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The constant evolution of the illicit drug market makes the identification of unknown 

compounds problematic. Obtaining certified reference materials for a broad array of 

new analogues can be difficult and cost prohibitive. Machine learning provides a 

promising avenue to putatively identify a compound before confirmation against a 

standard. In this study, machine learning approaches were used to develop class 

prediction and retention time prediction models. The developed class prediction model 

used a Naïve Bayes architecture to classify opioids as belonging to either the fentanyl 

analogues, AH series or U series, with an accuracy of 89.5%. The model was most 

accurate for the fentanyl analogues, most likely due to their greater number in the 

training data. This classification model can provide guidance to an analyst when 

determining a suspected structure. A retention time prediction model was also trained 

for a wide array of synthetic opioids. This model utilised Gaussian Process Regression 

to predict the retention time of analytes based on multiple generated molecular features 

with 79.7% of the samples predicted within ± 0.1 min of their experimental retention 

time. Once the suspected structure of an unknown compound is determined, molecular 

features can be generated and input for the prediction model to compare with 

experimental retention time. The incorporation of machine learning prediction models 

into a compound identification workflow can assist putative identifications with greater 

confidence and ultimately save time and money in the purchase and/or production of 

superfluous certified reference materials. 
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1. Introduction 

Synthetic opioids are of significant concern to society due to their large public health threat. 

The potential of opioids to be used as performance-enhancing drugs in horses also raises 

concerns in the equine anti-doping community 1,2. 

Recently, there has been an increasing focus on non-targeted analysis methods to detect illicit 

drugs in high-throughput screening applications, without needing to rely on certified 

reference materials (CRMs) or library databases 3. Previous studies have investigated the use 

of product ion searching to detect novel analogues of known drug classes, exploiting class-

specific cleavages giving rise to common product ions 1,2,4,5. Other studies have looked at 

more advanced data analysis methods, incorporating mass filtering techniques such as 

Kendrick Mass Defect analysis to detect structurally related compounds within a complex 

matrix 1,6. While these data analysis techniques are useful for detecting the presence of an 

unknown compound within a sample, further investigation is required to determine the 

identity of the analyte. Furthermore, while many vendor software packages, such as 

Molecular Structure Correlator (Agilent Technologies) and Compound Discoverer (Thermo 

Fischer Scientific), can help with this process, having a basic understanding of the general 

classification of an unknown compound can assist with their timely identification. 

With the increasing volume of data generated by high-resolution mass spectrometry (HRMS) 

and the availability of cheaper and more powerful computational processing 7, the use of 

artificial intelligence approaches, such as machine learning, for toxicological applications has 

become viable. In general, machine learning algorithms enable a computer to ‘learn’ 

information directly from a data set without needing a predetermined equation to use as a 

model 8. In this way, the algorithm can adaptively improve its performance over time with 

experience 9. Machine learning can be further divided into both supervised and unsupervised 

learning. Supervised learning involves using a known set of input data (called the training 

set) with known responses to that data (the output) to train a model that has the ability to 

predict the response for new input data 7,10. Supervised learning models are categorised as 

either ‘classification’ or ‘regression’ models. Classification models aim to predict a discrete 

output, whereas regression models attempt to predict an output within a continuous space, 

such as a temperature or time range 7. Unsupervised learning, on the other hand, is useful 

when attempting to explore data without specific goals or previous knowledge of the 

information contained within the data 7,11. 

Machine learning approaches have been used in the field of toxicology previously, notably 

within the context of determining structure activity relationships in drug discovery 12,13. 

Retention time prediction under a specific chromatographic system has also been explored 

using regression models from both an environmental 14 and drug analysis perspective 15,16. 

This study aimed to develop a machine learning approach to assist with the identification of 

unknown compounds indicated from non-targeted screening workflows such as those 

presented by our group 1. The development of a classification model to predict the subclass of 

synthetic opioids based on MS2 dissociation data is presented, alongside the development of a 

regression model to predict the retention time of suspected compounds from calculated 
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molecular features. CRMs of novel drug analogues can be difficult and costly to procure. If 

an analyst has evidence supporting the putative identification of an unknown compound prior 

to procuring a CRM, it may save time and money for subsequent confirmation of the drug. 

2. Experimental 

2.1. Solvents and Reagents 

All solvents used were liquid chromatography-mass spectrometry (LC-MS) grade. 

Acetonitrile, ethyl acetate and methanol were obtained from Merck (Darmstadt, Germany). 

Ammonium acetate and trichloroacetic acid were obtained from Sigma-Aldrich (Castle Hill, 

NSW, Australia). Acetic acid and hydrochloric acid were obtained from Ajax Chemicals 

(Sydney, NSW, Australia). Ultrapure-grade water was obtained from a Smart2Pure ultra-pure 

water system (Thermo Scientific, Langenselbold, Hungary). 

2.2. Drug Standards 

Fentanyl citrate was purchased from Sigma-Aldrich (Castle Hill, NSW, Australia). 

