mashup
development. World Wide Web, 24 (3), 869–894.

[77] Qi, L., Lin, W., Zhang, X., Dou, W., Xu, X.,
& Chen, J. (2022). A correlation graph based
approach for personalized and compatible web
apis recommendation in mobile app develop-
ment. IEEE Transactions on Knowledge and
Data Engineering.

[78] Gong, W., Zhang, X., Chen, Y., He, Q., Be-
heshti, A., Xu, X., Yan, C., & Qi, L. (2022).
Dawar: Diversity-aware web apis recommenda-
tion for mashup creation based on correlation
graph. Proceedings of the 45th International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, Madrid, Spain,
11-15 July, pp. 395–404.

[79] Gong, W., Lv, C., Duan, Y., Liu, Z., Khosravi,
M. R., Qi, L., & Dou, W. (2021). Keywords-
driven web apis group recommendation for au-
tomatic app service creation process. Software:
Practice and Experience, 51 (11), 2337–2354.

[80] Gong, W., Wu, H., Wang, X., Zhang, X., Wang,
Y., Chen, Y., & Khosravi, M. R. (2021). Diver-
sified and compatible web apis recommendation
in iot. arXiv preprint arXiv:2107.10538.

[81] Wu, S., Shen, S., Xu, X., Chen, Y., Zhou, X.,
Liu, D., Xue, X., & Qi, L. (2022). Popularity-
aware and diverse web apis recommendation
based on correlation graph. IEEE Transactions
on Computational Social Systems.

[82] Li, B., & Pi, D. (2020). Network representation
learning: A systematic literature review. Neural
Computing and Applications, 1–33.

[83] Mahapatra, S. (2020). Why deep learning
over traditional machine learning? [Available at
https : / / towardsdatascience . com /why - deep -
learning - is - needed - over - traditional - machine -
learning-1b6a99177063].

[84] Chen, H., Wu, H., Li, J., Wang, X., & Zhang, L.
(2022). Keyword-driven service recommendation

via deep reinforced steiner tree search. IEEE
Transactions on Industrial Informatics.

[85] Huang, Q., Xia, X., Xing, Z., Lo, D., & Wang,
X. (2018). Api method recommendation without
worrying about the task-api knowledge gap.
2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE),
Montpellier, France, 3-7 September, pp. 293–
304.

[86] Zhang, Y., Su, J., & Chen, S. (2021). A deep
recommendation framework for completely new
users in mashup creation. International Con-
ference on Collaborative Computing: Network-
ing, Applications and Worksharing, Shanghai,
China, 16–18 October, pp. 550–566.

[87] Kang, G., Liu, J., Cao, B., & Cao, M. (2020).
Nafm: Neural and attentional factorization
machine for web api recommendation. 2020
IEEE international conference on web services
(ICWS), Beijing, China, 19-23 October, pp.
330–337.

[88] Cao, Y., Liu, J., Shi, M., Cao, B., Chen, T., &
Wen, Y. (2019). Service recommendation based
on attentional factorization machine. 2019 IEEE
International Conference on Services Computing
(SCC), Milan, Italy, 8-13 July, pp. 189–196.

[89] Kang, G., Liu, J., Xiao, Y., Cao, B., Xu, Y., &
Cao, M. (2021). Neural and attentional factor-
ization machine-based web api recommendation
for mashup development. IEEE Transactions on
Network and Service Management, 18 (4), 4183–
4196.

[90] Cao, B., Peng, M., Qing, Y., Liu, J., Kang, G.,
Li, B., & Fletcher, K. K. (2022). Web api recom-
mendation via combining graph attention repre-
sentation and deep factorization machines qual-
ity prediction. Concurrency and Computation:
Practice and Experience, 34 (21), e7069.

[91] Nguyen, M., Yu, J., Nguyen, T., & Han, Y.
(2021). Attentional matrix factorization with
context and co-invocation for service recommen-
dation. Expert Systems with Applications, 186,
115698.