Hydrochloride salts of 3,4-ethylenedioxy U-47700, 3,4-ethylenedioxy U-51754, 3,4-

methylenedioxy U-47700,  

4-fluoroisobutyrl fentanyl, 4-chloroisobutyryl fentanyl, acetyl fentanyl, AH-7921, AH-8529,  

AH-8533, meta-fluoro fentanyl, para-fluoro methoxyacetyl fentanyl, phenyl fentanyl, 

tetrahydrofuran fentanyl, U-48800, U-51754, UF-17 and β-hydroxythio fentanyl, 

manufactured by Cayman Chemical (Ann Arbor, MI, USA), were purchased from Sapphire 

Bioscience (Redfern, NSW, Australia). U-62066 mesylate, along with free base standards of 

AH-7563, AH-7959,  

AH-8507, AH-8532, crotonyl fentanyl, isopropyl U-47700, meta-fluoro methoxyacetyl 

fentanyl, methacryl fentanyl, N-methyl U-47931E, propyl U-47700, senecioyl fentanyl, 

thiofentanyl,  

U-47109, U-47931E, U-48520, U-49900 and U-50488, manufactured by Cayman Chemical, 

were also purchased from Sapphire Bioscience. Hydrochloride salts of 4-methoxybutyryl 

fentanyl, acryl fentanyl, butyryl fentanyl, furanyl fentanyl, U-47700, valeryl fentanyl, 4-

fluorobutyryl fentanyl, benzyl fentanyl, N-methyl carfentanil, ocfentanil and ortho-fluoro 

fentanyl, along with MT-45 dihydrochloride hydrate and neat standards of despropionyl para-

fluoro fentanyl, benzodioxole fentanyl, cyclopropyl fentanyl, cyclopentyl fentanyl, 

phenylpropionyl fentanyl and norfentanyl, manufactured by Chiron Chemicals (Hawthorn, 

VIC, Australia), were purchased from PM Separations (Capalaba, QLD, Australia). 

Remifentanil hydrochloride was purchased from GlaxoSmithKline (Boronia, VIC, Australia). 

Citrate salts of carfentanil, sufentanil and α-methyl fentanyl, along with alfentanil 

hydrochloride, were purchased from Janssen Pharmaceuticals (North Ryde, NSW, Australia). 

Desipramine-d3 was purchased from Grace (Columbia, MD, USA). The chemical information 

for all opioid standards used in this study can be found in the Supporting Information (Table 

S1). 
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2.3. Sample Preparation 

2.3.1. Class Prediction Samples 

Drug standards were obtained as methanolic standards of varying concentrations. Neat 

standards of all opioids were diluted in methanol to a concentration of 10 µg/mL. Ten µL of 

each solution was evaporated to dryness under nitrogen, before being reconstituted in one 

drop of methanol using a Pasteur pipette (approximately 20 µL) and 100 µL of 10 mM 

ammonium acetate (pH 4) buffer to give a final concentration of approximately 0.8 µg/mL 

for analysis. All samples were stored at 4 °C until analysis. 

2.3.2. Retention Time Repeatability Studies 

Neat mixed standards containing 4-chloroisobutyryl fentanyl, 4-fluoroisobutyryl fentanyl,  

4-methoxybutyryl fentanyl, acetyl fentanyl, acryl fentanyl, AH-7563, AH-7921, U-47700,  

AH-7959, AH-8507, AH-8529, AH-8533, α-methyl fentanyl, butyryl fentanyl, carfentanil, 

cyclopentyl fentanyl, cyclopropyl fentanyl, fentanyl, furanyl fentanyl, meta-fluoro fentanyl, 

MT-45, remifentanil, sufentanil, U-50488, U-51754 and valeryl fentanyl were prepared in 

methanol to give a concentration of 1 µg/mL. Sets of 7 samples were prepared, and the study 

was repeated 7 times  

(n = 49) to evaluate the repeatability of absolute retention times without the possibility of 

matrix effects. 

Blank plasma was obtained from blood samples collected in Lithium Heparin Vacutainers 

purchased from BD (Mississauga, ON, Canada) from four thoroughbred research horses 

following approval of the Racing NSW Animal Care and Ethics Committee (ARA 71). 

Spiked equine plasma samples (2 mL) were prepared to determine the precision of retention 

time measurements in a relevant biological matrix. Mixed standards containing the same 

panel of opioids used in the neat standards were spiked into the plasma samples at a 

concentration of 10 ng/mL. Spiked samples were prepared in sets of 7, and the extraction was 

repeated 7 times (n = 49) to determine the repeatability of measured retention times. 

Desipramine-d3 (10 ng/mL) was added as an internal standard to compare the repeatability of 

the absolute retention times (RT) to relative retention times (RRT) in comparison to the 

internal standard. The RRT was calculated by dividing the RT of the opioid standard by the 

RT of the internal standard. 

2.3.3. Retention Time Prediction Samples 

Separate plasma samples were spiked with each of 59 different opioid standards at a 

concentration of 10 ng/mL. Desipramine-d3 was again added as an IS at a concentration of 10 

ng/mL. Triplicate injections were completed from each sample and the extraction was 

repeated 3 times for a total of 9 measurements for each standard. 

2.3.4. Plasma Extraction Method 

Protein precipitation was completed through the addition of 200 µL of trichloroacetic acid 

(10% in H2O) to 2 mL samples. The pH of the samples was then adjusted to 3 – 3.5 using 

hydrochloric acid after which they were centrifuged at 1500 g for 10 minutes. Solid phase 
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extraction (SPE) was completed using XtrackT® Gravity Flow DAU Extraction Columns 

(UCT Inc., Bristol, PA, USA). The cartridges were first conditioned with 3 mL of methanol, 

followed by 3 mL of purified water, after which the samples were loaded. The samples were 

washed with 3 mL of 0.1 M acetic acid and dried under positive pressure. The cartridges were 

again conditioned with 3 mL of methanol and dried under positive pressure. The analytes 

were eluted from the cartridges using 3 mL of solvent containing 3% ammonia and 0.5% 

methanol in ethyl acetate. 

Following SPE, one drop of 0.1 M methanolic hydrochloric acid was added to each of the 

samples using a Pasteur pipette before the solvent was evaporated under a gentle stream of N2 

at 60 °C. The samples were then reconstituted in one drop of methanol using a Pasteur pipette 

and 100 µL of an ammonium acetate buffer (pH 3.9), before being transferred to vials for 

analysis. All samples were stored at 4 °C until analysis. 

2.4. Instrumental Analysis 

Chromatographic separation was achieved on an Agilent Technologies (Santa Clara, CA, 

USA) 1290 Infinity II UHPLC, consisting of a high-speed pump (G7120A), multisampler 

(G7167B) and thermostat and column compartment (G1316A, 35 °C) coupled to an Agilent 

Technologies 6545 quadrupole time-of-flight (QTOF) mass spectrometer. All data acquisition 

was conducted using Agilent Technologies MassHunter Workstation (Version B.06.01). A 

sample volume of 1 µL was injected onto an Agilent Technologies Poroshell 120 EC-C18 LC 

column (2.1 x 75 mm, 2.7 µm particle size) using a gradient elution with a flow rate of 0.4 

mL/min and a total analysis time of 12 min. Mobile phase A consisted of 10 mM ammonium 

acetate buffer (pH 9) and mobile phase B consisted of 0.1% acetic acid in acetonitrile. Initial 

mobile phase composition was 75% A, which was held for 0.5 min before being decreased 

linearly to 67% A over 2 min, before being held for another 1 min. The mobile phase was 

then further decreased to 55% A over 6 min, before being held for 1 min and returned to 75% 

A over 0.5 min, before a final 1 min hold. The column was allowed to equilibrate for 2 min 

before the next sample was injected. 

The QTOF was operated in positive electrospray ionisation mode (ESI+) with capillary and 

fragmentor voltages of 3500 V and 100 V, respectively. The QTOF was calibrated each day 

before use with an average resolution of 16,679 (FWHM) over the period of analysis at a 

reference mass of m/z 322.048121. The calibration solution was made up using 10 mL of the 

Agilent Technologies ESI-L tuning mix, diluted with 85.5 mL of acetonitrile and 4.5 mL of 

ultrapure water. Three microliter of 0.1 mM reference mass solution containing HP-0321 was 

added to the calibration solution. An AutoMS-MS data acquisition mode was used with mass 

ranges of 100 – 1000 m/z for MS and 50 – 850 m/z for MS/MS. Spectra were obtained with 

an acquisition speed of 10 spectra/s for both MS and MS/MS and collision energies (CE) of 

10, 20 and 40 eV were used for CID. A maximum of 5 precursors from the MS scan were 

selected for CID per cycle, with an abundance threshold of 5000 counts. Active exclusion 

was used, with precursor being excluded after 2 spectra and released after 0.1 min. 
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2.5. Data Analysis 

All data files were analysed using Agilent Technologies MassHunter Qualitative Analysis 

Software (Version B.10.0, Build 10.0.10305.0) to generate extracted ion chromatograms 

(EICs) and mass spectra for use in the statistical analysis software. 

2.5.1. Class Prediction Samples 

MT-45 and UF-17 were excluded from the classification model as they fall within their own 

classes and the classification model could not reliably account for these compounds when 

there is only 1 sample in the training set. 

The Find by AutoMS-MS function in the qualitative analysis software was used to extract 

MS spectra from the neat opioid standards at all 3 CEs (10, 20 and 40 eV). The spectra were 

exported, along with list of the top 10 most abundant masses, for use in building the class 

prediction model. The most abundant ions for each synthetic opioid standard were then 

populated into an Excel spreadsheet from highest to lowest abundance. 

2.5.2. Retention Time Repeatability and Prediction Samples 

Compound and spectral information for all opioid standards analysed was curated into a 

database using Agilent Technologies MassHunter Personal Compound Database and Library 

(PCDL) Manager (Version B.08.00, Build 8209.7 SP1). This PCDL was used in conjunction 

with the Find by Formula (FbF) function in the qualitative analysis software to generate EICs 

for all the spiked plasma samples analysed. 