[92] Shi, M., Liu, J., et al. (2018). Functional and
contextual attention-based lstm for service rec-
ommendation in mashup creation. IEEE Trans-
actions on Parallel and Distributed Systems,
30 (5), 1077–1090.

[93] Shi, M., Tang, Y., & Liu, J. (2019). Ta-blstm:
Tag attention-based bidirectional long short-
term memory for service recommendation in
mashup creation. 2019 International Joint Con-
ference on Neural Networks (IJCNN), Budapest,
Hungary, 14-19 July, pp. 1–8.

[94] Ma, Y., Geng, X., & Wang, J. (2020). A
deep neural network with multiplex interactions
for cold-start service recommendation. IEEE
Transactions on Engineering Management.



26 H. Alhosaini et al.

[95] Wu, H., Duan, Y., Yue, K., & Zhang, L. (2021).
Mashup-oriented web api recommendation via
multi-model fusion and multi-task learning.
IEEE Transactions on Services Computing.

[96] Lizarralde, I., Mateos, C., Zunino, A., Ma-
jchrzak, T. A., & Grønli, T.-M. (2020). Discover-
ing web services in social web service repositories
using deep variational autoencoders. Informa-
tion Processing & Management, 57 (4), 102231.

[97] Labbaci, H., Medjahed, B., Binzagr, F., &
Aklouf, Y. (2017). A deep learning approach
for web service interactions. Proceedings of the
International Conference on Web Intelligence,
Leipzig, Germany, 23-26 August, pp. 848–854.

[98] Bai, B., Fan, Y., Tan, W., & Zhang, J.
(2017). Dltsr: A deep learning framework for
recommendation of long-tail web services. IEEE
Transactions on Services Computing.

[99] Dang, D., Chen, C., Li, H., Yan, R., Guo,
Z., & Wang, X. (2021). Deep knowledge-aware
framework for web service recommendation.
The Journal of Supercomputing, 77 (12), 14280–
14304.

[100] Li, X., Zhang, X., Wang, P., & Cao, Z.
(2022). Web services recommendation based
on metapath-guided graph attention network.
The Journal of Supercomputing, 78 (10), 12621–
12647.

[101] Yu, C., Hu, R., & Wang, B. (2023). Akgin:
An api knowledge graph and intent network
based mashup-oriented api recommendation
method. 2023 26th International Conference
on Computer Supported Cooperative Work in
Design (CSCWD), Rio de Janeiro, Brazil, 24-
26 May, pp. 261–266.

[102] Wang, Y., Chen, J., Huang, Q., Xia, X., &
Jiang, B. (2023). Deep learning-based open
api recommendation for mashup development.
Science China Information Sciences, 66 (7), 1–
18.

[103] Wang, X., Xi, M., & Yin, J. (2023). Func-
tional and structural fusion based web api rec-
ommendations in heterogeneous networks. 2023
IEEE International Conference on Web Services
(ICWS), Chicago, IL, USA, 2-8 July, pp. 91–96.

[104] He, P., Liu, L., You, D., Shen, L., & Chen, Z.
(2023). Bat: Mining binary-api topic for multi-
service application development. 2023 26th In-
ternational Conference on Computer Supported
Cooperative Work in Design (CSCWD), Rio de
Janeiro, Brazil, 24-26 May, pp. 745–750.

[105] Yu, T., Yu, D., Wang, D., & Hu, X. (2023). Web
service recommendation for mashup creation
based on graph network. The Journal of
Supercomputing, 79 (8), 8993–9020.

[106] Xiao, G., Fei, J., Li, D., Wang, C., Cheng,
Z., & Lu, J. (2023). Mrhn: Hypergraph convo-
lutional network for web api recommendation.

2023 IEEE 24th International Conference on In-
formation Reuse and Integration for Data Sci-
ence (IRI), Bellevue, WA, USA, 4-6 August, pp.
179–184.