For the repeatability studies (2.3.2), absolute RT and RRT were collected and populated 

within a spreadsheet in Microsoft Excel. The average, standard deviation (SD) and relative 

standard deviation (%RSD) was calculated within each set of 7 samples and between the 7 

sets of samples analysed (n = 49). 

The individual spiked samples were analysed (2.3.3) and the average RRT across all 9 

measurements was determined for use in training the retention time prediction model. 

2.6. Molecular Features 

Thirteen molecular features were used in the retention time prediction model. Features were 

calculated using online software, including the Chemicalize tool (ChemAxon, San Diego, 

CA, USA) 17 and Pharmaceutical Data Exploration Laboratory 18, or predefined equations. A 

list of all the molecular features used can be found in Table 1. A pH of 9 was chosen for the 

determination of logD and logS values as this reflected the pH of the mobile phase used for 

analysis. 

The double bond equivalent (DBE) was calculated using Equation 1 19, where a is number of 

carbons, b is the number of hydrogens, c is the number of nitrogens and f is the number of 

halogens in the molecule. 

𝐷𝐵𝐸 = (𝑎 + 1) −
𝑏−𝑐+𝑓

2
 (Equation 1) 
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The hydrophilic factor (Hy) was calculated using the Equation 2 20. NHy is the number of 

hydrophilic groups in the molecule (or the total number of hydrogen atoms attached to 

oxygen, nitrogen or sulfur atoms), Nc is the number of carbon atoms in the molecule and A is 

the number of non-hydrogen atoms in the molecule 20. 

𝐻𝑦 =
(1+𝑁𝐻𝑦) log2(1+𝑁𝐻𝑦)+𝑁𝐶(

1

𝐴
log2

1

𝐴
)+√

𝑁𝐻𝑦

𝐴2

log2(1+𝐴)
 (Equation 2) 

2.7. Statistical Analysis 

All statistical analysis was conducted using Microsoft Excel (Version 16.0.12624.20382) and 

MathWorks MATLAB® (Version R2019b, 9.7.0.1319299) equipped with the Statistical and 

Machine Learning Toolbox (Version 11.6). The MATLAB® code for the developed models 

can be found in the Supporting Information. 

2.7.1. Class Prediction Modelling 

Product ion data from all 3 CEs (10, 20 and 40 eV) were compared. The compiled data can be 

found in the Supporting Information (Table S2). 

The most abundant ion data was imported into the Classification Learner app within 

MATLAB. The model response variable was set to be the compound class and k-fold cross-

validation was used with 50 folds. This method of validation splits the data into a finite 

number of groups, or folds. When training the model, each iteration uses k-1 folds as the 

training data and remaining group as the test data. This process is then repeated for the 

remaining groups and an average of the accuracies of each iteration is given at the end 21. 

This method of validation provides a suitable estimate of the model accuracy 21. 

Several different model types, namely decision trees, discriminant analysis, naïve Bayes 

classifiers, support vector machines, nearest neighbour classifiers and ensemble classifiers, 

were investigated in order to determine the most accurate model. Hyperparameter tuning was 

used to optimise the models and provide the highest accuracy possible. The hyperparameters 

of a model are the variables that control the training process itself. These hyperparameters are 

set before the model is trained and can be considered the model settings that need to be 

optimised 22. The aim of hyperparameter tuning, therefore, is to find the settings that return 

the best model performance. 

Bayesian optimisation was used to train the model with an acquisition function of ‘expected 

improvement per second plus’. The objective of Bayesian optimisation is to build a 

probability model of the objective function, in this case the classification error of the model, 

and use it to select the most promising hyperparameters to train the classification model 22. 

This optimisation methods learns with each iteration and uses the results from previous trials 

to determine the best set of hyperparameters to use for the next trial. 

The model was trained and optimised over 30 iterations and the Classification Learner app 

returned the most accurate model from those iterations. In addition to the overall model 

accuracy, the F1 score and Matthew’s correlation coefficient (MCC) were calculated for the 
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optimised model. The code for the trained model could then be exported for use in classifying 

new samples. 

2.7.2. Retention Time Prediction 

The calculated molecular feature data for each synthetic opioid standard was populated into 

an Excel spreadsheet, along with the average RRT calculated for each compound. The 

compiled data can be found in the Supporting Information (Table S3). All the compound data 

was then imported into the Regression Learner app within MATLAB. The model response 

variable was set to be the RRT and k-fold cross validation was again used with 50 folds. 

Several regression models were also investigated to determine the most accurate model, 

namely regression trees, support vector machines, ensemble of trees and gaussian process 

regression models. Hyperparameter tuning was also used for the regression models with the 

same parameters as outlined in 2.7.1. To assess the influence of individual predictors, each 

molecular feature was sequentially removed, and the model retrained without that predictor. 

This process was completed 3 times for each feature and an average RMSE value was 

determined for each feature. The code was again exported so that it could be used to classify 

new samples. 

3. Results and Discussion 

3.1. Class Prediction Modelling 

Previous work has shown that different subclasses of synthetic opioids display class specific 

diagnostic ions that can be used for non-targeted screening methods 1,2,4. By exploiting this 

same phenomenon, class prediction modelling can be attempted using MS2 data and the 

presence of abundant product ions within the resultant spectra. The generic structures of the 3 

opioid subclasses included in the class prediction models, namely fentanyl analogues, AH 

series and U series opioids, can be found in Figure 1 below. 

For this study, product ion data from all 3 CEs used for analysis was compared to determine 

the best input data for training the models. It was found that the MS2 spectra using a CE of 40 

eV gave the highest accuracy when developing the class prediction models. This is likely due 

to the fact that the higher collision energy caused greater dissociation of the compound 

structure, breaking it down into smaller units which are more closely related to the core 

structures of the compounds. The common fragmentation patterns of the opioid subclasses 

have been presented previously 2. 

The use of k-fold cross validation is beneficial where smaller data sets are being examined. 

Using the more simplistic hold-out method requires separating the data set into a training and 

validation sets, which results in a large proportion of the data not being able to be used for the 

training of the model 23. The k-fold method, on the other hand, allows the use of all data in 

the training of the model. By randomly separating the training data into different groups, or 

folds, training and validation can both be performed on all samples within the data set. The 

choice for how many folds to use in cross-validation is often determined by the 

computational power available and the variance allowed in the test error calculated 23. When 
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the number of folds is close to, or equal to, the number of samples in the data set, there is less 

bias in the test error that is calculated 23. This occurs because the model is essentially being 

trained and tested against each individual sample, which will result in the best estimation of 

the overall model accuracy. On the other hand, if the number of folds is much smaller than 

the number of samples, there will tend to be some variance in reported accuracy of the model 

each time training is completed as the algorithm will more randomly assign samples to each 

group. If the composition of each validation group changes, the training process and reported 

accuracy of the model can change as well. 

The downside of using a larger number of folds, however, is that it can slow down the 

training of the model itself. When using k-fold cross-validation, the model must be trained k-

1 times. The more folds that are used, the more training iterations the model must go through, 

which can significantly increase the time taken to train the model, especially when large data 

sets are being used. Therefore, a compromise is made between the variance allowed in the 

reported error and the computational power available for training the model. For the model 

applied in this study, a data set containing 57 samples was used. In comparison to many 

machine learning problems looking at ‘big data’ this is a rather small sample size. Therefore, 

the use of 50-folds for cross validation (the most allowed by the classification learner app) 

provided a reasonably unbiased measure of the overall model error, as k was close to the total 

number of sample present, while still being able to train the model in a reasonable timeframe 

(within 5-10 minutes). 

The classification accuracies for the different models trained can be found in Table 2. The 

overall accuracy of the model can be defined as the total number of correct prediction (i.e. 

total true positives and true negatives) in relation to the total number of samples in the 

training set 24. After investigating several different types of classification models available in 

the MATLAB classification learner app, it was found that the naïve Bayes model provided 

the best option for class prediction. While the ensemble model provided a slightly higher 

overall accuracy, it resulted in a loss of accuracy for the fentanyl analogues and no change in 

the prediction accuracy of the AH series, with the increase in overall accuracy coming from 

the U series compounds. In addition, an ensemble model is a more complicated model and 

took significantly longer to train than the naïve Bayes. The compromise between a slightly 

lower overall accuracy and simpler/faster model to use and re-train as new data is obtained 

means that a naïve Bayes model may be more suitable for routine use. 

As the name suggests, a naïve Bayes classifier uses Bayes theorem to determine the 

appropriate output based on the given data 25. A naïve Bayes classifier also involves several 

assumptions. The first of these assumptions is that the input variables (predictors) are 

independent of each other, i.e. the presence of one feature does not affect the others 26. 

Secondly, this model type assumes that all the predictors have an equal effect on the outcome 
26. While these assumptions are not always true for every data set, naïve Bayes classifiers still 

provide high classification accuracy 27. 

The confusion matrix produced from the trained model is displayed in Figure 2. Using the 

hyperparameter tuning incorporated in the classification learner app, it was found that a 

kernel naïve Bayes structure performed the best with a gaussian kernel type. The minimum 
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classification error plot showing the change in error with each training iteration can be found 

in the Supporting Information (Figure S1). The model was retrained using fewer training 

iterations, however there was no difference in the overall accuracy of the model (89.5%) or 

the confusion matrix produced (Figures S2 and S3). If the model was retrained in the future 

to incorporate additional compounds, the use of fewer training iterations may save time in the 

construction of the updated model, however care should be taken to ensure that the optimal 

parameters are still reached. The overall accuracy of the trained model was found to be 

89.5% and it can be seen in Figure 2 that the model was most accurate for the fentanyl 

analogues. The confusion matrix shows that there is also some bias towards the fentanyl 

analogues, with the model preferentially classifying this group over the others. This is likely 

due to the fact that there were significantly more fentanyl analogue standards used in the 

training of the model than the other two subclasses. This is somewhat unavoidable given that 

this group tends to be much more prevalent and diverse than the AH and U series opioids. In 

the context of routine drug screening, having a model that is more accurate for the detection 

of fentanyl analogues may, in fact, be beneficial. These compounds are the most prevalent of 

the synthetic opioids with the United Nations Office on Drugs and Crime reporting that the 

majority of the 22 new opioids reported to their early warning advisory were fentanyl 

analogues 28. Additionally, in Europe, until the end of 2018 they accounted for the majority of 

the novel opioid analogues being reported to the European Monitoring Centre for Drugs and 

Drug Addiction 29. This suggests that the inherent biases present in the model may reflect the 

current landscape of the illicit opioid market. 