[107] Wang, G., Yu, J., Nguyen, M., Zhang, Y.,
Yongchareon, S., & Han, Y. (2023). Motif-
based graph attentional neural network for
web service recommendation. Knowledge-Based
Systems, 269, 110512.

[108] Zheng, X., Wang, G., Zhang, J., Zhang, Y.,
Wang, N., Yu, J., & Han, Y. (2023). H-
mgsr: A hierarchical motif-based graph attention
neural network for service recommendation.
2023 IEEE International Conference on Web
Services (ICWS), Chicago, IL, USA, 2-8 July,
pp. 553–562.

[109] Golbandi, N., Koren, Y., & Lempel, R. (2010).
On bootstrapping recommender systems. Pro-
ceedings of the 19th ACM international con-
ference on Information and knowledge manage-
ment, Toronto, ON, Canada, 26-30 October, pp.
1805–1808.

[110] Goldman, S., Kuzmin, D., Rendle, S., Zhang, L.,
Alzantot, M., Apte, A., Joshi, A., Kesari, A., On-
tanon, S., Subbiah, A., et al. (2022). Bootstrap-
ping interactive recommender systems.

[111] Golbandi, N., Koren, Y., & Lempel, R.
(2011). Adaptive bootstrapping of recommender
systems using decision trees. Proceedings of the
fourth ACM international conference on Web
search and data mining, Hong Kong, China, 9-
12 February, pp. 595–604.

[112] Lee, D., Kang, S., Ju, H., Park, C., & Yu, H.
(2021). Bootstrapping user and item represen-
tations for one-class collaborative filtering. Pro-
ceedings of the 44th International ACM SIGIR
Conference on Research and Development in In-
formation Retrieval, 11-15 July, pp. 317–326.

[113] Wu, H., Zhang, H., He, P., Zeng, C., &
Zhang, Y. (2019). A hybrid approach to
service recommendation based on network
representation learning. IEEE Access, 7, 60242–
60254.

[114] Mezni, H., Arab, S. A., Benslimane, D., & Be-
nouaret, K. (2020). An evolutionary clustering
approach based on temporal aspects for context-
aware service recommendation. Journal of Am-
bient Intelligence and Humanized Computing,
11 (1), 119–138.

[115] Wang, L., Zhang, X., Wang, R., Yan, C., Kou,
H., & Qi, L. (2020). Diversified service recom-
mendation with high accuracy and efficiency.
Knowledge-Based Systems, 106196.

[116] Botangen, K. A., Yu, J., Yongchareon, S., Yang,
L., & Sheng, Q. Z. (2019). Integrating geo-
graphical and functional relevance to implicit
data for web service recommendation. Interna-
tional Conference on Service-Oriented Comput-



API Recommendation for Mashup Creation: A Comprehensive Survey 27

ing, Toulouse, France, 28–31 October, pp. 53–
57.

[117] Karimi, M., Cule, B., & Goethals, B. (2019).
On-the-fly news recommendation using sequen-
tial patterns. INRA@ RecSys, Copenhagen, Den-
mark, 16-20 September, pp. 29–34.

[118] Wang, J., Hoi, S. C., Zhao, P., & Liu, Z.-Y.
(2013). Online multi-task collaborative filtering
for on-the-fly recommender systems. Proceedings
of the 7th ACM conference on Recommender
systems, Hong Kong, China, 12-16 October, pp.
237–244.

[119] Safran, M., & Che, D. (2017). Real-time
recommendation algorithms for crowdsourcing
systems. Applied Computing and Informatics,
13 (1), 47–56.

[120] Zhang, Y., & Chen, X. (2018). Explainable rec-
ommendation: A survey and new perspectives.
arXiv preprint arXiv:1804.11192.

[121] Brown, C., Middleton, J., Sharma, E., &
Murphy-Hill, E. (2017). How software users
recommend tools to each other. 2017 IEEE
Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), Raleigh, NC,
USA, 11-14 October, pp. 129–137.