It is possible, however, to artificially introduce biases into the training of the model using a 

cost matrix. While this may reduce the overall accuracy of the model, it may help to balance 

the false classifications from the AH and U series compounds. This compromise should 

therefore be evaluated on a case-by-case basis, depending on the intended application of the 

model. As the drug market continues to develop with the production of new compounds, it 

may be possible to further refine the model if more AH and U series opioids are developed 

which can be incorporated into the training of the model. 

In addition to the overall accuracy of the model, the F1 score and MCC were calculated based 

on the confusion matrix presented in Figure 2. It has been suggested that, when a dataset is 

unbalanced (i.e. there are more samples belonging to one class than the others), accuracy 

alone may not be a reliable measure of model performance 30,31. This is because the accuracy 

measurement may provide an overoptimistic estimation based on the classification ability of 

the majority class 30,31. The F1 score, however, is a better metric when the classes are 

unbalanced and takes into account both the precision (also known as the positive predictive 

value) and recall (also known as sensitivity) of the model 24. The MCC can also be a reliable 

metric as it will only produce a high score if the model prediction obtained good results for 

all four of the confusion matrix categories, namely true positive, true negative, false positive 

and false negative 31. While both the F1 score and MCC are designed for use on binary 

datasets (i.e. where there are only two classes present), they can be applied to multiclass 

models through the use of ‘micro averaging’ and weighted averages. Micro averaging treats 

the entire data set as an aggregate result and does not consider the individual classes. In this 

case, all of the confusion matrix categories mentioned above would be added together for 
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each class and used to calculate the F1 score and MCC. On the other hand, the F1 score and 

MCC can be calculated for each class individually and a weighted average taken, taking into 

account any class imbalance. Table 3 shows the F1 score and MCC values calculated for the 

optimised model using both calculation methods. A score of 1 for both of these metrics would 

indicate a perfect correlation. It can be seen from these scores that they all return high values, 

with the micro averaged F1 score equalling the overall accuracy of the model, which supports 

the high accuracy and suitability of the trained model. 

As new opioids belonging to any of the 3 classes are identified, their MS2 data can be 

collected and incorporated into the model, ideally leading to an increase in prediction 

accuracy over time as new data is generated. Additionally, if new synthetic opioid subclasses 

are identified, such as the benzimidazole class recently reported by Blanckaert et al. 29, 

product ion information can be collated and the model retrained to expand the scope of 

compounds covered. In this way, the classification model can continue to be developed and 

adapted over time to stay up to date with developments in the illicit drug market. 

3.2. Retention Time Repeatability Studies 

Before retention time prediction can be attempted, it is important to establish the precision of 

RT values under the applied chromatographic conditions. If significant variation in the RT of 

a given compound is observed, the efficacy of a retention time prediction algorithm would be 

severely limited. 

In order to first determine the repeatability of RT values without the possibility of matrix 

effects, mixed neat standards were analysed using the developed chromatographic method. A 

representative panel of 26 different synthetic opioids, including compounds from each of the 

different subclasses, were chosen for the repeatability study. Sets of samples were analysed 

across multiple days to account for both intra and inter-day variability and the average RT, 

SD, and %RSD were calculated. It was found that the %RSD for all the representative 

compounds was within 4%, suggesting a high degree of precision. Importantly, the absolute 

SD of all the compounds was ≤ 0.120 min. This falls within ± 0.2 min required by the 

Association of Official Racing Chemists (AORC) for the identification of compounds 32. 

While the precision of the RT values in neat standards shows promise, in order to determine 

the applicability to realistic samples, spiked plasma samples were analysed to determine if 

matrix effects would affect this. These samples were also prepared at a lower concentration 

(10 ng/mL) to further simulate a more realistic case scenario. In addition, an internal standard 

of desipramine-d3 was included to evaluate if the use of RRT values could further improve 

the precision of measurements. It was found that there is no significant difference in the 

absolute RT measurements between the neat and spiked samples, with most compounds still 

displaying %RSD values within 4%. As might be expected, the absolute SD of the RRT 

measurements were much smaller than for the absolute RT. Generally, the RRT 

measurements showed improved precision between 0.1% and 0.5%. Based on these results, it 

is suggested that an internal standard is included when developing retention time prediction 

models, so that RRT values can be used. The results of the repeatability study in both neat 

standards and matrix spikes can be found in the supporting information (Tables S4 and S5). 
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While the internal standard used in this study was desipramine-d3, in practice, any compound 

with a suitable retention time could be used to determine RRT values for training and 

implementing the prediction model. 

3.3. Retention Time Prediction 

When training a regression model, the accuracy of the model can be evaluated by considering 

the root mean square error (RMSE) of the output variables. The mean square error is average 

square of the difference between the predicted and actual target variables 33. This metric, 

however, is measured in units that are the square of the target output, therefore the RMSE is 

often preferred as it is easier to interpret in the context of the developed model 21,33. Put 

simply, the RMSE measures the standard deviation present in the residuals of the model. The 

residuals display the difference (error) between the experimental value and the predicted 

value given by the model. The less variation there is between the experimental and predicted 

values, the smaller the residuals will be and, therefore, a more accurate model will give a 

lower RMSE. 

In this study, four different regression models were evaluated to determine the best model 

architecture for this application. The observed RMSE values for each model type are 

presented in Table 4. Since regression models are predicting values in a continuous space, 

variation can be seen between the RMSE values for the same model type over different 

training periods. Therefore, the RMSE values presented in Table 4 show an average over 3 

models trained on the same data. 

The Gaussian Process Regression (GPR) model provided the best accuracy for the RT 

prediction. GPR models are non-parametric models, which use a Bayesian approach to 

regression problems 34. One advantage of GPR approaches is that the prediction is 

probabilistic, meaning that the estimate for a given point contains uncertainty information as 

well 35. It has been suggested that this type of model is suitable for complex regression 

problems, with high-dimensional data (i.e. large number of predictor variables) and small 

samples sizes 36. 

Once evaluation of the different model types had been completed, the effect of individual 

predictors on the overall accuracy of the model was explored. These accuracies were then 

plotted against the overall accuracy of a model trained using all predictors (Figure 3). It can 

be seen from Figure 3 that 5 of the predictors resulted in a large increase in RMSE when 

removed, indicating that they are important predictors for determining retention time. A 

further 3 indicators showed a smaller increase in RMSE, or no change, indicating that they do 

not have as large of an effect, but can still influence the accuracy of the model. For 5 of the 

predictors, however, namely nO, nDB, nR06, logS and Hy, it was found that the accuracy of 

the model improves when those features are excluded. This indicates that these features are 

not good predictors of retention time and may harm the overall accuracy of the model. 

Following this determination, a new GPR model was trained, which omitted these 5 

predictors, and was determined to have an average RMSE of 0.084348. Interestingly, when 

training the adjusted model without these predictors, no variation in the RMSE was observed 

between training attempts, unlike the other models. The difference between using RRT and 
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absolute RT values for the model output was also evaluated for the optimised model. The 

model returned an RMSE value of 0.4432 using the absolute RT values. The difference in the 

error can be explained by the absolute RT values being larger than the RRT, resulting in a 

larger standard deviation being measured for the residuals. When the trained model was 

evaluated, however, a greater variance was seen between the predicted and experimental RT 

values. The outputs from the model trained using absolute RT values can be found in the 

supporting information (Figures S4 and S5). 

Figure 4 presents the predicted response (in this case RRT) compared to the experimentally 

determined ‘true’ RRT to provide a visual representation of the model accuracy. The majority 

of the data points are in good agreement with the regression line. The hyperparameter 

optimisation completed on the GPR model found that a basis function of zero and a 

nonisotropic squared exponential kernel function provided the best model accuracy. The 

sigma value used in the Gaussian processes varied slightly between the different training 

attempts, however the overall RMSE produced was the same. The specific hyperparameters 

used in the optimised model were determined automatically by the training algorithm. While 

these hyperparameters can be useful for comparison between similar models, they do not 

impact the routine implementation of the model once trained. The minimum mean square 

error (MSE) plot showing the change in the model error over the sequential training iterations 

can be found in the Supporting Information (Figure S6). 

Another visual method that can be used to examine the errors present within the module is by 

examining the residuals produced from the predictions (Figure 5). When the residuals are 

clustered around the lower end of the y-axis, it indicates a higher model accuracy, as a 

residual of 0 means that the model has correctly predicted the RRT of the given sample. In 

the case of this model, 79.7% of the samples produced residuals within ± 0.1 min. The RMSE 

of 0. 084348 calculated for this model refers to the standard deviation of the residuals shown 

in Figure 5. This means that samples predicted within approximately ± 0.1 min fall within the 

expected variation of the model. This further reinforces the suitability of the trained model to 

the application of retention time prediction. Figure 5 also shows that the residuals are 

relatively symmetrical and there are no clear patterns present. This indicates that there is no 

significant bias in the model. If an observable trend were displayed in the residual plot, such 

as an increase in error as the experimental RRT increased, it would indicate that there was a 

problem with the algorithm the model was using for prediction. 

In the same way as the classification model, the GPR model can be re-trained with new data 

to expand it to include more compounds. It is important, however, that any new samples 

which are to be subjected to the prediction model, or used to re-train the model, are analysed 

using the same chromatographic conditions as the original training data. This means that if a 

laboratory incorporates retention time prediction into their data analysis workflow, the model 

used needs to be trained and optimised to suit the analytical methods being used. 

A limitation of retention time prediction modelling using molecular features is that a 

suspected compound identity must be known before the model can be applied. In order to 

generate the predictors that are used by the model, a suspected structure is needed. This does 

not diminish the usefulness of the model when incorporated into a rigorous compound 
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identification workflow, however. A classification model, such as the one presented in 

section 3.1, can be used to give a general indication of the type of compound present in the 

suspected sample. This can help inform further identification processes, such as the use of 

vendor software like Molecular Structure Correlator or Compound Discoverer, in order to 

putatively identify an unknown compound. Once this putative identification has been 

achieved, the required molecular features for the compound can be generated and input to the 

retention time prediction model. The predicted RRT can then be compared to the 

experimental RRT to provide further evidence to support the identity of the unknown. In 

cases where multiple possible identities are determined for a specific unknown, the molecular 

features of all possible identities can be generated, and the predicted RRT values compared to 

determine the most likely identity of the unknown compound. By using models such as these, 

laboratories can perform a putative identification of an unknown compound with a higher 

degree of confidence, which can save time and money by limiting the purchase and/or 

production of erroneous CRMs. 

A limitation of the models presented in this study is the lack of authentic samples with which 

to validate the applicability of the models. Future studies should strive to demonstrate the 

accuracy of models such as these on authentic administration samples of synthetic opioids. 

This limitation does not preclude the inclusion of these models in a complementary 

targeted/non-targeted screening workflow, as the intention of models such as these is to 

provide preliminary intelligence to assist an analyst in the identification of an unknown 

component within a sample. 

4. Conclusion 

The use of machine learning to assist with the identification of unknown compounds has 

shown significant potential. The classification model developed in this study showed a high 

degree of accuracy for the prediction of opioid subclasses. This model can be further 

developed and refined as new compounds are produced to encompass a broad spectrum of 

compounds. While the developed model showed some bias towards the classification of 

fentanyl analogues, cost matrices can be introduced to counteract this bias. These can be 

applied on a case-by-case basis depending on the priorities of the laboratory. Additionally, 

the retention time prediction model showed good correlation between predicted and 

experimental RRT values. The use of an internal standard to correct for any intra- and inter-

day variations resulted in improved precision compared to absolute RT values alone. The 

developed models can be incorporated into a compound identification workflow and 

expanded and optimised based on the requirements of an individual laboratory. 
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Table 1. Molecular features used for retention time prediction 

Feature Abbreviation Source 

Stongest basic pKa pKa Chemicalize 17 

Number of carbon atoms nC Chemicalize 17 

Number of oxygen atoms nO Chemicalize 17 

Number of double bonds nDB Chemicalize 17 

Number of 6-membered rings nR06 Chemicalize 17 

Number of benzene rings nBNZ Chemicalize 17 

Partition coefficient logP Chemicalize 17 

Distribution coefficient (pH 9) logD (pH 9) Chemicalize 17 

Aqueous solubility (pH 9) logS (pH 9) Chemicalize 17 

Ghose-Crippen logP AlogP 
Pharmaceutical Data Exploration Laboratory 

18 

Moriguchi logP MlogP 
Pharmaceutical Data Exploration Laboratory 

18 

Double bond equivalents DBE Equation 1 19 

Hydrophilic factor Hy Equation 2 20 

 

 

 

Table 2. Accuracy of each class prediction model trained. 

Model 

Overall 

Accuracy 

(%) 

Class Accuracy (%) 

Fentanyls AH Series U Series 

Decision Tree 87.7 94.3 57.1 86.7 

Discriminant Analysis 86.0 85.7 71.4 93.3 

Naïve Bayes 89.5 100.0 57.1 80.0 

Support Vector Machine 84.2 97.1 71.4 60.0 

Nearest Neighbour 87.7 100.0 71.4 66.7 

Ensemble 91.2 97.1 57.1 93.3 
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Table 3. Accuracy of each class prediction model trained. 

Metric Micro Average Weighted Average 

F1 Score 0.895 0.889 

Matthew’s Correlation Coefficient 0.842 0.801 

 

 

 

 

Table 4. Accuracy of each retention time prediction model trained, measured by the root 

mean square error (RMSE). 

Model RMSE (mean ± range) 

Regression Tree 0.177630 ± 0.0000 

Support Vector Machine 0.123920 ± 0.01810 

Ensemble of Trees 0.158627 ± 0.01540 

Gaussian Process Regression 0.096608 ± 0.018173 

Gaussian Process Regression (omitted features) 0.084348 ± 0.00000 
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Figure 1. Generic structures of the opioid subclasses used in the class prediction model, 

including fentanyl analogues (A), AH series (B) and U series with (C) and without (D) a 

methylene spacer. 
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Figure 2. Confusion matrix showing the prediction accuracy of the developed Naive Bayes 

model for each opioid subclass. 
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Figure3. Model accuracy following removal of individual predictors in comparison to the 

accuracy of a model trained with all features (red). A lower RMSE indicates a higher model 

accuracy. 
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Figure 4. Predicted (RRTp) vs. experimental (RRTe) for the developed Gaussian Process 

Regression model 
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Figure 5. Residuals produced from the retention time prediction model 
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